CTCaer-TWRP/mtdutils/bml_over_mtd.c
Sergey 'Jin' Bostandzhyan 80a90edd47 Work around MEMERASE ioctl for rk3066 compatibility
Due to a kernel bug and no available sources we have to work around the
MEMERASE ioctl - if used, it hangs and never returns. I straced the original
recovery executable and could see that it is simply calling write() with a
bunch of zeroes instead of using MEMERASE.

Added a hack that does the same and now the resulting TWRP recovery image works.

Change-Id: I1b1c1c9e870e350776346bdca5d442c7ef565aa0
2013-01-05 00:23:06 +01:00

811 lines
21 KiB
C

/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <limits.h>
#include "cutils/log.h"
#include <mtd/mtd-user.h>
#include "mtdutils.h"
#ifdef RK3066
#include "rk30hack.h"
#endif
typedef struct BmlOverMtdReadContext {
const MtdPartition *partition;
char *buffer;
size_t consumed;
int fd;
} BmlOverMtdReadContext;
typedef struct BmlOverMtdWriteContext {
const MtdPartition *partition;
char *buffer;
size_t stored;
int fd;
off_t* bad_block_offsets;
int bad_block_alloc;
int bad_block_count;
} BmlOverMtdWriteContext;
static BmlOverMtdReadContext *bml_over_mtd_read_partition(const MtdPartition *partition)
{
BmlOverMtdReadContext *ctx = (BmlOverMtdReadContext*) malloc(sizeof(BmlOverMtdReadContext));
if (ctx == NULL) return NULL;
ctx->buffer = malloc(partition->erase_size);
if (ctx->buffer == NULL) {
free(ctx);
return NULL;
}
char mtddevname[32];
sprintf(mtddevname, "/dev/mtd/mtd%d", partition->device_index);
ctx->fd = open(mtddevname, O_RDONLY);
if (ctx->fd < 0) {
free(ctx);
free(ctx->buffer);
return NULL;
}
ctx->partition = partition;
ctx->consumed = partition->erase_size;
return ctx;
}
static void bml_over_mtd_read_close(BmlOverMtdReadContext *ctx)
{
close(ctx->fd);
free(ctx->buffer);
free(ctx);
}
static BmlOverMtdWriteContext *bml_over_mtd_write_partition(const MtdPartition *partition)
{
BmlOverMtdWriteContext *ctx = (BmlOverMtdWriteContext*) malloc(sizeof(BmlOverMtdWriteContext));
if (ctx == NULL) return NULL;
ctx->bad_block_offsets = NULL;
ctx->bad_block_alloc = 0;
ctx->bad_block_count = 0;
ctx->buffer = malloc(partition->erase_size);
if (ctx->buffer == NULL) {
free(ctx);
return NULL;
}
char mtddevname[32];
sprintf(mtddevname, "/dev/mtd/mtd%d", partition->device_index);
ctx->fd = open(mtddevname, O_RDWR);
if (ctx->fd < 0) {
free(ctx->buffer);
free(ctx);
return NULL;
}
ctx->partition = partition;
ctx->stored = 0;
return ctx;
}
static int bml_over_mtd_write_close(BmlOverMtdWriteContext *ctx)
{
int r = 0;
if (close(ctx->fd)) r = -1;
free(ctx->bad_block_offsets);
free(ctx->buffer);
free(ctx);
return r;
}
#ifdef LOG_TAG
#undef LOG_TAG
#endif
#define LOG_TAG "bml_over_mtd"
#define BLOCK_SIZE 2048
#define SPARE_SIZE (BLOCK_SIZE >> 5)
#define EXIT_CODE_BAD_BLOCKS 15
static int die(const char *msg, ...) {
int err = errno;
va_list args;
va_start(args, msg);
char buf[1024];
vsnprintf(buf, sizeof(buf), msg, args);
va_end(args);
if (err != 0) {
strlcat(buf, ": ", sizeof(buf));
strlcat(buf, strerror(err), sizeof(buf));
}
fprintf(stderr, "%s\n", buf);
return 1;
}
static unsigned short* CreateEmptyBlockMapping(const MtdPartition* pSrcPart)
{
size_t srcTotal, srcErase, srcWrite;
if (mtd_partition_info(pSrcPart, &srcTotal, &srcErase, &srcWrite) != 0)
{
fprintf(stderr, "Failed to access partition.\n");
return NULL;
}
int numSrcBlocks = srcTotal/srcErase;
unsigned short* pMapping = malloc(numSrcBlocks * sizeof(unsigned short));
if (pMapping == NULL)
{
fprintf(stderr, "Failed to allocate block mapping memory.\n");
return NULL;
}
memset(pMapping, 0xFF, numSrcBlocks * sizeof(unsigned short));
return pMapping;
}
static const unsigned short* CreateBlockMapping(const MtdPartition* pSrcPart, int srcPartStartBlock,
const MtdPartition *pReservoirPart, int reservoirPartStartBlock)
{
size_t srcTotal, srcErase, srcWrite;
if (mtd_partition_info(pSrcPart, &srcTotal, &srcErase, &srcWrite) != 0)
{
fprintf(stderr, "Failed to access partition.\n");
return NULL;
}
int numSrcBlocks = srcTotal/srcErase;
unsigned short* pMapping = malloc(numSrcBlocks * sizeof(unsigned short));
if (pMapping == NULL)
{
fprintf(stderr, "Failed to allocate block mapping memory.\n");
return NULL;
}
memset(pMapping, 0xFF, numSrcBlocks * sizeof(unsigned short));
size_t total, erase, write;
if (mtd_partition_info(pReservoirPart, &total, &erase, &write) != 0)
{
fprintf(stderr, "Failed to access reservoir partition.\n");
free(pMapping);
return NULL;
}
if (erase != srcErase || write != srcWrite)
{
fprintf(stderr, "Source partition and reservoir partition differ in size properties.\n");
free(pMapping);
return NULL;
}
printf("Partition info: Total %d, Erase %d, write %d\n", total, erase, write);
BmlOverMtdReadContext *readctx = bml_over_mtd_read_partition(pReservoirPart);
if (readctx == NULL)
{
fprintf(stderr, "Failed to open reservoir partition for reading.\n");
free(pMapping);
return NULL;
}
if (total < erase || total > INT_MAX)
{
fprintf(stderr, "Unsuitable reservoir partition properties.\n");
free(pMapping);
bml_over_mtd_read_close(readctx);
return NULL;
}
int foundMappingTable = 0;
int currOffset = total; //Offset *behind* the last byte
while (currOffset > 0)
{
currOffset -= erase;
loff_t pos = lseek64(readctx->fd, currOffset, SEEK_SET);
int mgbb = ioctl(readctx->fd, MEMGETBADBLOCK, &pos);
if (mgbb != 0)
{
printf("Bad block %d in reservoir area, skipping.\n", currOffset/erase);
continue;
}
ssize_t readBytes = read(readctx->fd, readctx->buffer, erase);
if (readBytes != (ssize_t)erase)
{
fprintf(stderr, "Failed to read good block in reservoir area (%s).\n",
strerror(errno));
free(pMapping);
bml_over_mtd_read_close(readctx);
return NULL;
}
if (readBytes >= 0x2000)
{
char* buf = readctx->buffer;
if (buf[0]=='U' && buf[1]=='P' && buf[2]=='C' && buf[3]=='H')
{
printf ("Found mapping block mark at 0x%x (block %d).\n", currOffset, currOffset/erase);
unsigned short* mappings = (unsigned short*) &buf[0x1000];
if (mappings[0]==0 && mappings[1]==0xffff)
{
printf("Found start of mapping table.\n");
foundMappingTable = 1;
//Skip first entry (dummy)
unsigned short* mappingEntry = mappings + 2;
while (mappingEntry - mappings < 100
&& mappingEntry[0] != 0xffff)
{
unsigned short rawSrcBlk = mappingEntry[0];
unsigned short rawDstBlk = mappingEntry[1];
printf("Found raw block mapping %d -> %d\n", rawSrcBlk,
rawDstBlk);
unsigned int srcAbsoluteStartAddress = srcPartStartBlock * erase;
unsigned int resAbsoluteStartAddress = reservoirPartStartBlock * erase;
int reservoirLastBlock = reservoirPartStartBlock + numSrcBlocks - 1;
if (rawDstBlk < reservoirPartStartBlock
|| rawDstBlk*erase >= resAbsoluteStartAddress+currOffset)
{
fprintf(stderr, "Mapped block not within reasonable reservoir area.\n");
foundMappingTable = 0;
break;
}
int srcLastBlock = srcPartStartBlock + numSrcBlocks - 1;
if (rawSrcBlk >= srcPartStartBlock && rawSrcBlk <= srcLastBlock)
{
unsigned short relSrcBlk = rawSrcBlk - srcPartStartBlock;
unsigned short relDstBlk = rawDstBlk - reservoirPartStartBlock;
printf("Partition relative block mapping %d -> %d\n",relSrcBlk, relDstBlk);
printf("Absolute mapped start addresses 0x%x -> 0x%x\n",
srcAbsoluteStartAddress+relSrcBlk*erase,
resAbsoluteStartAddress+relDstBlk*erase);
printf("Partition relative mapped start addresses 0x%x -> 0x%x\n",
relSrcBlk*erase, relDstBlk*erase);
//Set mapping entry. For duplicate entries, later entries replace former ones.
//*Assumption*: Bad blocks in reservoir area will not be mapped themselves in
//the mapping table. User partition blocks will not be mapped to bad blocks
//(only) in the reservoir area. This has to be confirmed on a wider range of
//devices.
pMapping[relSrcBlk] = relDstBlk;
}
mappingEntry+=2;
}
break; //We found the mapping table, no need to search further
}
}
}
}
bml_over_mtd_read_close(readctx);
if (foundMappingTable == 0)
{
fprintf(stderr, "Cannot find mapping table in reservoir partition.\n");
free(pMapping);
return NULL;
}
//Consistency and validity check
int mappingValid = 1;
readctx = bml_over_mtd_read_partition(pSrcPart);
if (readctx == NULL)
{
fprintf(stderr, "Cannot open source partition for reading.\n");
free(pMapping);
return NULL;
}
int currBlock = 0;
for (;currBlock < numSrcBlocks; ++currBlock)
{
loff_t pos = lseek64(readctx->fd, currBlock*erase, SEEK_SET);
int mgbb = ioctl(readctx->fd, MEMGETBADBLOCK, &pos);
if (mgbb == 0)
{
if (pMapping[currBlock]!=0xffff)
{
fprintf(stderr, "Consistency error: Good block has mapping entry %d -> %d\n", currBlock, pMapping[currBlock]);
mappingValid = 0;
}
} else
{
//Bad block!
if (pMapping[currBlock]==0xffff)
{
fprintf(stderr, "Consistency error: Bad block has no mapping entry \n");
mappingValid = 0;
} else
{
BmlOverMtdReadContext* reservoirReadCtx = bml_over_mtd_read_partition(pReservoirPart);
if (reservoirReadCtx == 0)
{
fprintf(stderr, "Reservoir partition cannot be opened for reading in consistency check.\n");
mappingValid = 0;
} else
{
pos = lseek64(reservoirReadCtx->fd, pMapping[currBlock]*erase, SEEK_SET);
mgbb = ioctl(reservoirReadCtx->fd, MEMGETBADBLOCK, &pos);
if (mgbb == 0)
{
printf("Bad block has properly mapped reservoir block %d -> %d\n",currBlock, pMapping[currBlock]);
}
else
{
fprintf(stderr, "Consistency error: Mapped block is bad, too. (%d -> %d)\n",currBlock, pMapping[currBlock]);
mappingValid = 0;
}
}
bml_over_mtd_read_close(reservoirReadCtx);
}
}
}
bml_over_mtd_read_close(readctx);
if (!mappingValid)
{
free(pMapping);
return NULL;
}
return pMapping;
}
static void ReleaseBlockMapping(const unsigned short* blockMapping)
{
free((void*)blockMapping);
}
static int dump_bml_partition(const MtdPartition* pSrcPart, const MtdPartition* pReservoirPart,
const unsigned short* blockMapping, const char* filename)
{
int fd = open(filename, O_WRONLY|O_CREAT|O_TRUNC, 0666);
if (fd < 0)
{
fprintf(stderr, "error opening %s", filename);
return -1;
}
BmlOverMtdReadContext* pSrcRead = bml_over_mtd_read_partition(pSrcPart);
if (pSrcRead == NULL)
{
close(fd);
fprintf(stderr, "dump_bml_partition: Error opening src part for reading.\n");
return -1;
}
BmlOverMtdReadContext* pResRead = bml_over_mtd_read_partition(pReservoirPart);
if (pResRead == NULL)
{
close(fd);
bml_over_mtd_read_close(pSrcRead);
fprintf(stderr, "dump_bml_partition: Error opening reservoir part for reading.\n");
return -1;
}
int numBlocks = pSrcPart->size / pSrcPart->erase_size;
int currblock = 0;
for (;currblock < numBlocks; ++currblock)
{
int srcFd = -1;
if (blockMapping[currblock] == 0xffff)
{
//Good block, use src partition
srcFd = pSrcRead->fd;
if (lseek64(pSrcRead->fd, currblock*pSrcPart->erase_size, SEEK_SET)==-1)
{
close(fd);
bml_over_mtd_read_close(pSrcRead);
bml_over_mtd_read_close(pResRead);
fprintf(stderr, "dump_bml_partition: lseek in src partition failed\n");
return -1;
}
} else
{
//Bad block, use mapped block in reservoir partition
srcFd = pResRead->fd;
if (lseek64(pResRead->fd, blockMapping[currblock]*pSrcPart->erase_size, SEEK_SET)==-1)
{
close(fd);
bml_over_mtd_read_close(pSrcRead);
bml_over_mtd_read_close(pResRead);
fprintf(stderr, "dump_bml_partition: lseek in reservoir partition failed\n");
return -1;
}
}
size_t blockBytesRead = 0;
while (blockBytesRead < pSrcPart->erase_size)
{
ssize_t len = read(srcFd, pSrcRead->buffer + blockBytesRead,
pSrcPart->erase_size - blockBytesRead);
if (len <= 0)
{
close(fd);
bml_over_mtd_read_close(pSrcRead);
bml_over_mtd_read_close(pResRead);
fprintf(stderr, "dump_bml_partition: reading partition failed\n");
return -1;
}
blockBytesRead += len;
}
size_t blockBytesWritten = 0;
while (blockBytesWritten < pSrcPart->erase_size)
{
ssize_t len = write(fd, pSrcRead->buffer + blockBytesWritten,
pSrcPart->erase_size - blockBytesWritten);
if (len <= 0)
{
close(fd);
bml_over_mtd_read_close(pSrcRead);
bml_over_mtd_read_close(pResRead);
fprintf(stderr, "dump_bml_partition: writing partition dump file failed\n");
return -1;
}
blockBytesWritten += len;
}
}
bml_over_mtd_read_close(pSrcRead);
bml_over_mtd_read_close(pResRead);
if (close(fd)) {
unlink(filename);
printf("error closing %s", filename);
return -1;
}
return 0;
}
static ssize_t bml_over_mtd_write_block(int fd, ssize_t erase_size, char* data)
{
off_t pos = lseek(fd, 0, SEEK_CUR);
if (pos == (off_t) -1) return -1;
ssize_t size = erase_size;
loff_t bpos = pos;
int ret = ioctl(fd, MEMGETBADBLOCK, &bpos);
if (ret != 0 && !(ret == -1 && errno == EOPNOTSUPP)) {
fprintf(stderr,
"Mapping failure: Trying to write bad block at 0x%08lx (ret %d errno %d)\n",
pos, ret, errno);
return -1;
}
struct erase_info_user erase_info;
erase_info.start = pos;
erase_info.length = size;
int retry;
for (retry = 0; retry < 2; ++retry) {
#ifdef RK3066
if (rk30_zero_out(fd, pos, size) < 0) {
fprintf(stderr, "mtd: erase failure at 0x%08lx (%s)\n",
pos, strerror(errno));
continue;
}
#else
if (ioctl(fd, MEMERASE, &erase_info) < 0) {
fprintf(stderr, "mtd: erase failure at 0x%08lx (%s)\n",
pos, strerror(errno));
continue;
}
#endif
if (lseek(fd, pos, SEEK_SET) != pos ||
write(fd, data, size) != size) {
fprintf(stderr, "mtd: write error at 0x%08lx (%s)\n",
pos, strerror(errno));
}
char verify[size];
if (lseek(fd, pos, SEEK_SET) != pos ||
read(fd, verify, size) != size) {
fprintf(stderr, "mtd: re-read error at 0x%08lx (%s)\n",
pos, strerror(errno));
continue;
}
if (memcmp(data, verify, size) != 0) {
fprintf(stderr, "mtd: verification error at 0x%08lx (%s)\n",
pos, strerror(errno));
continue;
}
if (retry > 0) {
fprintf(stderr, "mtd: wrote block after %d retries\n", retry);
}
fprintf(stderr, "mtd: successfully wrote block at %llx\n", pos);
return size; // Success!
}
fprintf(stderr, "mtd: Block at %llx could not be properly written.\n", pos);
// Ran out of space on the device
errno = ENOSPC;
return -1;
}
static int flash_bml_partition(const MtdPartition* pSrcPart, const MtdPartition* pReservoirPart,
const unsigned short* blockMapping, const char* filename)
{
int fd = open(filename, O_RDONLY);
if (fd < 0)
{
fprintf(stderr, "error opening %s", filename);
return -1;
}
BmlOverMtdWriteContext* pSrcWrite = bml_over_mtd_write_partition(pSrcPart);
if (pSrcWrite == NULL)
{
close(fd);
fprintf(stderr, "flash_bml_partition: Error opening src part for writing.\n");
return -1;
}
#ifdef DUMMY_WRITING
close(pSrcWrite->fd);
pSrcWrite->fd = open("/sdcard/srcPartWriteDummy.bin", O_WRONLY|O_CREAT|O_TRUNC, 0666);
#endif
BmlOverMtdWriteContext* pResWrite = bml_over_mtd_write_partition(pReservoirPart);
if (pResWrite == NULL)
{
close(fd);
bml_over_mtd_write_close(pSrcWrite);
fprintf(stderr, "flash_bml_partition: Error opening reservoir part for writing.\n");
return -1;
}
#ifdef DUMMY_WRITING
close(pResWrite->fd);
pResWrite->fd = open("/sdcard/resPartWriteDummy.bin", O_WRONLY|O_CREAT|O_TRUNC, 0666);
#endif
struct stat fileStat;
if (fstat(fd, &fileStat) != 0)
{
close(fd);
bml_over_mtd_write_close(pSrcWrite);
bml_over_mtd_write_close(pResWrite);
fprintf(stderr, "flash_bml_partition: Failed to stat source file.\n");
return -1;
}
if (fileStat.st_size > pSrcPart->size)
{
close(fd);
bml_over_mtd_write_close(pSrcWrite);
bml_over_mtd_write_close(pResWrite);
fprintf(stderr, "flash_bml_partition: Source file too large for target partition.\n");
return -1;
}
int numBlocks = (fileStat.st_size + pSrcPart->erase_size - 1) / pSrcPart->erase_size;
int currblock;
for (currblock = 0 ;currblock < numBlocks; ++currblock)
{
memset(pSrcWrite->buffer, 0xFF, pSrcPart->erase_size);
size_t blockBytesRead = 0;
while (blockBytesRead < pSrcPart->erase_size)
{
ssize_t len = read(fd, pSrcWrite->buffer + blockBytesRead,
pSrcPart->erase_size - blockBytesRead);
if (len < 0)
{
close(fd);
bml_over_mtd_write_close(pSrcWrite);
bml_over_mtd_write_close(pResWrite);
fprintf(stderr, "flash_bml_partition: read source file failed\n");
return -1;
}
if (len == 0)
{
//End of file
break;
}
blockBytesRead += len;
}
int srcFd = -1;
if (blockMapping[currblock] == 0xffff)
{
//Good block, use src partition
srcFd = pSrcWrite->fd;
if (lseek64(pSrcWrite->fd, currblock*pSrcPart->erase_size, SEEK_SET)==-1)
{
close(fd);
bml_over_mtd_write_close(pSrcWrite);
bml_over_mtd_write_close(pResWrite);
fprintf(stderr, "flash_bml_partition: lseek in src partition failed\n");
return -1;
}
} else
{
//Bad block, use mapped block in reservoir partition
srcFd = pResWrite->fd;
if (lseek64(pResWrite->fd, blockMapping[currblock]*pSrcPart->erase_size, SEEK_SET)==-1)
{
close(fd);
bml_over_mtd_write_close(pSrcWrite);
bml_over_mtd_write_close(pResWrite);
fprintf(stderr, "flash_bml_partition: lseek in reservoir partition failed\n");
return -1;
}
}
size_t blockBytesWritten = 0;
while (blockBytesWritten < pSrcPart->erase_size)
{
#ifdef DUMMY_WRITING
ssize_t len = write(srcFd, pSrcWrite->buffer + blockBytesWritten,
pSrcPart->erase_size - blockBytesWritten);
#else
ssize_t len = bml_over_mtd_write_block(srcFd, pSrcPart->erase_size, pSrcWrite->buffer);
#endif
if (len <= 0)
{
close(fd);
bml_over_mtd_write_close(pSrcWrite);
bml_over_mtd_write_close(pResWrite);
fprintf(stderr, "flash_bml_partition: writing to partition failed\n");
return -1;
}
blockBytesWritten += len;
}
}
bml_over_mtd_write_close(pSrcWrite);
bml_over_mtd_write_close(pResWrite);
if (close(fd)) {
printf("error closing %s", filename);
return -1;
}
return 0;
}
static int scan_partition(const MtdPartition* pPart)
{
BmlOverMtdReadContext* readCtx = bml_over_mtd_read_partition(pPart);
if (readCtx == NULL)
{
fprintf(stderr, "Failed to open partition for reading.\n");
return -1;
}
int numBadBlocks = 0;
size_t numBlocks = pPart->size / pPart->erase_size;
size_t currBlock;
for (currBlock = 0; currBlock < numBlocks; ++currBlock)
{
loff_t pos = currBlock * pPart->erase_size;
int mgbb = ioctl(readCtx->fd, MEMGETBADBLOCK, &pos);
if (mgbb != 0)
{
printf("Bad block %d at 0x%x.\n", currBlock, (unsigned int)pos);
numBadBlocks++;
}
}
bml_over_mtd_read_close(readCtx);
if (numBadBlocks == 0)
{
printf("No bad blocks.\n");
return 0;
}
return -1 ;
}
int main(int argc, char **argv)
{
if (argc != 7 && (argc != 3 || (argc == 3 && strcmp(argv[1],"scan"))!=0)
&& (argc != 6 || (argc == 6 && strcmp(argv[1],"scan"))!=0))
return die("Usage: %s dump|flash <partition> <partition_start_block> <reservoirpartition> <reservoir_start_block> <file>\n"
"E.g. %s dump boot 72 reservoir 2004 file.bin\n"
"Usage: %s scan <partition> [<partition_start_block> <reservoirpartition> <reservoir_start_block>]\n"
,argv[0], argv[0], argv[0]);
int num_partitions = mtd_scan_partitions();
const MtdPartition *pSrcPart = mtd_find_partition_by_name(argv[2]);
if (pSrcPart == NULL)
return die("Cannot find partition %s", argv[2]);
int scanResult = scan_partition(pSrcPart);
if (argc == 3 && strcmp(argv[1],"scan")==0)
{
return (scanResult == 0 ? 0 : EXIT_CODE_BAD_BLOCKS);
}
int retVal = 0;
const MtdPartition* pReservoirPart = mtd_find_partition_by_name(argv[4]);
if (pReservoirPart == NULL)
return die("Cannot find partition %s", argv[4]);
int srcPartStartBlock = atoi(argv[3]);
int reservoirPartStartBlock = atoi(argv[5]);
const unsigned short* pMapping = CreateBlockMapping(pSrcPart, srcPartStartBlock,
pReservoirPart, reservoirPartStartBlock);
if (pMapping == NULL && scanResult == 0)
{
printf("Generating empty block mapping table for error-free partition.\n");
pMapping = CreateEmptyBlockMapping(pSrcPart);
}
if (argc == 6 && strcmp(argv[1],"scan")==0)
{
retVal = (scanResult == 0 ? 0 : EXIT_CODE_BAD_BLOCKS);
}
if (pMapping == NULL)
return die("Failed to create block mapping table");
if (strcmp(argv[1],"dump")==0)
{
retVal = dump_bml_partition(pSrcPart, pReservoirPart, pMapping, argv[6]);
if (retVal == 0)
printf("Successfully dumped partition to %s\n", argv[6]);
}
if (strcmp(argv[1],"flash")==0)
{
retVal = flash_bml_partition(pSrcPart, pReservoirPart, pMapping, argv[6]);
if (retVal == 0)
printf("Successfully wrote %s to partition\n", argv[6]);
}
ReleaseBlockMapping(pMapping);
return retVal;
}