mirror of
https://github.com/CTCaer/RetroArch.git
synced 2024-12-27 21:27:12 +00:00
add a faster (approximated) version of the CC resampler using SSE
intrinsics
This commit is contained in:
parent
82806dcd85
commit
d1a785823d
@ -28,13 +28,8 @@
|
||||
#define RARCH_LOG(...) fprintf(stderr, __VA_ARGS__)
|
||||
#endif
|
||||
|
||||
typedef struct audio_frame_int16
|
||||
{
|
||||
int16_t l;
|
||||
int16_t r;
|
||||
} audio_frame_int16_t;
|
||||
|
||||
#ifdef _MIPS_ARCH_ALLEGREX1
|
||||
#ifdef _MIPS_ARCH_ALLEGREX
|
||||
static void resampler_CC_process(void *re_, struct resampler_data *data)
|
||||
{
|
||||
(void)re_;
|
||||
@ -121,7 +116,7 @@ static void resampler_CC_process(void *re_, struct resampler_data *data)
|
||||
outp++;
|
||||
}
|
||||
|
||||
/* The VFPU state is assumed to remain intact
|
||||
/* The VFPU state is assumed to remain intact
|
||||
* in-between calls to resampler_CC_process. */
|
||||
|
||||
done:
|
||||
@ -151,6 +146,251 @@ static void *resampler_CC_init(double bandwidth_mod)
|
||||
RARCH_LOG("\nConvoluted Cosine resampler (VFPU): \n");
|
||||
return (void*)-1;
|
||||
}
|
||||
#elif defined(__SSE__)
|
||||
|
||||
/* uses a fast polynomial approximation
|
||||
* since SSE lacks native support for trigonometric functions
|
||||
* cc_int is approximated with P(X) = X - (3/4)*X^3 + (1/4)*X^5
|
||||
*/
|
||||
|
||||
|
||||
#include <xmmintrin.h>
|
||||
|
||||
#ifndef CC_RESAMPLER_PRECISION
|
||||
#define CC_RESAMPLER_PRECISION 1
|
||||
#endif
|
||||
|
||||
typedef struct rarch_CC_resampler
|
||||
{
|
||||
__m128 previous;
|
||||
__m128 current;
|
||||
|
||||
float distance;
|
||||
void (*process)(void *re, struct resampler_data *data);
|
||||
} rarch_CC_resampler_t;
|
||||
|
||||
|
||||
static void resampler_CC_downsample(void *re_, struct resampler_data *data)
|
||||
{
|
||||
float ratio, b;
|
||||
rarch_CC_resampler_t *re = (rarch_CC_resampler_t*)re_;
|
||||
|
||||
audio_frame_float_t *inp = (audio_frame_float_t*)data->data_in;
|
||||
audio_frame_float_t *inp_max = (audio_frame_float_t*)(inp + data->input_frames);
|
||||
audio_frame_float_t *outp = (audio_frame_float_t*)data->data_out;
|
||||
|
||||
ratio = 1.0 / data->ratio;
|
||||
b = data->ratio; /* cutoff frequency. */
|
||||
|
||||
__m128 vec_previous = _mm_loadu_ps((float*)&re->previous);
|
||||
__m128 vec_current = _mm_loadu_ps((float*)&re->current);
|
||||
|
||||
while (inp != inp_max)
|
||||
{
|
||||
__m128 vec_ratio =
|
||||
_mm_mul_ps(_mm_set_ps1(ratio), _mm_set_ps(3.0, 2.0, 1.0, 0.0));
|
||||
__m128 vec_w = _mm_sub_ps(_mm_set_ps1(re->distance), vec_ratio);
|
||||
|
||||
__m128 vec_w1 = _mm_add_ps(vec_w , _mm_set_ps1(0.5));
|
||||
__m128 vec_w2 = _mm_sub_ps(vec_w , _mm_set_ps1(0.5));
|
||||
|
||||
__m128 vec_b = _mm_set_ps1(b);
|
||||
vec_w1 = _mm_mul_ps(vec_w1, vec_b);
|
||||
vec_w2 = _mm_mul_ps(vec_w2, vec_b);
|
||||
|
||||
#if (CC_RESAMPLER_PRECISION > 0)
|
||||
__m128 vec_ww1 = _mm_mul_ps(vec_w1, vec_w1);
|
||||
__m128 vec_ww2 = _mm_mul_ps(vec_w2, vec_w2);
|
||||
|
||||
|
||||
vec_ww1 = _mm_mul_ps(vec_ww1, _mm_sub_ps(_mm_set_ps1(3.0),vec_ww1));
|
||||
vec_ww2 = _mm_mul_ps(vec_ww2, _mm_sub_ps(_mm_set_ps1(3.0),vec_ww2));
|
||||
|
||||
vec_ww1 = _mm_mul_ps(_mm_set_ps1(1.0/4.0), vec_ww1);
|
||||
vec_ww2 = _mm_mul_ps(_mm_set_ps1(1.0/4.0), vec_ww2);
|
||||
|
||||
vec_w1 = _mm_mul_ps(vec_w1, _mm_sub_ps(_mm_set_ps1(1.0), vec_ww1));
|
||||
vec_w2 = _mm_mul_ps(vec_w2, _mm_sub_ps(_mm_set_ps1(1.0), vec_ww2));
|
||||
#endif
|
||||
|
||||
vec_w1 = _mm_min_ps(vec_w1, _mm_set_ps1( 0.5));
|
||||
vec_w2 = _mm_min_ps(vec_w2, _mm_set_ps1( 0.5));
|
||||
vec_w1 = _mm_max_ps(vec_w1, _mm_set_ps1(-0.5));
|
||||
vec_w2 = _mm_max_ps(vec_w2, _mm_set_ps1(-0.5));
|
||||
|
||||
vec_w = _mm_sub_ps(vec_w1, vec_w2);
|
||||
|
||||
__m128 vec_w_previous =
|
||||
_mm_shuffle_ps(vec_w,vec_w,_MM_SHUFFLE(1, 1, 0, 0));
|
||||
__m128 vec_w_current =
|
||||
_mm_shuffle_ps(vec_w,vec_w,_MM_SHUFFLE(3, 3, 2, 2));
|
||||
|
||||
__m128 vec_in = _mm_loadl_pi(_mm_setzero_ps(),(__m64*)inp);
|
||||
vec_in = _mm_shuffle_ps(vec_in,vec_in,_MM_SHUFFLE(1, 0, 1, 0));
|
||||
|
||||
vec_previous =
|
||||
_mm_add_ps(vec_previous, _mm_mul_ps(vec_in, vec_w_previous));
|
||||
vec_current =
|
||||
_mm_add_ps(vec_current, _mm_mul_ps(vec_in, vec_w_current));
|
||||
|
||||
re->distance++;
|
||||
inp++;
|
||||
|
||||
if (re->distance > (ratio + 0.5))
|
||||
{
|
||||
_mm_storel_pi((__m64*)outp, vec_previous);
|
||||
vec_previous =
|
||||
_mm_shuffle_ps(vec_previous,vec_current,_MM_SHUFFLE(1, 0, 3, 2));
|
||||
vec_current =
|
||||
_mm_shuffle_ps(vec_current,_mm_setzero_ps(),_MM_SHUFFLE(1, 0, 3, 2));
|
||||
|
||||
re->distance -= ratio;
|
||||
outp++;
|
||||
}
|
||||
}
|
||||
|
||||
_mm_storeu_ps((float*)&re->previous, vec_previous);
|
||||
_mm_storeu_ps((float*)&re->current, vec_current);
|
||||
|
||||
data->output_frames = outp - (audio_frame_float_t*)data->data_out;
|
||||
}
|
||||
|
||||
#ifndef min
|
||||
#define min(a, b) ((a) < (b) ? (a) : (b))
|
||||
#endif
|
||||
|
||||
static void resampler_CC_upsample(void *re_, struct resampler_data *data)
|
||||
{
|
||||
float b, ratio;
|
||||
rarch_CC_resampler_t *re = (rarch_CC_resampler_t*)re_;
|
||||
|
||||
audio_frame_float_t *inp = (audio_frame_float_t*)data->data_in;
|
||||
audio_frame_float_t *inp_max = (audio_frame_float_t*)(inp + data->input_frames);
|
||||
audio_frame_float_t *outp = (audio_frame_float_t*)data->data_out;
|
||||
|
||||
b = min(data->ratio, 1.00); /* cutoff frequency. */
|
||||
ratio = 1.0 / data->ratio;
|
||||
|
||||
__m128 vec_previous = _mm_loadu_ps((float*)&re->previous);
|
||||
__m128 vec_current = _mm_loadu_ps((float*)&re->current);
|
||||
|
||||
|
||||
|
||||
while (inp != inp_max)
|
||||
{
|
||||
__m128 vec_in = _mm_loadl_pi(_mm_setzero_ps(),(__m64*)inp);
|
||||
vec_previous =
|
||||
_mm_shuffle_ps(vec_previous,vec_current,_MM_SHUFFLE(1, 0, 3, 2));
|
||||
vec_current =
|
||||
_mm_shuffle_ps(vec_current,vec_in,_MM_SHUFFLE(1, 0, 3, 2));
|
||||
|
||||
while (re->distance < 1.0)
|
||||
{
|
||||
__m128 vec_w =
|
||||
_mm_add_ps(_mm_set_ps1(re->distance), _mm_set_ps(-2.0, -1.0, 0.0, 1.0));
|
||||
|
||||
__m128 vec_w1 = _mm_add_ps(vec_w , _mm_set_ps1(0.5));
|
||||
__m128 vec_w2 = _mm_sub_ps(vec_w , _mm_set_ps1(0.5));
|
||||
|
||||
__m128 vec_b = _mm_set_ps1(b);
|
||||
vec_w1 = _mm_mul_ps(vec_w1, vec_b);
|
||||
vec_w2 = _mm_mul_ps(vec_w2, vec_b);
|
||||
|
||||
#if (CC_RESAMPLER_PRECISION > 0)
|
||||
__m128 vec_ww1 = _mm_mul_ps(vec_w1, vec_w1);
|
||||
__m128 vec_ww2 = _mm_mul_ps(vec_w2, vec_w2);
|
||||
|
||||
|
||||
vec_ww1 = _mm_mul_ps(vec_ww1,_mm_sub_ps(_mm_set_ps1(3.0),vec_ww1));
|
||||
vec_ww2 = _mm_mul_ps(vec_ww2,_mm_sub_ps(_mm_set_ps1(3.0),vec_ww2));
|
||||
|
||||
vec_ww1 = _mm_mul_ps(_mm_set_ps1(1.0 / 4.0), vec_ww1);
|
||||
vec_ww2 = _mm_mul_ps(_mm_set_ps1(1.0 / 4.0), vec_ww2);
|
||||
|
||||
vec_w1 = _mm_mul_ps(vec_w1, _mm_sub_ps(_mm_set_ps1(1.0), vec_ww1));
|
||||
vec_w2 = _mm_mul_ps(vec_w2, _mm_sub_ps(_mm_set_ps1(1.0), vec_ww2));
|
||||
#endif
|
||||
|
||||
vec_w1 = _mm_min_ps(vec_w1, _mm_set_ps1( 0.5));
|
||||
vec_w2 = _mm_min_ps(vec_w2, _mm_set_ps1( 0.5));
|
||||
vec_w1 = _mm_max_ps(vec_w1, _mm_set_ps1(-0.5));
|
||||
vec_w2 = _mm_max_ps(vec_w2, _mm_set_ps1(-0.5));
|
||||
|
||||
vec_w = _mm_sub_ps(vec_w1, vec_w2);
|
||||
|
||||
__m128 vec_w_previous =
|
||||
_mm_shuffle_ps(vec_w,vec_w,_MM_SHUFFLE(1, 1, 0, 0));
|
||||
__m128 vec_w_current =
|
||||
_mm_shuffle_ps(vec_w,vec_w,_MM_SHUFFLE(3, 3, 2, 2));
|
||||
|
||||
__m128 vec_out = _mm_mul_ps(vec_previous, vec_w_previous);
|
||||
vec_out = _mm_add_ps(vec_out, _mm_mul_ps(vec_current, vec_w_current));
|
||||
vec_out =
|
||||
_mm_add_ps(vec_out, _mm_shuffle_ps(vec_out,vec_out,_MM_SHUFFLE(3, 2, 3, 2)));
|
||||
|
||||
_mm_storel_pi((__m64*)outp,vec_out);
|
||||
|
||||
re->distance += ratio;
|
||||
outp++;
|
||||
}
|
||||
|
||||
re->distance -= 1.0;
|
||||
inp++;
|
||||
}
|
||||
|
||||
_mm_storeu_ps((float*)&re->previous, vec_previous);
|
||||
_mm_storeu_ps((float*)&re->current, vec_current);
|
||||
|
||||
data->output_frames = outp - (audio_frame_float_t*)data->data_out;
|
||||
}
|
||||
|
||||
|
||||
static void resampler_CC_process(void *re_, struct resampler_data *data)
|
||||
{
|
||||
rarch_CC_resampler_t *re = (rarch_CC_resampler_t*)re_;
|
||||
re->process(re_, data);
|
||||
}
|
||||
|
||||
static void resampler_CC_free(void *re_)
|
||||
{
|
||||
rarch_CC_resampler_t *re = (rarch_CC_resampler_t*)re_;
|
||||
if (re)
|
||||
free(re);
|
||||
}
|
||||
|
||||
static void *resampler_CC_init(double bandwidth_mod)
|
||||
{
|
||||
int i;
|
||||
rarch_CC_resampler_t *re = (rarch_CC_resampler_t*)
|
||||
calloc(1, sizeof(rarch_CC_resampler_t));
|
||||
if (!re)
|
||||
return NULL;
|
||||
|
||||
for (i = 0; i < 4; i++)
|
||||
{
|
||||
re->previous = _mm_setzero_ps();
|
||||
re->current = _mm_setzero_ps();
|
||||
}
|
||||
|
||||
RARCH_LOG("Convoluted Cosine resampler (SSE) : ");
|
||||
|
||||
/* variations of data->ratio around 0.75 are safer
|
||||
* than around 1.0 for both up/downsampler. */
|
||||
if (bandwidth_mod < 0.75)
|
||||
{
|
||||
RARCH_LOG("CC_downsample @%f \n", bandwidth_mod);
|
||||
re->process = resampler_CC_downsample;
|
||||
re->distance = 0.0;
|
||||
}
|
||||
else
|
||||
{
|
||||
RARCH_LOG("CC_upsample @%f \n", bandwidth_mod);
|
||||
re->process = resampler_CC_upsample;
|
||||
re->distance = 2.0;
|
||||
}
|
||||
|
||||
return re;
|
||||
}
|
||||
#else
|
||||
|
||||
/* C reference version. Not optimized. */
|
||||
@ -295,9 +535,9 @@ static void *resampler_CC_init(double bandwidth_mod)
|
||||
|
||||
RARCH_LOG("Convoluted Cosine resampler (C) : ");
|
||||
|
||||
/* variations of data->ratio around 0.75 are safer
|
||||
/* variations of data->ratio around 0.75 are safer
|
||||
* than around 1.0 for both up/downsampler. */
|
||||
if (bandwidth_mod < 0.75)
|
||||
if (bandwidth_mod < 0.75)
|
||||
{
|
||||
RARCH_LOG("CC_downsample @%f \n", bandwidth_mod);
|
||||
re->process = resampler_CC_downsample;
|
||||
|
Loading…
Reference in New Issue
Block a user