(GLM) Cleanups

This commit is contained in:
twinaphex 2016-11-01 06:51:07 +01:00
parent 0fd569983c
commit af9136c341
3 changed files with 112 additions and 148 deletions

View File

@ -1,27 +0,0 @@
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref core
/// @file glm/core/intrinsic_exponential.inl
/// @date 2011-06-15 / 2011-06-15
/// @author Christophe Riccio
///////////////////////////////////////////////////////////////////////////////////

View File

@ -34,16 +34,10 @@
namespace glm{
namespace detail
{
typedef short hdata;
GLM_FUNC_DECL float toFloat32(hdata value);
GLM_FUNC_DECL hdata toFloat16(float const & value);
GLM_FUNC_DECL float toFloat32(int16_t value);
GLM_FUNC_DECL int16_t toFloat16(float const & value);
}//namespace detail
/// half-precision floating-point numbers.
//typedef detail::hdata half;
}//namespace glm
#include "type_half.inl"

View File

@ -61,7 +61,7 @@ namespace detail
uint32 i;
};
GLM_FUNC_QUALIFIER float toFloat32(hdata value)
GLM_FUNC_QUALIFIER float toFloat32(int16_t value)
{
int s = (value >> 15) & 0x00000001;
int e = (value >> 10) & 0x0000001f;
@ -135,140 +135,137 @@ namespace detail
return Result.f;
}
GLM_FUNC_QUALIFIER hdata toFloat16(float const & f)
{
uif32 Entry;
Entry.f = f;
int i = (int)Entry.i;
GLM_FUNC_QUALIFIER int16_t toFloat16(float const & f)
{
uif32 Entry;
Entry.f = f;
int i = (int)Entry.i;
//
// Our floating point number, f, is represented by the bit
// pattern in integer i. Disassemble that bit pattern into
// the sign, s, the exponent, e, and the significand, m.
// Shift s into the position where it will go in in the
// resulting half number.
// Adjust e, accounting for the different exponent bias
// of float and half (127 versus 15).
//
//
// Our floating point number, f, is represented by the bit
// pattern in integer i. Disassemble that bit pattern into
// the sign, s, the exponent, e, and the significand, m.
// Shift s into the position where it will go in in the
// resulting half number.
// Adjust e, accounting for the different exponent bias
// of float and half (127 versus 15).
//
int s = (i >> 16) & 0x00008000;
int e = ((i >> 23) & 0x000000ff) - (127 - 15);
int m = i & 0x007fffff;
int s = (i >> 16) & 0x00008000;
int e = ((i >> 23) & 0x000000ff) - (127 - 15);
int m = i & 0x007fffff;
//
// Now reassemble s, e and m into a half:
//
//
// Now reassemble s, e and m into a half:
//
if(e <= 0)
{
if(e < -10)
{
//
// E is less than -10. The absolute value of f is
// less than half_MIN (f may be a small normalized
// float, a denormalized float or a zero).
//
// We convert f to a half zero.
//
if(e <= 0)
{
if(e < -10)
{
//
// E is less than -10. The absolute value of f is
// less than half_MIN (f may be a small normalized
// float, a denormalized float or a zero).
//
// We convert f to a half zero.
//
return hdata(s);
}
return (int16_t)(s);
}
//
// E is between -10 and 0. F is a normalized float,
// whose magnitude is less than __half_NRM_MIN.
//
// We convert f to a denormalized half.
//
//
// E is between -10 and 0. F is a normalized float,
// whose magnitude is less than __half_NRM_MIN.
//
// We convert f to a denormalized half.
//
m = (m | 0x00800000) >> (1 - e);
m = (m | 0x00800000) >> (1 - e);
//
// Round to nearest, round "0.5" up.
//
// Rounding may cause the significand to overflow and make
// our number normalized. Because of the way a half's bits
// are laid out, we don't have to treat this case separately;
// the code below will handle it correctly.
//
//
// Round to nearest, round "0.5" up.
//
// Rounding may cause the significand to overflow and make
// our number normalized. Because of the way a half's bits
// are laid out, we don't have to treat this case separately;
// the code below will handle it correctly.
//
if(m & 0x00001000)
m += 0x00002000;
if(m & 0x00001000)
m += 0x00002000;
//
// Assemble the half from s, e (zero) and m.
//
//
// Assemble the half from s, e (zero) and m.
//
return hdata(s | (m >> 13));
}
else if(e == 0xff - (127 - 15))
{
if(m == 0)
{
//
// F is an infinity; convert f to a half
// infinity with the same sign as f.
//
return (int16_t)(s | (m >> 13));
}
return hdata(s | 0x7c00);
}
else
{
//
// F is a NAN; we produce a half NAN that preserves
// the sign bit and the 10 leftmost bits of the
// significand of f, with one exception: If the 10
// leftmost bits are all zero, the NAN would turn
// into an infinity, so we have to set at least one
// bit in the significand.
//
if(e == 0xff - (127 - 15))
{
if(m == 0)
{
//
// F is an infinity; convert f to a half
// infinity with the same sign as f.
//
m >>= 13;
return (int16_t)(s | 0x7c00);
}
return hdata(s | 0x7c00 | m | (m == 0));
}
}
else
{
//
// E is greater than zero. F is a normalized float.
// We try to convert f to a normalized half.
//
//
// F is a NAN; we produce a half NAN that preserves
// the sign bit and the 10 leftmost bits of the
// significand of f, with one exception: If the 10
// leftmost bits are all zero, the NAN would turn
// into an infinity, so we have to set at least one
// bit in the significand.
//
//
// Round to nearest, round "0.5" up
//
m >>= 13;
if(m & 0x00001000)
{
m += 0x00002000;
return (int16_t)(s | 0x7c00 | m | (m == 0));
}
if(m & 0x00800000)
{
m = 0; // overflow in significand,
e += 1; // adjust exponent
}
}
//
// E is greater than zero. F is a normalized float.
// We try to convert f to a normalized half.
//
//
// Handle exponent overflow
//
//
// Round to nearest, round "0.5" up
//
if (e > 30)
{
overflow(); // Cause a hardware floating point overflow;
if(m & 0x00001000)
{
m += 0x00002000;
return hdata(s | 0x7c00);
// if this returns, the half becomes an
} // infinity with the same sign as f.
if(m & 0x00800000)
{
m = 0; // overflow in significand,
e += 1; // adjust exponent
}
}
//
// Assemble the half from s, e and m.
//
//
// Handle exponent overflow
//
return hdata(s | (e << 10) | (m >> 13));
}
}
if (e > 30)
{
overflow(); // Cause a hardware floating point overflow;
return (int16_t)(s | 0x7c00);
// if this returns, the half becomes an
} // infinity with the same sign as f.
//
// Assemble the half from s, e and m.
//
return (int16_t)(s | (e << 10) | (m >> 13));
}
}//namespace detail
}//namespace glm