/* RetroArch - A frontend for libretro. * Copyright (C) 2010-2014 - Hans-Kristian Arntzen * Copyright (C) 2011-2015 - Daniel De Matteis * Copyright (C) 2012-2015 - Michael Lelli * * RetroArch is free software: you can redistribute it and/or modify it under the terms * of the GNU General Public License as published by the Free Software Found- * ation, either version 3 of the License, or (at your option) any later version. * * RetroArch is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; * without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR * PURPOSE. See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with RetroArch. * If not, see . */ #include #include "libretro.h" #include "dynamic.h" #include "libretro_version_1.h" #include #include #include #include #include #include "general.h" #include "retroarch.h" #include "performance.h" #include "input/keyboard_line.h" #include "audio/audio_utils.h" #include "retroarch_logger.h" #include "record/record_driver.h" #include "intl/intl.h" #ifdef HAVE_NETPLAY #include "netplay.h" #endif static void video_frame_scale(const void *data, unsigned width, unsigned height, size_t pitch) { RARCH_PERFORMANCE_INIT(video_frame_conv); if (!data) return; if (data == RETRO_HW_FRAME_BUFFER_VALID) return; RARCH_PERFORMANCE_START(video_frame_conv); driver.scaler.in_width = width; driver.scaler.in_height = height; driver.scaler.out_width = width; driver.scaler.out_height = height; driver.scaler.in_stride = pitch; driver.scaler.out_stride = width * sizeof(uint16_t); scaler_ctx_scale(&driver.scaler, driver.scaler_out, data); data = driver.scaler_out; pitch = driver.scaler.out_stride; RARCH_PERFORMANCE_STOP(video_frame_conv); } static bool video_frame_filter(const void *data, unsigned width, unsigned height, size_t pitch, unsigned *output_width, unsigned *output_height, unsigned *output_pitch) { RARCH_PERFORMANCE_INIT(softfilter_process); if (!g_extern.filter.filter) return false; if (!data) return false; rarch_softfilter_get_output_size(g_extern.filter.filter, output_width, output_height, width, height); *output_pitch = (*output_width) * g_extern.filter.out_bpp; RARCH_PERFORMANCE_START(softfilter_process); rarch_softfilter_process(g_extern.filter.filter, g_extern.filter.buffer, *output_pitch, data, width, height, pitch); RARCH_PERFORMANCE_STOP(softfilter_process); if (g_settings.video.post_filter_record) recording_dump_frame(g_extern.filter.buffer, *output_width, *output_height, *output_pitch); return true; } /** * video_frame: * @data : pointer to data of the video frame. * @width : width of the video frame. * @height : height of the video frame. * @pitch : pitch of the video frame. * * Video frame render callback function. **/ static void video_frame(const void *data, unsigned width, unsigned height, size_t pitch) { unsigned output_width = 0, output_height = 0, output_pitch = 0; const char *msg = NULL; if (!driver.video_active) return; g_extern.frame_cache.data = data; g_extern.frame_cache.width = width; g_extern.frame_cache.height = height; g_extern.frame_cache.pitch = pitch; if (g_extern.system.pix_fmt == RETRO_PIXEL_FORMAT_0RGB1555) video_frame_scale(data, width, height, pitch); /* Slightly messy code, * but we really need to do processing before blocking on VSync * for best possible scheduling. */ if ((!g_extern.filter.filter || !g_settings.video.post_filter_record || !data || g_extern.record_gpu_buffer) ) recording_dump_frame(data, width, height, pitch); msg = msg_queue_pull(g_extern.msg_queue); driver.current_msg = msg; if (video_frame_filter(data, width, height, pitch, &output_width, &output_height, &output_pitch)) { data = g_extern.filter.buffer; width = output_width; height = output_height; pitch = output_pitch; } if (!driver.video->frame(driver.video_data, data, width, height, pitch, msg)) driver.video_active = false; } /** * retro_flush_audio: * @data : pointer to audio buffer. * @right : amount of samples to write. * * Writes audio samples to audio driver. Will first * perform DSP processing (if enabled) and resampling. * * Returns: true (1) if audio samples were written to the audio * driver, false (0) in case of an error. **/ bool retro_flush_audio(const int16_t *data, size_t samples) { const void *output_data = NULL; unsigned output_frames = 0; size_t output_size = sizeof(float); struct resampler_data src_data = {0}; struct rarch_dsp_data dsp_data = {0}; if (driver.recording_data) { struct ffemu_audio_data ffemu_data = {0}; ffemu_data.data = data; ffemu_data.frames = samples / 2; if (driver.recording && driver.recording->push_audio) driver.recording->push_audio(driver.recording_data, &ffemu_data); } if (g_extern.is_paused || g_settings.audio.mute_enable) return true; if (!driver.audio_active || !g_extern.audio_data.data) return false; RARCH_PERFORMANCE_INIT(audio_convert_s16); RARCH_PERFORMANCE_START(audio_convert_s16); audio_convert_s16_to_float(g_extern.audio_data.data, data, samples, g_extern.audio_data.volume_gain); RARCH_PERFORMANCE_STOP(audio_convert_s16); src_data.data_in = g_extern.audio_data.data; src_data.input_frames = samples >> 1; dsp_data.input = g_extern.audio_data.data; dsp_data.input_frames = samples >> 1; if (g_extern.audio_data.dsp) { RARCH_PERFORMANCE_INIT(audio_dsp); RARCH_PERFORMANCE_START(audio_dsp); rarch_dsp_filter_process(g_extern.audio_data.dsp, &dsp_data); RARCH_PERFORMANCE_STOP(audio_dsp); if (dsp_data.output) { src_data.data_in = dsp_data.output; src_data.input_frames = dsp_data.output_frames; } } src_data.data_out = g_extern.audio_data.outsamples; if (g_extern.audio_data.rate_control) audio_driver_readjust_input_rate(); src_data.ratio = g_extern.audio_data.src_ratio; if (g_extern.is_slowmotion) src_data.ratio *= g_settings.slowmotion_ratio; RARCH_PERFORMANCE_INIT(resampler_proc); RARCH_PERFORMANCE_START(resampler_proc); rarch_resampler_process(driver.resampler, driver.resampler_data, &src_data); RARCH_PERFORMANCE_STOP(resampler_proc); output_data = g_extern.audio_data.outsamples; output_frames = src_data.output_frames; if (!g_extern.audio_data.use_float) { RARCH_PERFORMANCE_INIT(audio_convert_float); RARCH_PERFORMANCE_START(audio_convert_float); audio_convert_float_to_s16(g_extern.audio_data.conv_outsamples, (const float*)output_data, output_frames * 2); RARCH_PERFORMANCE_STOP(audio_convert_float); output_data = g_extern.audio_data.conv_outsamples; output_size = sizeof(int16_t); } if (driver.audio->write(driver.audio_data, output_data, output_frames * output_size * 2) < 0) { RARCH_ERR(RETRO_LOG_AUDIO_WRITE_FAILED); driver.audio_active = false; return false; } return true; } /** * audio_sample: * @left : value of the left audio channel. * @right : value of the right audio channel. * * Audio sample render callback function. **/ static void audio_sample(int16_t left, int16_t right) { g_extern.audio_data.conv_outsamples[g_extern.audio_data.data_ptr++] = left; g_extern.audio_data.conv_outsamples[g_extern.audio_data.data_ptr++] = right; if (g_extern.audio_data.data_ptr < g_extern.audio_data.chunk_size) return; retro_flush_audio(g_extern.audio_data.conv_outsamples, g_extern.audio_data.data_ptr); g_extern.audio_data.data_ptr = 0; } /** * audio_sample_batch: * @data : pointer to audio buffer. * @frames : amount of audio frames to push. * * Batched audio sample render callback function. * * Returns: amount of frames sampled. Will be equal to @frames * unless @frames exceeds (AUDIO_CHUNK_SIZE_NONBLOCKING / 2). **/ static size_t audio_sample_batch(const int16_t *data, size_t frames) { if (frames > (AUDIO_CHUNK_SIZE_NONBLOCKING >> 1)) frames = AUDIO_CHUNK_SIZE_NONBLOCKING >> 1; retro_flush_audio(data, frames << 1); return frames; } /** * audio_sample_rewind: * @left : value of the left audio channel. * @right : value of the right audio channel. * * Audio sample render callback function (rewind version). This callback * function will be used instead of audio_sample when rewinding is activated. **/ static void audio_sample_rewind(int16_t left, int16_t right) { g_extern.audio_data.rewind_buf[--g_extern.audio_data.rewind_ptr] = right; g_extern.audio_data.rewind_buf[--g_extern.audio_data.rewind_ptr] = left; } /** * audio_sample_batch_rewind: * @data : pointer to audio buffer. * @frames : amount of audio frames to push. * * Batched audio sample render callback function (rewind version). This callback * function will be used instead of audio_sample_batch when rewinding is activated. * * Returns: amount of frames sampled. Will be equal to @frames * unless @frames exceeds (AUDIO_CHUNK_SIZE_NONBLOCKING / 2). **/ static size_t audio_sample_batch_rewind(const int16_t *data, size_t frames) { size_t i; size_t samples = frames << 1; for (i = 0; i < samples; i++) g_extern.audio_data.rewind_buf[--g_extern.audio_data.rewind_ptr] = data[i]; return frames; } /** * input_apply_turbo: * @port : user number * @id : identifier of the key * @res : boolean return value. FIXME/TODO: to be refactored. * * Apply turbo button if activated. * * If turbo button is held, all buttons pressed except * for D-pad will go into a turbo mode. Until the button is * released again, the input state will be modulated by a * periodic pulse defined by the configured duty cycle. * * Returns: 1 (true) if turbo button is enabled for this * key ID, otherwise the value of @res will be returned. * **/ static bool input_apply_turbo(unsigned port, unsigned id, bool res) { if (res && g_extern.turbo_frame_enable[port]) g_extern.turbo_enable[port] |= (1 << id); else if (!res) g_extern.turbo_enable[port] &= ~(1 << id); if (g_extern.turbo_enable[port] & (1 << id)) return res && ((g_extern.turbo_count % g_settings.input.turbo_period) < g_settings.input.turbo_duty_cycle); return res; } /** * input_state: * @port : user number. * @device : device identifier of user. * @idx : index value of user. * @id : identifier of key pressed by user. * * Input state callback function. * * Returns: Non-zero if the given key (identified by @id) was pressed by the user * (assigned to @port). **/ static int16_t input_state(unsigned port, unsigned device, unsigned idx, unsigned id) { int16_t res = 0; static const struct retro_keybind *libretro_input_binds[MAX_USERS] = { g_settings.input.binds[0], g_settings.input.binds[1], g_settings.input.binds[2], g_settings.input.binds[3], g_settings.input.binds[4], g_settings.input.binds[5], g_settings.input.binds[6], g_settings.input.binds[7], g_settings.input.binds[8], g_settings.input.binds[9], g_settings.input.binds[10], g_settings.input.binds[11], g_settings.input.binds[12], g_settings.input.binds[13], g_settings.input.binds[14], g_settings.input.binds[15], }; device &= RETRO_DEVICE_MASK; if (g_extern.bsv.movie && g_extern.bsv.movie_playback) { int16_t ret; if (bsv_movie_get_input(g_extern.bsv.movie, &ret)) return ret; g_extern.bsv.movie_end = true; } if (g_settings.input.remap_binds_enable) { if (id < RARCH_FIRST_CUSTOM_BIND) id = g_settings.input.remap_ids[port][id]; } if (!driver.block_libretro_input) { if (((id < RARCH_FIRST_META_KEY) || (device == RETRO_DEVICE_KEYBOARD))) res = driver.input->input_state(driver.input_data, libretro_input_binds, port, device, idx, id); #ifdef HAVE_OVERLAY if (port == 0) { switch (device) { case RETRO_DEVICE_JOYPAD: if (driver.overlay_state.buttons & (UINT64_C(1) << id)) res |= 1; break; case RETRO_DEVICE_KEYBOARD: if (id < RETROK_LAST) { if (OVERLAY_GET_KEY(&driver.overlay_state, id)) res |= 1; } break; case RETRO_DEVICE_ANALOG: { unsigned base = 0; if (idx == RETRO_DEVICE_INDEX_ANALOG_RIGHT) base = 2; if (id == RETRO_DEVICE_ID_ANALOG_Y) base += 1; if (driver.overlay_state.analog[base]) res = driver.overlay_state.analog[base]; } break; } } #endif } /* flushing_input will be cleared in rarch_main_iterate. */ if (driver.flushing_input) res = 0; /* Don't allow turbo for D-pad. */ if (device == RETRO_DEVICE_JOYPAD && (id < RETRO_DEVICE_ID_JOYPAD_UP || id > RETRO_DEVICE_ID_JOYPAD_RIGHT)) res = input_apply_turbo(port, id, res); if (g_extern.bsv.movie && !g_extern.bsv.movie_playback) bsv_movie_set_input(g_extern.bsv.movie, res); return res; } #ifdef HAVE_OVERLAY /* * input_poll_overlay: * @overlay_device : pointer to overlay * * Poll pressed buttons/keys on currently active overlay. **/ static inline void input_poll_overlay(input_overlay_t *overlay_device, float opacity) { input_overlay_state_t old_key_state; unsigned i, j, device; uint16_t key_mod = 0; bool polled = false; memcpy(old_key_state.keys, driver.overlay_state.keys, sizeof(driver.overlay_state.keys)); memset(&driver.overlay_state, 0, sizeof(driver.overlay_state)); device = input_overlay_full_screen(overlay_device) ? RARCH_DEVICE_POINTER_SCREEN : RETRO_DEVICE_POINTER; for (i = 0; driver.input->input_state(driver.input_data, NULL, 0, device, i, RETRO_DEVICE_ID_POINTER_PRESSED); i++) { input_overlay_state_t polled_data; int16_t x = driver.input->input_state(driver.input_data, NULL, 0, device, i, RETRO_DEVICE_ID_POINTER_X); int16_t y = driver.input->input_state(driver.input_data, NULL, 0, device, i, RETRO_DEVICE_ID_POINTER_Y); input_overlay_poll(overlay_device, &polled_data, x, y); driver.overlay_state.buttons |= polled_data.buttons; for (j = 0; j < ARRAY_SIZE(driver.overlay_state.keys); j++) driver.overlay_state.keys[j] |= polled_data.keys[j]; /* Fingers pressed later take prio and matched up * with overlay poll priorities. */ for (j = 0; j < 4; j++) if (polled_data.analog[j]) driver.overlay_state.analog[j] = polled_data.analog[j]; polled = true; } if (OVERLAY_GET_KEY(&driver.overlay_state, RETROK_LSHIFT) || OVERLAY_GET_KEY(&driver.overlay_state, RETROK_RSHIFT)) key_mod |= RETROKMOD_SHIFT; if (OVERLAY_GET_KEY(&driver.overlay_state, RETROK_LCTRL) || OVERLAY_GET_KEY(&driver.overlay_state, RETROK_RCTRL)) key_mod |= RETROKMOD_CTRL; if (OVERLAY_GET_KEY(&driver.overlay_state, RETROK_LALT) || OVERLAY_GET_KEY(&driver.overlay_state, RETROK_RALT)) key_mod |= RETROKMOD_ALT; if (OVERLAY_GET_KEY(&driver.overlay_state, RETROK_LMETA) || OVERLAY_GET_KEY(&driver.overlay_state, RETROK_RMETA)) key_mod |= RETROKMOD_META; /* CAPSLOCK SCROLLOCK NUMLOCK */ for (i = 0; i < ARRAY_SIZE(driver.overlay_state.keys); i++) { if (driver.overlay_state.keys[i] != old_key_state.keys[i]) { uint32_t orig_bits = old_key_state.keys[i]; uint32_t new_bits = driver.overlay_state.keys[i]; for (j = 0; j < 32; j++) if ((orig_bits & (1 << j)) != (new_bits & (1 << j))) input_keyboard_event(new_bits & (1 << j), i * 32 + j, 0, key_mod, RETRO_DEVICE_POINTER); } } /* Map "analog" buttons to analog axes like regular input drivers do. */ for (j = 0; j < 4; j++) { unsigned bind_plus = RARCH_ANALOG_LEFT_X_PLUS + 2 * j; unsigned bind_minus = bind_plus + 1; if (driver.overlay_state.analog[j]) continue; if (driver.overlay_state.buttons & (1ULL << bind_plus)) driver.overlay_state.analog[j] += 0x7fff; if (driver.overlay_state.buttons & (1ULL << bind_minus)) driver.overlay_state.analog[j] -= 0x7fff; } /* Check for analog_dpad_mode. * Map analogs to d-pad buttons when configured. */ switch (g_settings.input.analog_dpad_mode[0]) { case ANALOG_DPAD_LSTICK: case ANALOG_DPAD_RSTICK: { float analog_x, analog_y; unsigned analog_base = 2; if (g_settings.input.analog_dpad_mode[0] == ANALOG_DPAD_LSTICK) analog_base = 0; analog_x = (float)driver.overlay_state.analog[analog_base + 0] / 0x7fff; analog_y = (float)driver.overlay_state.analog[analog_base + 1] / 0x7fff; if (analog_x <= -g_settings.input.axis_threshold) driver.overlay_state.buttons |= (1ULL << RETRO_DEVICE_ID_JOYPAD_LEFT); if (analog_x >= g_settings.input.axis_threshold) driver.overlay_state.buttons |= (1ULL << RETRO_DEVICE_ID_JOYPAD_RIGHT); if (analog_y <= -g_settings.input.axis_threshold) driver.overlay_state.buttons |= (1ULL << RETRO_DEVICE_ID_JOYPAD_UP); if (analog_y >= g_settings.input.axis_threshold) driver.overlay_state.buttons |= (1ULL << RETRO_DEVICE_ID_JOYPAD_DOWN); break; } default: break; } if (polled) input_overlay_post_poll(overlay_device, opacity); else input_overlay_poll_clear(overlay_device, opacity); } #endif /** * input_poll: * * Input polling callback function. **/ static void input_poll(void) { driver.input->poll(driver.input_data); #ifdef HAVE_OVERLAY if (driver.overlay) input_poll_overlay(driver.overlay, g_settings.input.overlay_opacity); #endif #ifdef HAVE_COMMAND if (driver.command) rarch_cmd_poll(driver.command); #endif } /** * retro_set_default_callbacks: * @data : pointer to retro_callbacks object * * Binds the libretro callbacks to default callback functions. **/ void retro_set_default_callbacks(void *data) { struct retro_callbacks *cbs = (struct retro_callbacks*)data; if (!cbs) return; cbs->frame_cb = video_frame; cbs->sample_cb = audio_sample; cbs->sample_batch_cb = audio_sample_batch; cbs->state_cb = input_state; cbs->poll_cb = input_poll; } /** * retro_init_libretro_cbs: * @data : pointer to retro_callbacks object * * Initializes libretro callbacks, and binds the libretro callbacks * to default callback functions. **/ void retro_init_libretro_cbs(void *data) { struct retro_callbacks *cbs = (struct retro_callbacks*)data; if (!cbs) return; pretro_set_video_refresh(video_frame); pretro_set_audio_sample(audio_sample); pretro_set_audio_sample_batch(audio_sample_batch); pretro_set_input_state(input_state); pretro_set_input_poll(input_poll); retro_set_default_callbacks(cbs); #ifdef HAVE_NETPLAY if (!driver.netplay_data) return; if (g_extern.netplay_is_spectate) { pretro_set_input_state( (g_extern.netplay_is_client ? input_state_spectate_client : input_state_spectate) ); } else { pretro_set_video_refresh(video_frame_net); pretro_set_audio_sample(audio_sample_net); pretro_set_audio_sample_batch(audio_sample_batch_net); pretro_set_input_state(input_state_net); } #endif } /** * retro_set_rewind_callbacks: * * Sets the audio sampling callbacks based on whether or not * rewinding is currently activated. **/ void retro_set_rewind_callbacks(void) { if (g_extern.frame_is_reverse) { pretro_set_audio_sample(audio_sample_rewind); pretro_set_audio_sample_batch(audio_sample_batch_rewind); } else { pretro_set_audio_sample(audio_sample); pretro_set_audio_sample_batch(audio_sample_batch); } }