CTCaer-ICS-Xperia2011/block/bfq-iosched.c
2012-11-13 23:52:32 +00:00

2451 lines
68 KiB
C
Executable File

/*
* BFQ, or Budget Fair Queueing, disk scheduler.
*
* Based on ideas and code from CFQ:
* Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
*
* Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
* Paolo Valente <paolo.valente@unimore.it>
*
* Licensed under the GPL-2 as detailed in the accompanying COPYING.BFQ file.
*
* BFQ is a proportional share disk scheduling algorithm based on the
* slice-by-slice service scheme of CFQ. But BFQ assigns budgets,
* measured in number of sectors, to tasks instead of time slices.
* The disk is not granted to the active task for a given time slice,
* but until it has exahusted its assigned budget. This change from
* the time to the service domain allows BFQ to distribute the disk
* bandwidth among tasks as desired, without any distortion due to
* ZBR, workload fluctuations or other factors. BFQ uses an ad hoc
* internal scheduler, called B-WF2Q+, to schedule tasks according to
* their budgets. Thanks to this accurate scheduler, BFQ can afford
* to assign high budgets to disk-bound non-seeky tasks (to boost the
* throughput), and yet guarantee low latencies to interactive and
* soft real-time applications.
*
* BFQ has been introduced in [1], where the interested reader can
* find an accurate description of the algorithm, the bandwidth
* distribution and latency guarantees it provides, plus formal proofs
* of all the properties. With respect to the algorithm presented in
* the paper, this implementation adds several little heuristics, and
* a hierarchical extension, based on H-WF2Q+.
*
* B-WF2Q+ is based on WF2Q+, that is described in [2], together with
* H-WF2Q+, while the augmented tree used to implement B-WF2Q+ with O(log N)
* complexity derives from the one introduced with EEVDF in [3].
*
* [1] P. Valente and F. Checconi, ``High Throughput Disk Scheduling
* with Deterministic Guarantees on Bandwidth Distribution,'',
* IEEE Transactions on Computer, May 2010.
*
* http://algo.ing.unimo.it/people/paolo/disk_sched/bfq-techreport.pdf
*
* [2] Jon C.R. Bennett and H. Zhang, ``Hierarchical Packet Fair Queueing
* Algorithms,'' IEEE/ACM Transactions on Networking, 5(5):675-689,
* Oct 1997.
*
* http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
*
* [3] I. Stoica and H. Abdel-Wahab, ``Earliest Eligible Virtual Deadline
* First: A Flexible and Accurate Mechanism for Proportional Share
* Resource Allocation,'' technical report.
*
* http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
*/
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/cgroup.h>
#include <linux/elevator.h>
#include <linux/rbtree.h>
#include <linux/ioprio.h>
#include "bfq.h"
/* Max number of dispatches in one round of service. */
static const int bfq_quantum = 4;
/* Expiration time of sync (0) and async (1) requests, in jiffies. */
static const int bfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
/* Maximum backwards seek, in KiB. */
static const int bfq_back_max = 16 * 1024;
/* Penalty of a backwards seek, in number of sectors. */
static const int bfq_back_penalty = 2;
/* Idling period duration, in jiffies. */
static int bfq_slice_idle = HZ / 125;
/* Default maximum budget values, in sectors and number of requests. */
static const int bfq_default_max_budget = 16 * 1024;
static const int bfq_max_budget_async_rq = 4;
/*
* Async to sync throughput distribution is controlled as follows:
* when an async request is served, the entity is charged the number
* of sectors of the request, multipled by the factor below
*/
static const int bfq_async_charge_factor = 10;
/* Default timeout values, in jiffies, approximating CFQ defaults. */
static const int bfq_timeout_sync = HZ / 8;
static int bfq_timeout_async = HZ / 25;
struct kmem_cache *bfq_pool;
struct kmem_cache *bfq_ioc_pool;
static DEFINE_PER_CPU(unsigned long, bfq_ioc_count);
static struct completion *bfq_ioc_gone;
static DEFINE_SPINLOCK(bfq_ioc_gone_lock);
static DEFINE_SPINLOCK(cic_index_lock);
static DEFINE_IDA(cic_index_ida);
/* Below this threshold (in ms), we consider thinktime immediate. */
#define BFQ_MIN_TT 2
/* hw_tag detection: parallel requests threshold and min samples needed. */
#define BFQ_HW_QUEUE_THRESHOLD 4
#define BFQ_HW_QUEUE_SAMPLES 32
#define BFQQ_SEEKY(bfqq) ((bfqq)->seek_mean > (8 * 1024))
/* Min samples used for peak rate estimation (for autotuning). */
#define BFQ_PEAK_RATE_SAMPLES 32
/* Shift used for peak rate fixed precision calculations. */
#define BFQ_RATE_SHIFT 16
#define BFQ_SERVICE_TREE_INIT ((struct bfq_service_tree) \
{ RB_ROOT, RB_ROOT, NULL, NULL, 0, 0 })
#define RQ_CIC(rq) \
((struct cfq_io_context *) (rq)->elevator_private)
#define RQ_BFQQ(rq) ((rq)->elevator_private2)
#include "bfq-ioc.c"
#include "bfq-sched.c"
#include "bfq-cgroup.c"
#define bfq_class_idle(cfqq) ((bfqq)->entity.ioprio_class ==\
IOPRIO_CLASS_IDLE)
#define bfq_sample_valid(samples) ((samples) > 80)
/*
* We regard a request as SYNC, if either it's a read or has the SYNC bit
* set (in which case it could also be a direct WRITE).
*/
static inline int bfq_bio_sync(struct bio *bio)
{
if (bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO))
return 1;
return 0;
}
/*
* Scheduler run of queue, if there are requests pending and no one in the
* driver that will restart queueing.
*/
static inline void bfq_schedule_dispatch(struct bfq_data *bfqd)
{
if (bfqd->queued != 0) {
bfq_log(bfqd, "schedule dispatch");
kblockd_schedule_work(bfqd->queue, &bfqd->unplug_work);
}
}
static inline int bfq_queue_empty(struct request_queue *q)
{
struct bfq_data *bfqd = q->elevator->elevator_data;
return bfqd->queued == 0;
}
/*
* Lifted from AS - choose which of rq1 and rq2 that is best served now.
* We choose the request that is closesr to the head right now. Distance
* behind the head is penalized and only allowed to a certain extent.
*/
static struct request *bfq_choose_req(struct bfq_data *bfqd,
struct request *rq1,
struct request *rq2)
{
sector_t last, s1, s2, d1 = 0, d2 = 0;
unsigned long back_max;
#define BFQ_RQ1_WRAP 0x01 /* request 1 wraps */
#define BFQ_RQ2_WRAP 0x02 /* request 2 wraps */
unsigned wrap = 0; /* bit mask: requests behind the disk head? */
if (rq1 == NULL || rq1 == rq2)
return rq2;
if (rq2 == NULL)
return rq1;
if (rq_is_sync(rq1) && !rq_is_sync(rq2))
return rq1;
else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
return rq2;
if (rq_is_meta(rq1) && !rq_is_meta(rq2))
return rq1;
else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
return rq2;
s1 = blk_rq_pos(rq1);
s2 = blk_rq_pos(rq2);
last = bfqd->last_position;
/*
* By definition, 1KiB is 2 sectors.
*/
back_max = bfqd->bfq_back_max * 2;
/*
* Strict one way elevator _except_ in the case where we allow
* short backward seeks which are biased as twice the cost of a
* similar forward seek.
*/
if (s1 >= last)
d1 = s1 - last;
else if (s1 + back_max >= last)
d1 = (last - s1) * bfqd->bfq_back_penalty;
else
wrap |= BFQ_RQ1_WRAP;
if (s2 >= last)
d2 = s2 - last;
else if (s2 + back_max >= last)
d2 = (last - s2) * bfqd->bfq_back_penalty;
else
wrap |= BFQ_RQ2_WRAP;
/* Found required data */
/*
* By doing switch() on the bit mask "wrap" we avoid having to
* check two variables for all permutations: --> faster!
*/
switch (wrap) {
case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
if (d1 < d2)
return rq1;
else if (d2 < d1)
return rq2;
else {
if (s1 >= s2)
return rq1;
else
return rq2;
}
case BFQ_RQ2_WRAP:
return rq1;
case BFQ_RQ1_WRAP:
return rq2;
case (BFQ_RQ1_WRAP|BFQ_RQ2_WRAP): /* both rqs wrapped */
default:
/*
* Since both rqs are wrapped,
* start with the one that's further behind head
* (--> only *one* back seek required),
* since back seek takes more time than forward.
*/
if (s1 <= s2)
return rq1;
else
return rq2;
}
}
static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
struct bfq_queue *bfqq,
struct request *last)
{
struct rb_node *rbnext = rb_next(&last->rb_node);
struct rb_node *rbprev = rb_prev(&last->rb_node);
struct request *next = NULL, *prev = NULL;
BUG_ON(RB_EMPTY_NODE(&last->rb_node));
if (rbprev != NULL)
prev = rb_entry_rq(rbprev);
if (rbnext != NULL)
next = rb_entry_rq(rbnext);
else {
rbnext = rb_first(&bfqq->sort_list);
if (rbnext && rbnext != &last->rb_node)
next = rb_entry_rq(rbnext);
}
return bfq_choose_req(bfqd, next, prev);
}
static void bfq_del_rq_rb(struct request *rq)
{
struct bfq_queue *bfqq = RQ_BFQQ(rq);
struct bfq_data *bfqd = bfqq->bfqd;
const int sync = rq_is_sync(rq);
BUG_ON(bfqq->queued[sync] == 0);
bfqq->queued[sync]--;
bfqd->queued--;
elv_rb_del(&bfqq->sort_list, rq);
if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->active_queue &&
RB_EMPTY_ROOT(&bfqq->sort_list))
bfq_del_bfqq_busy(bfqd, bfqq, 1);
}
/* see the definition of bfq_async_charge_factor for details */
static inline bfq_service_t bfq_serv_to_charge(struct request *rq,
struct bfq_queue *bfqq)
{
return blk_rq_sectors(rq) *
(1 + ((!bfq_bfqq_sync(bfqq)) * bfq_async_charge_factor));
}
/**
* bfq_updated_next_req - update the queue after a new next_rq selection.
* @bfqd: the device data the queue belongs to.
* @bfqq: the queue to update.
*
* If the first request of a queue changes we make sure that the queue
* has enough budget to serve at least its first request (if the
* request has grown). We do this because if the queue has not enough
* budget for its first request, it has to go through two dispatch
* rounds to actually get it dispatched.
*/
static void bfq_updated_next_req(struct bfq_data *bfqd,
struct bfq_queue *bfqq)
{
struct bfq_entity *entity = &bfqq->entity;
struct bfq_service_tree *st = bfq_entity_service_tree(entity);
struct request *next_rq = bfqq->next_rq;
bfq_service_t new_budget;
if (next_rq == NULL)
return;
if (bfqq == bfqd->active_queue)
/*
* In order not to break guarantees, budgets cannot be
* changed after an entity has been selected.
*/
return;
BUG_ON(entity->tree != &st->active);
BUG_ON(entity == entity->sched_data->active_entity);
new_budget = max_t(bfq_service_t, bfqq->max_budget,
bfq_serv_to_charge(next_rq, bfqq));
entity->budget = new_budget;
bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu", new_budget);
bfq_activate_bfqq(bfqd, bfqq);
}
static void bfq_add_rq_rb(struct request *rq)
{
struct bfq_queue *bfqq = RQ_BFQQ(rq);
struct bfq_entity *entity = &bfqq->entity;
struct bfq_data *bfqd = bfqq->bfqd;
struct request *__alias, *next_rq;
unsigned long old_raising_coeff = bfqq->raising_coeff;
bfq_log_bfqq(bfqd, bfqq, "add_rq_rb %d", rq_is_sync(rq));
bfqq->queued[rq_is_sync(rq)]++;
bfqd->queued++;
/*
* Looks a little odd, but the first insert might return an alias,
* if that happens, put the alias on the dispatch list.
*/
while ((__alias = elv_rb_add(&bfqq->sort_list, rq)) != NULL)
bfq_dispatch_insert(bfqd->queue, __alias);
/*
* Check if this request is a better next-serve candidate.
*/
next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq);
BUG_ON(next_rq == NULL);
bfqq->next_rq = next_rq;
if (!bfq_bfqq_busy(bfqq)) {
entity->budget = max_t(bfq_service_t, bfqq->max_budget,
bfq_serv_to_charge(next_rq, bfqq));
if (! bfqd->low_latency)
goto add_bfqq_busy;
/*
* If the queue is not being boosted and has been idle
* for enough time, start a boosting period
*/
if(old_raising_coeff == 1 &&
bfqq->last_rais_start_finish +
bfqd->bfq_raising_min_idle_time < jiffies) {
bfqq->raising_coeff = bfqd->bfq_raising_coeff;
entity->ioprio_changed = 1;
bfq_log_bfqq(bfqd, bfqq,
"wrais starting at %lu msec",
bfqq->last_rais_start_finish);
}
add_bfqq_busy:
bfq_add_bfqq_busy(bfqd, bfqq);
} else
bfq_updated_next_req(bfqd, bfqq);
if (! bfqd->low_latency)
return;
if(old_raising_coeff == 1 ||
(bfqd->bfq_raising_max_softrt_rate > 0 &&
bfqq->soft_rt_next_start < jiffies))
bfqq->last_rais_start_finish = jiffies;
}
static void bfq_reposition_rq_rb(struct bfq_queue *bfqq, struct request *rq)
{
elv_rb_del(&bfqq->sort_list, rq);
bfqq->queued[rq_is_sync(rq)]--;
bfqq->bfqd->queued--;
bfq_add_rq_rb(rq);
}
static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
struct bio *bio)
{
struct task_struct *tsk = current;
struct cfq_io_context *cic;
struct bfq_queue *bfqq;
cic = bfq_cic_lookup(bfqd, tsk->io_context);
if (cic == NULL)
return NULL;
bfqq = cic_to_bfqq(cic, bfq_bio_sync(bio));
if (bfqq != NULL) {
sector_t sector = bio->bi_sector + bio_sectors(bio);
return elv_rb_find(&bfqq->sort_list, sector);
}
return NULL;
}
static void bfq_activate_request(struct request_queue *q, struct request *rq)
{
struct bfq_data *bfqd = q->elevator->elevator_data;
bfqd->rq_in_driver++;
bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
}
static void bfq_deactivate_request(struct request_queue *q, struct request *rq)
{
struct bfq_data *bfqd = q->elevator->elevator_data;
WARN_ON(bfqd->rq_in_driver == 0);
bfqd->rq_in_driver--;
}
static void bfq_remove_request(struct request *rq)
{
struct bfq_queue *bfqq = RQ_BFQQ(rq);
struct bfq_data *bfqd = bfqq->bfqd;
if (bfqq->next_rq == rq) {
bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
bfq_updated_next_req(bfqd, bfqq);
}
list_del_init(&rq->queuelist);
bfq_del_rq_rb(rq);
if (rq_is_meta(rq)) {
WARN_ON(bfqq->meta_pending == 0);
bfqq->meta_pending--;
}
}
static int bfq_merge(struct request_queue *q, struct request **req,
struct bio *bio)
{
struct bfq_data *bfqd = q->elevator->elevator_data;
struct request *__rq;
__rq = bfq_find_rq_fmerge(bfqd, bio);
if (__rq != NULL && elv_rq_merge_ok(__rq, bio)) {
*req = __rq;
return ELEVATOR_FRONT_MERGE;
}
return ELEVATOR_NO_MERGE;
}
static void bfq_merged_request(struct request_queue *q, struct request *req,
int type)
{
if (type == ELEVATOR_FRONT_MERGE) {
struct bfq_queue *bfqq = RQ_BFQQ(req);
bfq_reposition_rq_rb(bfqq, req);
}
}
static void bfq_merged_requests(struct request_queue *q, struct request *rq,
struct request *next)
{
/*
* Reposition in fifo if next is older than rq.
*/
if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
time_before(next->start_time, rq->start_time))
list_move(&rq->queuelist, &next->queuelist);
bfq_remove_request(next);
}
static int bfq_allow_merge(struct request_queue *q, struct request *rq,
struct bio *bio)
{
struct bfq_data *bfqd = q->elevator->elevator_data;
struct cfq_io_context *cic;
struct bfq_queue *bfqq;
/* Disallow merge of a sync bio into an async request. */
if (bfq_bio_sync(bio) && !rq_is_sync(rq))
return 0;
/*
* Lookup the bfqq that this bio will be queued with. Allow
* merge only if rq is queued there.
*/
cic = bfq_cic_lookup(bfqd, current->io_context);
if (cic == NULL)
return 0;
bfqq = cic_to_bfqq(cic, bfq_bio_sync(bio));
return bfqq == RQ_BFQQ(rq);
}
static void __bfq_set_active_queue(struct bfq_data *bfqd,
struct bfq_queue *bfqq)
{
if (bfqq != NULL) {
bfq_mark_bfqq_must_alloc(bfqq);
bfq_mark_bfqq_budget_new(bfqq);
bfq_clear_bfqq_fifo_expire(bfqq);
bfqd->budgets_assigned = (bfqd->budgets_assigned*7 + 256) / 8;
bfq_log_bfqq(bfqd, bfqq, "set_active_queue, cur-budget = %lu",
bfqq->entity.budget);
}
bfqd->active_queue = bfqq;
}
/*
* Get and set a new active queue for service.
*/
static struct bfq_queue *bfq_set_active_queue(struct bfq_data *bfqd)
{
struct bfq_queue *bfqq;
bfqq = bfq_get_next_queue(bfqd);
__bfq_set_active_queue(bfqd, bfqq);
return bfqq;
}
/*
* If enough samples have been computed, return the current max budget
* stored in bfqd, which is dynamically updated according to the
* estimated disk peak rate; otherwise return the default max budget
*/
static inline bfq_service_t bfq_max_budget(struct bfq_data *bfqd)
{
return bfqd->budgets_assigned < 194 ? bfq_default_max_budget :
bfqd->bfq_max_budget;
}
/*
* Return min budget, which is a fraction of the current or default
* max budget (trying with 1/32)
*/
static inline bfq_service_t bfq_min_budget(struct bfq_data *bfqd)
{
return bfqd->budgets_assigned < 194 ? bfq_default_max_budget / 32 :
bfqd->bfq_max_budget / 32;
}
static void bfq_arm_slice_timer(struct bfq_data *bfqd)
{
struct bfq_queue *bfqq = bfqd->active_queue;
struct cfq_io_context *cic;
unsigned long sl;
WARN_ON(!RB_EMPTY_ROOT(&bfqq->sort_list));
/* Idling is disabled, either manually or by past process history. */
if (bfqd->bfq_slice_idle == 0 || !bfq_bfqq_idle_window(bfqq))
return;
/* Tasks have exited, don't wait. */
cic = bfqd->active_cic;
if (cic == NULL || atomic_read(&cic->ioc->nr_tasks) == 0)
return;
bfq_mark_bfqq_wait_request(bfqq);
/*
* We don't want to idle for seeks, but we do want to allow
* fair distribution of slice time for a process doing back-to-back
* seeks. So allow a little bit of time for him to submit a new rq.
*
* To prevent processes with (partly) seeky workloads from
* being too ill-treated, grant them a small fraction of the
* assigned budget before reducing the waiting time to
* BFQ_MIN_TT. This happened to help reduce latency.
*/
sl = bfqd->bfq_slice_idle;
if (bfq_sample_valid(bfqq->seek_samples) && BFQQ_SEEKY(bfqq) &&
bfqq->entity.service > bfq_max_budget(bfqd) / 8 &&
bfqq->raising_coeff == 1)
sl = min(sl, msecs_to_jiffies(BFQ_MIN_TT));
else if (bfqq->raising_coeff > 1)
sl = sl * 3;
bfqd->last_idling_start = ktime_get();
mod_timer(&bfqd->idle_slice_timer, jiffies + sl);
bfq_log(bfqd, "arm idle: %lu/%lu ms",
jiffies_to_msecs(sl), jiffies_to_msecs(bfqd->bfq_slice_idle));
}
/*
* Set the maximum time for the active queue to consume its
* budget. This prevents seeky processes from lowering the disk
* throughput (always guaranteed with a time slice scheme as in CFQ).
*/
static void bfq_set_budget_timeout(struct bfq_data *bfqd)
{
struct bfq_queue *bfqq = bfqd->active_queue;
bfqd->last_budget_start = ktime_get();
bfq_clear_bfqq_budget_new(bfqq);
bfqq->budget_timeout = jiffies +
bfqd->bfq_timeout[bfq_bfqq_sync(bfqq)] *
(bfqq->entity.weight / bfqq->entity.orig_weight);
}
/*
* Move request from internal lists to the request queue dispatch list.
*/
static void bfq_dispatch_insert(struct request_queue *q, struct request *rq)
{
struct bfq_data *bfqd = q->elevator->elevator_data;
struct bfq_queue *bfqq = RQ_BFQQ(rq);
bfq_remove_request(rq);
bfqq->dispatched++;
elv_dispatch_sort(q, rq);
if (bfq_bfqq_sync(bfqq))
bfqd->sync_flight++;
}
/*
* Return expired entry, or NULL to just start from scratch in rbtree.
*/
static struct request *bfq_check_fifo(struct bfq_queue *bfqq)
{
struct bfq_data *bfqd = bfqq->bfqd;
struct request *rq;
int fifo;
if (bfq_bfqq_fifo_expire(bfqq))
return NULL;
bfq_mark_bfqq_fifo_expire(bfqq);
if (list_empty(&bfqq->fifo))
return NULL;
fifo = bfq_bfqq_sync(bfqq);
rq = rq_entry_fifo(bfqq->fifo.next);
if (time_before(jiffies, rq->start_time + bfqd->bfq_fifo_expire[fifo]))
return NULL;
return rq;
}
static inline bfq_service_t bfq_bfqq_budget_left(struct bfq_queue *bfqq)
{
struct bfq_entity *entity = &bfqq->entity;
return entity->budget - entity->service;
}
static void __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq)
{
BUG_ON(bfqq != bfqd->active_queue);
__bfq_bfqd_reset_active(bfqd);
if (RB_EMPTY_ROOT(&bfqq->sort_list))
bfq_del_bfqq_busy(bfqd, bfqq, 1);
else
bfq_activate_bfqq(bfqd, bfqq);
}
/**
* __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
* @bfqd: device data.
* @bfqq: queue to update.
* @reason: reason for expiration.
*
* Handle the feedback on @bfqq budget. See the body for detailed
* comments.
*/
static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
struct bfq_queue *bfqq,
enum bfqq_expiration reason)
{
struct request *next_rq;
bfq_service_t budget, min_budget;
budget = bfqq->max_budget;
min_budget = bfq_min_budget(bfqd);
BUG_ON(bfqq != bfqd->active_queue);
bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %lu, budg left %lu",
bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %lu, min budg %lu",
budget, bfq_min_budget(bfqd));
bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->active_queue));
if (bfq_bfqq_sync(bfqq)) {
switch (reason) {
/*
* Caveat: in all the following cases we trade latency
* for throughput.
*/
case BFQ_BFQQ_TOO_IDLE:
/*
* This is the only case where we may reduce
* the budget: if there is no requets of the
* process still waiting for completion, then
* we assume (tentatively) that the timer has
* expired because the batch of requests of
* the process could have been served with a
* smaller budget. Hence, betting that
* process will behave in the same way when it
* becomes backlogged again, we reduce its
* next budget. As long as we guess right,
* this budget cut reduces the latency
* experienced by the process.
*
* However, if there are still outstanding
* requests, then the process may have not yet
* issued its next request just because it is
* still waiting for the completion of some of
* the still oustanding ones. So in this
* subcase we do not reduce its budget, on the
* contrary we increase it to possibly boost
* the throughput, as discussed in the
* comments to the BUDGET_TIMEOUT case.
*/
if(bfqq->dispatched > 0) /* still oustanding reqs */
budget = min(budget * 2, bfqd->bfq_max_budget);
else {
if (budget > 5 * min_budget)
budget -= 4 * min_budget;
else
budget = min_budget;
}
break;
case BFQ_BFQQ_BUDGET_TIMEOUT:
/*
* We double the budget here because: 1) it
* gives the chance to boost the throughput if
* this is not a seeky process (which may have
* bumped into this timeout because of, e.g.,
* ZBR), 2) together with charge_full_budget
* it helps give seeky processes higher
* timestamps, and hence be served less
* frequently.
*/
budget = min(budget * 2, bfqd->bfq_max_budget);
break;
case BFQ_BFQQ_BUDGET_EXHAUSTED:
/*
* The process still has backlog, and did not
* let either the budget timeout or the disk
* idling timeout expire. Hence it is not
* seeky, has a short thinktime and may be
* happy with a higher budget too. So
* definitely increase the budget of this good
* candidate to boost the disk throughput.
*/
budget = min(budget * 4, bfqd->bfq_max_budget);
break;
case BFQ_BFQQ_NO_MORE_REQUESTS:
/*
* Leave the budget unchanged.
*/
default:
return;
}
} else /* async queue */
/* async queues get always the maximum possible budget
* (their ability to dispatch is limited by
* @bfqd->bfq_max_budget_async_rq).
*/
budget = bfqd->bfq_max_budget;
bfqq->max_budget = budget;
if (bfqd->budgets_assigned >= 194 && bfqd->bfq_user_max_budget == 0 &&
bfqq->max_budget > bfqd->bfq_max_budget)
bfqq->max_budget = bfqd->bfq_max_budget;
/*
* Make sure that we have enough budget for the next request.
* Since the finish time of the bfqq must be kept in sync with
* the budget, be sure to call __bfq_bfqq_expire() after the
* update.
*/
next_rq = bfqq->next_rq;
if (next_rq != NULL)
bfqq->entity.budget = max_t(bfq_service_t, bfqq->max_budget,
bfq_serv_to_charge(next_rq, bfqq));
else
bfqq->entity.budget = bfqq->max_budget;
bfq_log_bfqq(bfqd, bfqq, "head sect: %lu, new budget %lu",
next_rq != NULL ? blk_rq_sectors(next_rq) : 0,
bfqq->entity.budget);
}
static bfq_service_t bfq_calc_max_budget(u64 peak_rate, u64 timeout)
{
bfq_service_t max_budget;
/*
* The max_budget calculated when autotuning is equal to the
* amount of sectors transfered in timeout_sync at the
* estimated peak rate.
*/
max_budget = (bfq_service_t)(peak_rate * 1000 *
timeout >> BFQ_RATE_SHIFT);
return max_budget;
}
/*
* In addition to updating the peak rate, checks whether the process
* is "slow", and returns 1 if so. This slow flag is used, in addition
* to the budget timeout, to reduce the amount of service provided to
* seeky processes, and hence reduce their chances to lower the
* throughput. See the code for more details.
*/
static int bfq_update_peak_rate(struct bfq_data *bfqd, struct bfq_queue *bfqq,
int compensate, enum bfqq_expiration reason)
{
u64 bw, usecs, expected, timeout;
ktime_t delta;
int update = 0;
if (!bfq_bfqq_sync(bfqq) || bfq_bfqq_budget_new(bfqq))
return 0;
delta = compensate ? bfqd->last_idling_start : ktime_get();
delta = ktime_sub(delta, bfqd->last_budget_start);
usecs = ktime_to_us(delta);
/* Don't trust short/unrealistic values. */
if (usecs < 100 || usecs >= LONG_MAX)
return 0;
/*
* Calculate the bandwidth for the last slice. We use a 64 bit
* value to store the peak rate, in sectors per usec in fixed
* point math. We do so to have enough precision in the estimate
* and to avoid overflows.
*/
bw = (u64)bfqq->entity.service << BFQ_RATE_SHIFT;
do_div(bw, (unsigned long)usecs);
timeout = jiffies_to_msecs(bfqd->bfq_timeout[BLK_RW_SYNC]);
/*
* Use only long (> 20ms) intervals to filter out spikes for
* the peak rate estimation.
*/
if (usecs > 20000) {
if (bw > bfqd->peak_rate ||
(!BFQQ_SEEKY(bfqq) &&
reason == BFQ_BFQQ_BUDGET_TIMEOUT)) {
bfq_log(bfqd, "measured bw =%llu", bw);
/*
* To smooth oscillations use a low-pass filter with
* alpha=7/8, i.e.,
* new_rate = (7/8) * old_rate + (1/8) * bw
*/
do_div(bw, 8);
bfqd->peak_rate *= 7;
do_div(bfqd->peak_rate, 8);
bfqd->peak_rate += bw;
update = 1;
bfq_log(bfqd, "new peak_rate=%llu", bfqd->peak_rate);
}
update |= bfqd->peak_rate_samples == BFQ_PEAK_RATE_SAMPLES - 1;
if (bfqd->peak_rate_samples < BFQ_PEAK_RATE_SAMPLES)
bfqd->peak_rate_samples++;
if (bfqd->peak_rate_samples == BFQ_PEAK_RATE_SAMPLES &&
update && bfqd->bfq_user_max_budget == 0) {
bfqd->bfq_max_budget =
bfq_calc_max_budget(bfqd->peak_rate, timeout);
bfq_log(bfqd, "new max_budget=%lu",
bfqd->bfq_max_budget);
}
}
/*
* If the process has been served for a too short time
* interval to let its possible sequential accesses prevail on
* the initial seek time needed to move the disk head on the
* first sector it requested, then give the process a chance
* and for the moment return false.
*/
if (bfqq->entity.budget <= bfq_max_budget(bfqd) / 8)
return 0;
/*
* A process is considered ``slow'' (i.e., seeky, so that we
* cannot treat it fairly in the service domain, as it would
* slow down too much the other processes) if, when a slice
* ends for whatever reason, it has received service at a
* rate that would not be high enough to complete the budget
* before the budget timeout expiration.
*/
expected = bw * 1000 * timeout >> BFQ_RATE_SHIFT;
/*
* Caveat: processes doing IO in the slower disk zones will
* tend to be slow(er) even if not seeky. And the estimated
* peak rate will actually be an average over the disk
* surface. Hence, to not be too harsh with unlucky processes,
* we keep a budget/3 margin of safety before declaring a
* process slow.
*/
return expected > (4 * bfqq->entity.budget) / 3;
}
/**
* bfq_bfqq_expire - expire a queue.
* @bfqd: device owning the queue.
* @bfqq: the queue to expire.
* @compensate: if true, compensate for the time spent idling.
* @reason: the reason causing the expiration.
*
*
* If the process associated to the queue is slow (i.e., seeky), or in
* case of budget timeout, or, finally, if it is async, we
* artificially charge it an entire budget (independently of the
* actual service it received). As a consequence, the queue will get
* higher timestamps than the correct ones upon reactivation, and
* hence it will be rescheduled as if it had received more service
* than what it actually received. In the end, this class of processes
* will receive less service in proportion to how slowly they consume
* their budgets (and hence how seriously they tend to lower the
* throughput).
*
* In contrast, when a queue expires because it has been idling for
* too much or because it exhausted its budget, we do not touch the
* amount of service it has received. Hence when the queue will be
* reactivated and its timestamps updated, the latter will be in sync
* with the actual service received by the queue until expiration.
*
* Charging a full budget to the first type of queues and the exact
* service to the others has the effect of using the WF2Q+ policy to
* schedule the former on a timeslice basis, without violating the
* service domain guarantees of the latter.
*/
static void bfq_bfqq_expire(struct bfq_data *bfqd,
struct bfq_queue *bfqq,
int compensate,
enum bfqq_expiration reason)
{
int slow;
BUG_ON(bfqq != bfqd->active_queue);
/* Update disk peak rate for autotuning and check whether the
* process is slow (see bfq_update_peak_rate).
*/
slow = bfq_update_peak_rate(bfqd, bfqq, compensate, reason);
/*
* As above explained, 'punish' slow (i.e., seeky), timed-out
* and async queues, to favor sequential sync workloads.
*
* Processes doing IO in the slower disk zones will tend to be
* slow(er) even if not seeky. Hence, since the estimated peak
* rate is actually an average over the disk surface, these
* processes may timeout just for bad luck. To avoid punishing
* them we do not charge a full budget to a process that
* succeeded in consuming at least 2/3 of its budget.
*/
if (slow || (reason == BFQ_BFQQ_BUDGET_TIMEOUT &&
bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3))
bfq_bfqq_charge_full_budget(bfqq);
if (bfqd->low_latency && bfqq->raising_coeff == 1)
bfqq->last_rais_start_finish = jiffies;
if (bfqd->low_latency && bfqd->bfq_raising_max_softrt_rate > 0) {
if(reason != BFQ_BFQQ_BUDGET_TIMEOUT)
bfqq->soft_rt_next_start =
jiffies +
HZ * bfqq->entity.service /
bfqd->bfq_raising_max_softrt_rate;
else
bfqq->soft_rt_next_start = -1; /* infinity */
}
bfq_log_bfqq(bfqd, bfqq,
"expire (%d, slow %d, num_disp %d, idle_win %d)", reason, slow,
bfqq->dispatched, bfq_bfqq_idle_window(bfqq));
/* Increase, decrease or leave budget unchanged according to reason */
__bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
__bfq_bfqq_expire(bfqd, bfqq);
}
/*
* Budget timeout is not implemented through a dedicated timer, but
* just checked on request arrivals and completions, as well as on
* idle timer expirations.
*/
static int bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
{
if (bfq_bfqq_budget_new(bfqq))
return 0;
if (time_before(jiffies, bfqq->budget_timeout))
return 0;
return 1;
}
/*
* If we expire a queue that is waiting for the arrival of a new
* request, we may prevent the fictitious timestamp backshifting that
* allows the guarantees of the queue to be preserved (see [1] for
* this tricky aspect). Hence we return true only if this condition
* does not hold, or if the queue is slow enough to deserve only to be
* kicked off for preserving a high throughput.
*/
static inline int bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
{
return (! bfq_bfqq_wait_request(bfqq) ||
bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3)
&&
bfq_bfqq_budget_timeout(bfqq);
}
/*
* Select a queue for service. If we have a current active queue,
* check whether to continue servicing it, or retrieve and set a new one.
*/
static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
{
struct bfq_queue *bfqq;
struct request *next_rq;
enum bfqq_expiration reason = BFQ_BFQQ_BUDGET_TIMEOUT;
bfqq = bfqd->active_queue;
if (bfqq == NULL)
goto new_queue;
bfq_log_bfqq(bfqd, bfqq, "select_queue: already active queue");
if (bfq_may_expire_for_budg_timeout(bfqq))
goto expire;
next_rq = bfqq->next_rq;
/*
* If bfqq has requests queued and it has enough budget left to
* serve them, keep the queue, otherwise expire it.
*/
if (next_rq != NULL) {
if (bfq_serv_to_charge(next_rq, bfqq) >
bfq_bfqq_budget_left(bfqq)) {
reason = BFQ_BFQQ_BUDGET_EXHAUSTED;
goto expire;
} else {
/*
* The idle timer may be pending because we may not
* disable disk idling even when a new request arrives
*/
if (timer_pending(&bfqd->idle_slice_timer)) {
/*
* If we get here: 1) at least a new request
* has arrived but we have not disabled the
* timer because the request was too small,
* 2) then the block layer has unplugged the
* device, causing the dispatch to be invoked.
*
* Since the device is unplugged, now the
* requests are probably large enough to
* provide a reasonable throughput.
* So we disable idling.
*/
bfq_clear_bfqq_wait_request(bfqq);
del_timer(&bfqd->idle_slice_timer);
}
goto keep_queue;
}
}
/*
* No requests pending. If the active queue still has
* requests in flight or is idling for a new request, then keep it.
*/
if (timer_pending(&bfqd->idle_slice_timer) ||
(bfqq->dispatched != 0 && bfq_bfqq_idle_window(bfqq))) {
bfqq = NULL;
goto keep_queue;
}
reason = BFQ_BFQQ_NO_MORE_REQUESTS;
expire:
bfq_bfqq_expire(bfqd, bfqq, 0, reason);
new_queue:
bfqq = bfq_set_active_queue(bfqd);
bfq_log(bfqd, "select_queue: new queue returned (possibly NULL)");
keep_queue:
return bfqq;
}
/*
* Dispatch some requests from bfqq, moving them to the request queue
* dispatch list.
*/
static int __bfq_dispatch_requests(struct bfq_data *bfqd,
struct bfq_queue *bfqq,
int max_dispatch)
{
int dispatched = 0;
BUG_ON(RB_EMPTY_ROOT(&bfqq->sort_list));
do {
struct request *rq;
bfq_service_t service_to_charge;
/* Follow expired path, else get first next available. */
rq = bfq_check_fifo(bfqq);
if (rq == NULL)
rq = bfqq->next_rq;
service_to_charge = bfq_serv_to_charge(rq, bfqq);
if (service_to_charge > bfq_bfqq_budget_left(bfqq)) {
/*
* Expire the queue for budget exhaustion, and
* make sure that the next act_budget is enough
* to serve the next request, even if it comes
* from the fifo expired path.
*/
bfqq->next_rq = rq;
goto expire;
}
/* Finally, insert request into driver dispatch list. */
bfq_bfqq_served(bfqq, service_to_charge);
bfq_dispatch_insert(bfqd->queue, rq);
if (bfqq->raising_coeff > 1) { /* queue is being boosted */
struct bfq_entity *entity = &bfqq->entity;
bfq_log_bfqq(bfqd, bfqq,
"raising period dur %llu/%lu msec, "
"old raising coeff %lu, w %lu(%lu)",
jiffies - bfqq->last_rais_start_finish,
bfqd->bfq_raising_max_time,
bfqq->raising_coeff,
bfqq->entity.weight, bfqq->entity.orig_weight);
BUG_ON(entity->weight !=
entity->orig_weight * bfqq->raising_coeff);
if(entity->ioprio_changed)
bfq_log_bfqq(bfqd, bfqq,
"WARN: pending prio change");
/*
* If too much time has elapsed from the beginning
* of this weight-raising period, stop it
*/
if (jiffies - bfqq->last_rais_start_finish >
bfqd->bfq_raising_max_time) {
bfqq->raising_coeff = 1;
bfqq->last_rais_start_finish = jiffies;
entity->ioprio_changed = 1;
__bfq_entity_update_weight_prio(
bfq_entity_service_tree(entity),
entity);
}
}
bfq_log_bfqq(bfqd, bfqq, "dispatched %lu sec req (%llu), "
"budg left %lu",
blk_rq_sectors(rq), blk_rq_pos(rq),
bfq_bfqq_budget_left(bfqq));
dispatched++;
if (bfqd->active_cic == NULL) {
atomic_inc(&RQ_CIC(rq)->ioc->refcount);
bfqd->active_cic = RQ_CIC(rq);
}
if (RB_EMPTY_ROOT(&bfqq->sort_list))
break;
} while (dispatched < max_dispatch);
bfq_log_bfqq(bfqd, bfqq, "dispatched %d reqs", dispatched);
if (bfqd->busy_queues > 1 && ((!bfq_bfqq_sync(bfqq) &&
dispatched >= bfqd->bfq_max_budget_async_rq) ||
bfq_class_idle(bfqq)))
goto expire;
return dispatched;
expire:
bfq_bfqq_expire(bfqd, bfqq, 0, BFQ_BFQQ_BUDGET_EXHAUSTED);
return dispatched;
}
static int __bfq_forced_dispatch_bfqq(struct bfq_queue *bfqq)
{
int dispatched = 0;
while (bfqq->next_rq != NULL) {
bfq_dispatch_insert(bfqq->bfqd->queue, bfqq->next_rq);
dispatched++;
}
BUG_ON(!list_empty(&bfqq->fifo));
return dispatched;
}
/*
* Drain our current requests. Used for barriers and when switching
* io schedulers on-the-fly.
*/
static int bfq_forced_dispatch(struct bfq_data *bfqd)
{
struct bfq_queue *bfqq, *n;
struct bfq_service_tree *st;
int dispatched = 0;
bfqq = bfqd->active_queue;
if (bfqq != NULL)
__bfq_bfqq_expire(bfqd, bfqq);
/*
* Loop through classes, and be careful to leave the scheduler
* in a consistent state, as feedback mechanisms and vtime
* updates cannot be disabled during the process.
*/
list_for_each_entry_safe(bfqq, n, &bfqd->active_list, bfqq_list) {
st = bfq_entity_service_tree(&bfqq->entity);
dispatched += __bfq_forced_dispatch_bfqq(bfqq);
bfqq->max_budget = bfq_max_budget(bfqd);
bfq_forget_idle(st);
}
BUG_ON(bfqd->busy_queues != 0);
return dispatched;
}
static int bfq_dispatch_requests(struct request_queue *q, int force)
{
struct bfq_data *bfqd = q->elevator->elevator_data;
struct bfq_queue *bfqq;
int dispatched;
bfq_log(bfqd, "dispatch requests: %d busy queues", bfqd->busy_queues);
if (bfqd->busy_queues == 0)
return 0;
if (unlikely(force))
return bfq_forced_dispatch(bfqd);
dispatched = 0;
while ((bfqq = bfq_select_queue(bfqd)) != NULL) {
int max_dispatch;
max_dispatch = bfqd->bfq_quantum;
if (bfq_class_idle(bfqq))
max_dispatch = 1;
if (!bfq_bfqq_sync(bfqq))
max_dispatch = bfqd->bfq_max_budget_async_rq;
if (bfqq->dispatched >= max_dispatch) {
if (bfqd->busy_queues > 1)
break;
if (bfqq->dispatched >= 4 * max_dispatch)
break;
}
if (bfqd->sync_flight != 0 && !bfq_bfqq_sync(bfqq))
break;
bfq_clear_bfqq_wait_request(bfqq);
BUG_ON(timer_pending(&bfqd->idle_slice_timer));
dispatched += __bfq_dispatch_requests(bfqd, bfqq, max_dispatch);
bfq_log_bfqq(bfqd, bfqq, "total dispatched increased to %d "
"(max_disp %d)", dispatched, max_dispatch);
}
bfq_log(bfqd, "final total dispatched=%d", dispatched);
return dispatched;
}
/*
* Task holds one reference to the queue, dropped when task exits. Each rq
* in-flight on this queue also holds a reference, dropped when rq is freed.
*
* Queue lock must be held here.
*/
static void bfq_put_queue(struct bfq_queue *bfqq)
{
struct bfq_data *bfqd = bfqq->bfqd;
BUG_ON(atomic_read(&bfqq->ref) <= 0);
bfq_log_bfqq(bfqd, bfqq, "put_queue: %p %d", bfqq, bfqq->ref);
if (!atomic_dec_and_test(&bfqq->ref))
return;
BUG_ON(rb_first(&bfqq->sort_list) != NULL);
BUG_ON(bfqq->allocated[READ] + bfqq->allocated[WRITE] != 0);
BUG_ON(bfqq->entity.tree != NULL);
BUG_ON(bfq_bfqq_busy(bfqq));
BUG_ON(bfqd->active_queue == bfqq);
bfq_log_bfqq(bfqd, bfqq, "put_queue: %p freed", bfqq);
kmem_cache_free(bfq_pool, bfqq);
}
static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
{
if (bfqq == bfqd->active_queue) {
__bfq_bfqq_expire(bfqd, bfqq);
bfq_schedule_dispatch(bfqd);
}
bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref);
bfq_put_queue(bfqq);
}
/*
* Update the entity prio values; note that the new values will not
* be used until the next (re)activation.
*/
static void bfq_init_prio_data(struct bfq_queue *bfqq, struct io_context *ioc)
{
struct task_struct *tsk = current;
int ioprio_class;
if (!bfq_bfqq_prio_changed(bfqq))
return;
ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
switch (ioprio_class) {
default:
printk(KERN_ERR "bfq: bad prio %x\n", ioprio_class);
case IOPRIO_CLASS_NONE:
/*
* No prio set, inherit CPU scheduling settings.
*/
bfqq->entity.new_ioprio = task_nice_ioprio(tsk);
bfqq->entity.new_ioprio_class = task_nice_ioclass(tsk);
break;
case IOPRIO_CLASS_RT:
bfqq->entity.new_ioprio = task_ioprio(ioc);
bfqq->entity.new_ioprio_class = IOPRIO_CLASS_RT;
break;
case IOPRIO_CLASS_BE:
bfqq->entity.new_ioprio = task_ioprio(ioc);
bfqq->entity.new_ioprio_class = IOPRIO_CLASS_BE;
break;
case IOPRIO_CLASS_IDLE:
bfqq->entity.new_ioprio_class = IOPRIO_CLASS_IDLE;
bfqq->entity.new_ioprio = 7;
bfq_clear_bfqq_idle_window(bfqq);
break;
}
bfqq->entity.ioprio_changed = 1;
/*
* Keep track of original prio settings in case we have to temporarily
* elevate the priority of this queue.
*/
bfqq->org_ioprio = bfqq->entity.new_ioprio;
bfqq->org_ioprio_class = bfqq->entity.new_ioprio_class;
bfq_clear_bfqq_prio_changed(bfqq);
}
static void bfq_changed_ioprio(struct io_context *ioc,
struct cfq_io_context *cic)
{
struct bfq_data *bfqd;
struct bfq_queue *bfqq, *new_bfqq;
struct bfq_group *bfqg;
unsigned long uninitialized_var(flags);
bfqd = bfq_get_bfqd_locked(&cic->key, &flags);
if (unlikely(bfqd == NULL))
return;
bfqq = cic->cfqq[BLK_RW_ASYNC];
if (bfqq != NULL) {
bfqg = container_of(bfqq->entity.sched_data, struct bfq_group,
sched_data);
new_bfqq = bfq_get_queue(bfqd, bfqg, BLK_RW_ASYNC, cic->ioc,
GFP_ATOMIC);
if (new_bfqq != NULL) {
cic->cfqq[BLK_RW_ASYNC] = new_bfqq;
bfq_log_bfqq(bfqd, bfqq,
"changed_ioprio: bfqq %p %d",
bfqq, bfqq->ref);
bfq_put_queue(bfqq);
}
}
bfqq = cic->cfqq[BLK_RW_SYNC];
if (bfqq != NULL)
bfq_mark_bfqq_prio_changed(bfqq);
bfq_put_bfqd_unlock(bfqd, &flags);
}
static struct bfq_queue *bfq_find_alloc_queue(struct bfq_data *bfqd,
struct bfq_group *bfqg,
int is_sync,
struct io_context *ioc,
gfp_t gfp_mask)
{
struct bfq_queue *bfqq, *new_bfqq = NULL;
struct cfq_io_context *cic;
retry:
cic = bfq_cic_lookup(bfqd, ioc);
/* cic always exists here */
bfqq = cic_to_bfqq(cic, is_sync);
if (bfqq == NULL) {
if (new_bfqq != NULL) {
bfqq = new_bfqq;
new_bfqq = NULL;
} else if (gfp_mask & __GFP_WAIT) {
/*
* Inform the allocator of the fact that we will
* just repeat this allocation if it fails, to allow
* the allocator to do whatever it needs to attempt to
* free memory.
*/
spin_unlock_irq(bfqd->queue->queue_lock);
new_bfqq = kmem_cache_alloc_node(bfq_pool,
gfp_mask | __GFP_NOFAIL | __GFP_ZERO,
bfqd->queue->node);
spin_lock_irq(bfqd->queue->queue_lock);
goto retry;
} else {
bfqq = kmem_cache_alloc_node(bfq_pool,
gfp_mask | __GFP_ZERO,
bfqd->queue->node);
if (bfqq == NULL)
goto out;
}
RB_CLEAR_NODE(&bfqq->entity.rb_node);
INIT_LIST_HEAD(&bfqq->fifo);
atomic_set(&bfqq->ref, 0);
bfqq->bfqd = bfqd;
bfq_mark_bfqq_prio_changed(bfqq);
bfq_init_prio_data(bfqq, ioc);
bfq_init_entity(&bfqq->entity, bfqg);
if (is_sync) {
if (!bfq_class_idle(bfqq))
bfq_mark_bfqq_idle_window(bfqq);
bfq_mark_bfqq_sync(bfqq);
}
/* Tentative initial value to trade off between thr and lat */
bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
bfqq->pid = current->pid;
bfqq->raising_coeff = 1;
bfqq->last_rais_start_finish = 0;
bfqq->soft_rt_next_start = -1;
bfq_log_bfqq(bfqd, bfqq, "allocated");
}
if (new_bfqq != NULL)
kmem_cache_free(bfq_pool, new_bfqq);
out:
WARN_ON((gfp_mask & __GFP_WAIT) && bfqq == NULL);
return bfqq;
}
static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
struct bfq_group *bfqg,
int ioprio_class, int ioprio)
{
switch (ioprio_class) {
case IOPRIO_CLASS_RT:
return &bfqg->async_bfqq[0][ioprio];
case IOPRIO_CLASS_BE:
return &bfqg->async_bfqq[1][ioprio];
case IOPRIO_CLASS_IDLE:
return &bfqg->async_idle_bfqq;
default:
BUG();
}
}
static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
struct bfq_group *bfqg, int is_sync,
struct io_context *ioc, gfp_t gfp_mask)
{
const int ioprio = task_ioprio(ioc);
const int ioprio_class = task_ioprio_class(ioc);
struct bfq_queue **async_bfqq = NULL;
struct bfq_queue *bfqq = NULL;
if (!is_sync) {
async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
ioprio);
bfqq = *async_bfqq;
}
if (bfqq == NULL) {
bfqq = bfq_find_alloc_queue(bfqd, bfqg, is_sync, ioc, gfp_mask);
if (bfqq == NULL)
return NULL;
}
/*
* Pin the queue now that it's allocated, scheduler exit will prune it.
*/
if (!is_sync && *async_bfqq == NULL) {
atomic_inc(&bfqq->ref);
bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d",
bfqq, bfqq->ref);
*async_bfqq = bfqq;
}
atomic_inc(&bfqq->ref);
bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq, bfqq->ref);
return bfqq;
}
static void bfq_update_io_thinktime(struct bfq_data *bfqd,
struct cfq_io_context *cic)
{
unsigned long elapsed = jiffies - cic->last_end_request;
unsigned long ttime = min(elapsed, 2UL * bfqd->bfq_slice_idle);
cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
}
static void bfq_update_io_seektime(struct bfq_data *bfqd,
struct bfq_queue *bfqq,
struct request *rq)
{
sector_t sdist;
u64 total;
if (bfqq->last_request_pos < blk_rq_pos(rq))
sdist = blk_rq_pos(rq) - bfqq->last_request_pos;
else
sdist = bfqq->last_request_pos - blk_rq_pos(rq);
/*
* Don't allow the seek distance to get too large from the
* odd fragment, pagein, etc.
*/
if (bfqq->seek_samples == 0) /* first request, not really a seek */
sdist = 0;
else if (bfqq->seek_samples <= 60) /* second & third seek */
sdist = min(sdist, (bfqq->seek_mean * 4) + 2*1024*1024);
else
sdist = min(sdist, (bfqq->seek_mean * 4) + 2*1024*64);
bfqq->seek_samples = (7*bfqq->seek_samples + 256) / 8;
bfqq->seek_total = (7*bfqq->seek_total + (u64)256*sdist) / 8;
total = bfqq->seek_total + (bfqq->seek_samples/2);
do_div(total, bfqq->seek_samples);
bfqq->seek_mean = (sector_t)total;
bfq_log_bfqq(bfqd, bfqq, "dist=%llu mean=%llu", (u64)sdist,
(u64)bfqq->seek_mean);
}
/*
* Disable idle window if the process thinks too long or seeks so much that
* it doesn't matter.
*/
static void bfq_update_idle_window(struct bfq_data *bfqd,
struct bfq_queue *bfqq,
struct cfq_io_context *cic)
{
int enable_idle;
/* Don't idle for async or idle io prio class. */
if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq))
return;
enable_idle = bfq_bfqq_idle_window(bfqq);
if (atomic_read(&cic->ioc->nr_tasks) == 0 ||
bfqd->bfq_slice_idle == 0 ||
(bfqd->hw_tag && BFQQ_SEEKY(bfqq) &&
bfqq->raising_coeff == 1))
enable_idle = 0;
else if (bfq_sample_valid(cic->ttime_samples)) {
if (cic->ttime_mean > bfqd->bfq_slice_idle)
enable_idle = 0;
else
enable_idle = 1;
}
bfq_log_bfqq(bfqd, bfqq, "update_idle_window: enable_idle %d",
enable_idle);
if (enable_idle)
bfq_mark_bfqq_idle_window(bfqq);
else
bfq_clear_bfqq_idle_window(bfqq);
}
/*
* Called when a new fs request (rq) is added to bfqq. Check if there's
* something we should do about it.
*/
static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
struct request *rq)
{
struct cfq_io_context *cic = RQ_CIC(rq);
if (rq_is_meta(rq))
bfqq->meta_pending++;
bfq_update_io_thinktime(bfqd, cic);
bfq_update_io_seektime(bfqd, bfqq, rq);
if (bfqq->entity.service > bfq_max_budget(bfqd) / 8 ||
! BFQQ_SEEKY(bfqq))
bfq_update_idle_window(bfqd, bfqq, cic);
bfq_log_bfqq(bfqd, bfqq,
"rq_enqueued: idle_window=%d (seeky %d, mean %llu)",
bfq_bfqq_idle_window(bfqq), BFQQ_SEEKY(bfqq),
bfqq->seek_mean);
bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
if (bfqq == bfqd->active_queue) {
/*
* If there is just this request queued and the request
* is small, just make sure the queue is plugged and exit.
* In this way, if the disk is being idled to wait for a new
* request from the active queue, we avoid unplugging the
* device for this request.
*
* By doing so, we spare the disk to be committed
* to serve just a small request. On the contrary, we wait for
* the block layer to decide when to unplug the device:
* hopefully, new requests will be merged to this
* one quickly, then the device will be unplugged
* and larger requests will be dispatched.
*/
if (bfqq->queued[rq_is_sync(rq)] == 1 &&
blk_rq_sectors(rq) < 32) {
blk_plug_device(bfqd->queue);
return;
}
if (bfq_bfqq_wait_request(bfqq)) {
/*
* If we are waiting for a request for this queue, let
* it rip immediately and flag that we must not expire
* this queue just now.
*/
bfq_clear_bfqq_wait_request(bfqq);
del_timer(&bfqd->idle_slice_timer);
/*
* Here we can safely expire the queue, in
* case of budget timeout, without wasting
* guarantees
*/
if (bfq_bfqq_budget_timeout(bfqq))
bfq_bfqq_expire(bfqd, bfqq, 0,
BFQ_BFQQ_BUDGET_TIMEOUT);
__blk_run_queue(bfqd->queue);
}
}
}
static void bfq_insert_request(struct request_queue *q, struct request *rq)
{
struct bfq_data *bfqd = q->elevator->elevator_data;
struct bfq_queue *bfqq = RQ_BFQQ(rq);
assert_spin_locked(bfqd->queue->queue_lock);
bfq_init_prio_data(bfqq, RQ_CIC(rq)->ioc);
bfq_add_rq_rb(rq);
list_add_tail(&rq->queuelist, &bfqq->fifo);
bfq_rq_enqueued(bfqd, bfqq, rq);
}
static void bfq_update_hw_tag(struct bfq_data *bfqd)
{
bfqd->max_rq_in_driver = max(bfqd->max_rq_in_driver,
bfqd->rq_in_driver);
/*
* This sample is valid if the number of outstanding requests
* is large enough to allow a queueing behavior. Note that the
* sum is not exact, as it's not taking into account deactivated
* requests.
*/
if (bfqd->rq_in_driver + bfqd->queued < BFQ_HW_QUEUE_THRESHOLD)
return;
if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
return;
bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
bfqd->max_rq_in_driver = 0;
bfqd->hw_tag_samples = 0;
}
static void bfq_completed_request(struct request_queue *q, struct request *rq)
{
struct bfq_queue *bfqq = RQ_BFQQ(rq);
struct bfq_data *bfqd = bfqq->bfqd;
const int sync = rq_is_sync(rq);
bfq_log_bfqq(bfqd, bfqq, "completed %lu sects req (%d)",
blk_rq_sectors(rq), sync);
bfq_update_hw_tag(bfqd);
WARN_ON(!bfqd->rq_in_driver);
WARN_ON(!bfqq->dispatched);
bfqd->rq_in_driver--;
bfqq->dispatched--;
if (bfq_bfqq_sync(bfqq))
bfqd->sync_flight--;
if (sync)
RQ_CIC(rq)->last_end_request = jiffies;
/*
* If this is the active queue, check if it needs to be expired,
* or if we want to idle in case it has no pending requests.
*/
if (bfqd->active_queue == bfqq) {
if (bfq_bfqq_budget_new(bfqq))
bfq_set_budget_timeout(bfqd);
if (bfq_may_expire_for_budg_timeout(bfqq))
bfq_bfqq_expire(bfqd, bfqq, 0, BFQ_BFQQ_BUDGET_TIMEOUT);
else if (sync &&
(bfqd->rq_in_driver == 0 ||
bfqq->raising_coeff > 1)
&& RB_EMPTY_ROOT(&bfqq->sort_list))
bfq_arm_slice_timer(bfqd);
}
if (!bfqd->rq_in_driver)
bfq_schedule_dispatch(bfqd);
}
/*
* We temporarily boost lower priority queues if they are holding fs exclusive
* resources. They are boosted to normal prio (CLASS_BE/4).
*/
static void bfq_prio_boost(struct bfq_queue *bfqq)
{
if (has_fs_excl()) {
/*
* Boost idle prio on transactions that would lock out other
* users of the filesystem
*/
if (bfq_class_idle(bfqq))
bfqq->entity.new_ioprio_class = IOPRIO_CLASS_BE;
if (bfqq->entity.new_ioprio > IOPRIO_NORM)
bfqq->entity.new_ioprio = IOPRIO_NORM;
} else {
/*
* Check if we need to unboost the queue
*/
if (bfqq->entity.new_ioprio_class != bfqq->org_ioprio_class)
bfqq->entity.new_ioprio_class = bfqq->org_ioprio_class;
if (bfqq->entity.new_ioprio != bfqq->org_ioprio)
bfqq->entity.new_ioprio = bfqq->org_ioprio;
}
}
static inline int __bfq_may_queue(struct bfq_queue *bfqq)
{
if (bfq_bfqq_wait_request(bfqq) && bfq_bfqq_must_alloc(bfqq)) {
bfq_clear_bfqq_must_alloc(bfqq);
return ELV_MQUEUE_MUST;
}
return ELV_MQUEUE_MAY;
}
static int bfq_may_queue(struct request_queue *q, int rw)
{
struct bfq_data *bfqd = q->elevator->elevator_data;
struct task_struct *tsk = current;
struct cfq_io_context *cic;
struct bfq_queue *bfqq;
/*
* Don't force setup of a queue from here, as a call to may_queue
* does not necessarily imply that a request actually will be queued.
* So just lookup a possibly existing queue, or return 'may queue'
* if that fails.
*/
cic = bfq_cic_lookup(bfqd, tsk->io_context);
if (cic == NULL)
return ELV_MQUEUE_MAY;
bfqq = cic_to_bfqq(cic, rw & REQ_RW_SYNC);
if (bfqq != NULL) {
bfq_init_prio_data(bfqq, cic->ioc);
bfq_prio_boost(bfqq);
return __bfq_may_queue(bfqq);
}
return ELV_MQUEUE_MAY;
}
/*
* Queue lock held here.
*/
static void bfq_put_request(struct request *rq)
{
struct bfq_queue *bfqq = RQ_BFQQ(rq);
if (bfqq != NULL) {
const int rw = rq_data_dir(rq);
BUG_ON(!bfqq->allocated[rw]);
bfqq->allocated[rw]--;
put_io_context(RQ_CIC(rq)->ioc);
rq->elevator_private = NULL;
rq->elevator_private2 = NULL;
bfq_log_bfqq(bfqq->bfqd, bfqq, "put_request %p, %d",
bfqq, bfqq->ref);
bfq_put_queue(bfqq);
}
}
/*
* Allocate bfq data structures associated with this request.
*/
static int bfq_set_request(struct request_queue *q, struct request *rq,
gfp_t gfp_mask)
{
struct bfq_data *bfqd = q->elevator->elevator_data;
struct cfq_io_context *cic;
const int rw = rq_data_dir(rq);
const int is_sync = rq_is_sync(rq);
struct bfq_queue *bfqq;
struct bfq_group *bfqg;
unsigned long flags;
might_sleep_if(gfp_mask & __GFP_WAIT);
cic = bfq_get_io_context(bfqd, gfp_mask);
spin_lock_irqsave(q->queue_lock, flags);
if (cic == NULL)
goto queue_fail;
bfqg = bfq_cic_update_cgroup(cic);
bfqq = cic_to_bfqq(cic, is_sync);
if (bfqq == NULL) {
bfqq = bfq_get_queue(bfqd, bfqg, is_sync, cic->ioc, gfp_mask);
if (bfqq == NULL)
goto queue_fail;
cic_set_bfqq(cic, bfqq, is_sync);
}
bfqq->allocated[rw]++;
atomic_inc(&bfqq->ref);
bfq_log_bfqq(bfqd, bfqq, "set_request: bfqq %p, %d", bfqq, bfqq->ref);
spin_unlock_irqrestore(q->queue_lock, flags);
rq->elevator_private = cic;
rq->elevator_private2 = bfqq;
return 0;
queue_fail:
if (cic != NULL)
put_io_context(cic->ioc);
bfq_schedule_dispatch(bfqd);
spin_unlock_irqrestore(q->queue_lock, flags);
return 1;
}
static void bfq_kick_queue(struct work_struct *work)
{
struct bfq_data *bfqd =
container_of(work, struct bfq_data, unplug_work);
struct request_queue *q = bfqd->queue;
unsigned long flags;
spin_lock_irqsave(q->queue_lock, flags);
__blk_run_queue(q);
spin_unlock_irqrestore(q->queue_lock, flags);
}
/*
* Handler of the expiration of the timer running if the active_queue
* is idling inside its time slice.
*/
static void bfq_idle_slice_timer(unsigned long data)
{
struct bfq_data *bfqd = (struct bfq_data *)data;
struct bfq_queue *bfqq;
unsigned long flags;
enum bfqq_expiration reason;
spin_lock_irqsave(bfqd->queue->queue_lock, flags);
bfqq = bfqd->active_queue;
/*
* Theoretical race here: active_queue can be NULL or different
* from the queue that was idling if the timer handler spins on
* the queue_lock and a new request arrives for the current
* queue and there is a full dispatch cycle that changes the
* active_queue. This can hardly happen, but in the worst case
* we just expire a queue too early.
*/
if (bfqq != NULL) {
bfq_log_bfqq(bfqd, bfqq, "slice_timer expired");
if (bfq_bfqq_budget_timeout(bfqq))
/*
* Also here the queue can be safely expired
* for budget timeout without wasting
* guarantees
*/
reason = BFQ_BFQQ_BUDGET_TIMEOUT;
else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
/*
* The queue may not be empty upon timer expiration,
* because we may not disable the timer when the first
* request of the active queue arrives during
* disk idling
*/
reason = BFQ_BFQQ_TOO_IDLE;
else
goto schedule_dispatch;
bfq_bfqq_expire(bfqd, bfqq, 1, reason);
}
schedule_dispatch:
bfq_schedule_dispatch(bfqd);
spin_unlock_irqrestore(bfqd->queue->queue_lock, flags);
}
static void bfq_shutdown_timer_wq(struct bfq_data *bfqd)
{
del_timer_sync(&bfqd->idle_slice_timer);
cancel_work_sync(&bfqd->unplug_work);
}
static inline void __bfq_put_async_bfqq(struct bfq_data *bfqd,
struct bfq_queue **bfqq_ptr)
{
struct bfq_group *root_group = bfqd->root_group;
struct bfq_queue *bfqq = *bfqq_ptr;
bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
if (bfqq != NULL) {
bfq_bfqq_move(bfqd, bfqq, &bfqq->entity, root_group);
bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
bfqq, bfqq->ref);
bfq_put_queue(bfqq);
*bfqq_ptr = NULL;
}
}
/*
* Release all the bfqg references to its async queues. If we are
* deallocating the group these queues may still contain requests, so
* we reparent them to the root cgroup (i.e., the only one that will
* exist for sure untill all the requests on a device are gone).
*/
static void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
{
int i, j;
for (i = 0; i < 2; i++)
for (j = 0; j < IOPRIO_BE_NR; j++)
__bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]);
__bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq);
}
static void bfq_exit_queue(struct elevator_queue *e)
{
struct bfq_data *bfqd = e->elevator_data;
struct request_queue *q = bfqd->queue;
struct bfq_queue *bfqq, *n;
struct cfq_io_context *cic;
bfq_shutdown_timer_wq(bfqd);
spin_lock_irq(q->queue_lock);
while (!list_empty(&bfqd->cic_list)) {
cic = list_entry(bfqd->cic_list.next, struct cfq_io_context,
queue_list);
__bfq_exit_single_io_context(bfqd, cic);
}
BUG_ON(bfqd->active_queue != NULL);
list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
bfq_deactivate_bfqq(bfqd, bfqq, 0);
bfq_disconnect_groups(bfqd);
spin_unlock_irq(q->queue_lock);
bfq_shutdown_timer_wq(bfqd);
spin_lock(&cic_index_lock);
ida_remove(&cic_index_ida, bfqd->cic_index);
spin_unlock(&cic_index_lock);
/* Wait for cic->key accessors to exit their grace periods. */
synchronize_rcu();
BUG_ON(timer_pending(&bfqd->idle_slice_timer));
bfq_free_root_group(bfqd);
kfree(bfqd);
}
static int bfq_alloc_cic_index(void)
{
int index, error;
do {
if (!ida_pre_get(&cic_index_ida, GFP_KERNEL))
return -ENOMEM;
spin_lock(&cic_index_lock);
error = ida_get_new(&cic_index_ida, &index);
spin_unlock(&cic_index_lock);
if (error && error != -EAGAIN)
return error;
} while (error);
return index;
}
static void *bfq_init_queue(struct request_queue *q)
{
struct bfq_group *bfqg;
struct bfq_data *bfqd;
int i;
i = bfq_alloc_cic_index();
if (i < 0)
return NULL;
bfqd = kmalloc_node(sizeof(*bfqd), GFP_KERNEL | __GFP_ZERO, q->node);
if (bfqd == NULL)
return NULL;
bfqd->cic_index = i;
INIT_LIST_HEAD(&bfqd->cic_list);
bfqd->queue = q;
bfqg = bfq_alloc_root_group(bfqd, q->node);
if (bfqg == NULL) {
kfree(bfqd);
return NULL;
}
bfqd->root_group = bfqg;
init_timer(&bfqd->idle_slice_timer);
bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
bfqd->idle_slice_timer.data = (unsigned long)bfqd;
INIT_WORK(&bfqd->unplug_work, bfq_kick_queue);
INIT_LIST_HEAD(&bfqd->active_list);
INIT_LIST_HEAD(&bfqd->idle_list);
bfqd->hw_tag = 1;
bfqd->bfq_max_budget = bfq_default_max_budget;
bfqd->bfq_quantum = bfq_quantum;
bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
bfqd->bfq_back_max = bfq_back_max;
bfqd->bfq_back_penalty = bfq_back_penalty;
bfqd->bfq_slice_idle = bfq_slice_idle;
bfqd->bfq_class_idle_last_service = 0;
bfqd->bfq_max_budget_async_rq = bfq_max_budget_async_rq;
bfqd->bfq_timeout[BLK_RW_ASYNC] = bfq_timeout_async;
bfqd->bfq_timeout[BLK_RW_SYNC] = bfq_timeout_sync;
bfqd->low_latency = true;
bfqd->bfq_raising_coeff = 20;
bfqd->bfq_raising_max_time = msecs_to_jiffies(7500);
bfqd->bfq_raising_min_idle_time = msecs_to_jiffies(2000);
bfqd->bfq_raising_max_softrt_rate = 7000;
return bfqd;
}
static void bfq_slab_kill(void)
{
if (bfq_pool != NULL)
kmem_cache_destroy(bfq_pool);
if (bfq_ioc_pool != NULL)
kmem_cache_destroy(bfq_ioc_pool);
}
static int __init bfq_slab_setup(void)
{
bfq_pool = KMEM_CACHE(bfq_queue, 0);
if (bfq_pool == NULL)
goto fail;
bfq_ioc_pool = kmem_cache_create("bfq_io_context",
sizeof(struct cfq_io_context),
__alignof__(struct cfq_io_context),
0, NULL);
if (bfq_ioc_pool == NULL)
goto fail;
return 0;
fail:
bfq_slab_kill();
return -ENOMEM;
}
static ssize_t bfq_var_show(unsigned int var, char *page)
{
return sprintf(page, "%d\n", var);
}
static ssize_t bfq_var_store(unsigned int *var, const char *page, size_t count)
{
char *p = (char *)page;
*var = simple_strtoul(p, &p, 10);
return count;
}
static ssize_t bfq_weights_show(struct elevator_queue *e, char *page)
{
struct bfq_queue *bfqq;
struct bfq_data *bfqd = e->elevator_data;
ssize_t num_char = 0;
num_char += sprintf(page + num_char, "Active:\n");
list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list) {
num_char += sprintf(page + num_char, "pid%d: weight %hu\n",
bfqq->pid,
bfqq->entity.weight);
}
num_char += sprintf(page + num_char, "Idle:\n");
list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list) {
num_char += sprintf(page + num_char, "pid%d: weight %hu\n",
bfqq->pid,
bfqq->entity.weight);
}
return num_char;
}
#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
static ssize_t __FUNC(struct elevator_queue *e, char *page) \
{ \
struct bfq_data *bfqd = e->elevator_data; \
unsigned int __data = __VAR; \
if (__CONV) \
__data = jiffies_to_msecs(__data); \
return bfq_var_show(__data, (page)); \
}
SHOW_FUNCTION(bfq_quantum_show, bfqd->bfq_quantum, 0);
SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 1);
SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 1);
SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 1);
SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
SHOW_FUNCTION(bfq_max_budget_async_rq_show, bfqd->bfq_max_budget_async_rq, 0);
SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout[BLK_RW_SYNC], 1);
SHOW_FUNCTION(bfq_timeout_async_show, bfqd->bfq_timeout[BLK_RW_ASYNC], 1);
SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
SHOW_FUNCTION(bfq_raising_coeff_show, bfqd->bfq_raising_coeff, 0);
SHOW_FUNCTION(bfq_raising_max_time_show, bfqd->bfq_raising_max_time, 1);
SHOW_FUNCTION(bfq_raising_min_idle_time_show, bfqd->bfq_raising_min_idle_time,
1);
SHOW_FUNCTION(bfq_raising_max_softrt_rate_show,
bfqd->bfq_raising_max_softrt_rate, 0);
#undef SHOW_FUNCTION
#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
static ssize_t \
__FUNC(struct elevator_queue *e, const char *page, size_t count) \
{ \
struct bfq_data *bfqd = e->elevator_data; \
unsigned int __data; \
int ret = bfq_var_store(&__data, (page), count); \
if (__data < (MIN)) \
__data = (MIN); \
else if (__data > (MAX)) \
__data = (MAX); \
if (__CONV) \
*(__PTR) = msecs_to_jiffies(__data); \
else \
*(__PTR) = __data; \
return ret; \
}
STORE_FUNCTION(bfq_quantum_store, &bfqd->bfq_quantum, 1, INT_MAX, 0);
STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
INT_MAX, 1);
STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
INT_MAX, 1);
STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
INT_MAX, 0);
STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 1);
STORE_FUNCTION(bfq_max_budget_async_rq_store, &bfqd->bfq_max_budget_async_rq,
1, INT_MAX, 0);
STORE_FUNCTION(bfq_timeout_async_store, &bfqd->bfq_timeout[BLK_RW_ASYNC], 0,
INT_MAX, 1);
STORE_FUNCTION(bfq_raising_coeff_store, &bfqd->bfq_raising_coeff, 1,
INT_MAX, 0);
STORE_FUNCTION(bfq_raising_max_time_store, &bfqd->bfq_raising_max_time, 0,
INT_MAX, 1);
STORE_FUNCTION(bfq_raising_min_idle_time_store,
&bfqd->bfq_raising_min_idle_time, 0, INT_MAX, 1);
STORE_FUNCTION(bfq_raising_max_softrt_rate_store,
&bfqd->bfq_raising_max_softrt_rate, 0, INT_MAX, 0);
#undef STORE_FUNCTION
/* do nothing for the moment */
static ssize_t bfq_weights_store(struct elevator_queue *e,
const char *page, size_t count)
{
return count;
}
static inline bfq_service_t bfq_estimated_max_budget(struct bfq_data *bfqd)
{
u64 timeout = jiffies_to_msecs(bfqd->bfq_timeout[BLK_RW_SYNC]);
if (bfqd->peak_rate_samples >= BFQ_PEAK_RATE_SAMPLES)
return bfq_calc_max_budget(bfqd->peak_rate, timeout);
else
return bfq_default_max_budget;
}
static ssize_t bfq_max_budget_store(struct elevator_queue *e,
const char *page, size_t count)
{
struct bfq_data *bfqd = e->elevator_data;
unsigned int __data;
int ret = bfq_var_store(&__data, (page), count);
if (__data == 0)
bfqd->bfq_max_budget = bfq_estimated_max_budget(bfqd);
else {
if (__data > INT_MAX)
__data = INT_MAX;
bfqd->bfq_max_budget = __data;
}
bfqd->bfq_user_max_budget = __data;
return ret;
}
static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
const char *page, size_t count)
{
struct bfq_data *bfqd = e->elevator_data;
unsigned int __data;
int ret = bfq_var_store(&__data, (page), count);
if (__data < 1)
__data = 1;
else if (__data > INT_MAX)
__data = INT_MAX;
bfqd->bfq_timeout[BLK_RW_SYNC] = msecs_to_jiffies(__data);
if (bfqd->bfq_user_max_budget == 0)
bfqd->bfq_max_budget = bfq_estimated_max_budget(bfqd);
return ret;
}
static ssize_t bfq_low_latency_store(struct elevator_queue *e,
const char *page, size_t count)
{
struct bfq_data *bfqd = e->elevator_data;
unsigned int __data;
int ret = bfq_var_store(&__data, (page), count);
if (__data > 1)
__data = 1;
bfqd->low_latency = __data;
return ret;
}
#define BFQ_ATTR(name) \
__ATTR(name, S_IRUGO|S_IWUSR, bfq_##name##_show, bfq_##name##_store)
static struct elv_fs_entry bfq_attrs[] = {
BFQ_ATTR(quantum),
BFQ_ATTR(fifo_expire_sync),
BFQ_ATTR(fifo_expire_async),
BFQ_ATTR(back_seek_max),
BFQ_ATTR(back_seek_penalty),
BFQ_ATTR(slice_idle),
BFQ_ATTR(max_budget),
BFQ_ATTR(max_budget_async_rq),
BFQ_ATTR(timeout_sync),
BFQ_ATTR(timeout_async),
BFQ_ATTR(low_latency),
BFQ_ATTR(raising_coeff),
BFQ_ATTR(raising_max_time),
BFQ_ATTR(raising_min_idle_time),
BFQ_ATTR(raising_max_softrt_rate),
BFQ_ATTR(weights),
__ATTR_NULL
};
static struct elevator_type iosched_bfq = {
.ops = {
.elevator_merge_fn = bfq_merge,
.elevator_merged_fn = bfq_merged_request,
.elevator_merge_req_fn = bfq_merged_requests,
.elevator_allow_merge_fn = bfq_allow_merge,
.elevator_dispatch_fn = bfq_dispatch_requests,
.elevator_add_req_fn = bfq_insert_request,
.elevator_activate_req_fn = bfq_activate_request,
.elevator_deactivate_req_fn = bfq_deactivate_request,
.elevator_queue_empty_fn = bfq_queue_empty,
.elevator_completed_req_fn = bfq_completed_request,
.elevator_former_req_fn = elv_rb_former_request,
.elevator_latter_req_fn = elv_rb_latter_request,
.elevator_set_req_fn = bfq_set_request,
.elevator_put_req_fn = bfq_put_request,
.elevator_may_queue_fn = bfq_may_queue,
.elevator_init_fn = bfq_init_queue,
.elevator_exit_fn = bfq_exit_queue,
.trim = bfq_free_io_context,
},
.elevator_attrs = bfq_attrs,
.elevator_name = "bfq",
.elevator_owner = THIS_MODULE,
};
static int __init bfq_init(void)
{
/*
* Can be 0 on HZ < 1000 setups.
*/
if (bfq_slice_idle == 0)
bfq_slice_idle = 1;
if (bfq_timeout_async == 0)
bfq_timeout_async = 1;
if (bfq_slab_setup())
return -ENOMEM;
elv_register(&iosched_bfq);
return 0;
}
static void __exit bfq_exit(void)
{
DECLARE_COMPLETION_ONSTACK(all_gone);
elv_unregister(&iosched_bfq);
bfq_ioc_gone = &all_gone;
/* bfq_ioc_gone's update must be visible before reading bfq_ioc_count */
smp_wmb();
if (elv_ioc_count_read(bfq_ioc_count) != 0)
wait_for_completion(&all_gone);
ida_destroy(&cic_index_ida);
bfq_slab_kill();
}
module_init(bfq_init);
module_exit(bfq_exit);
MODULE_AUTHOR("Fabio Checconi, Paolo Valente");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Budget Fair Queueing IO scheduler");