/* RetroArch - A frontend for libretro. * Copyright (C) 2011-2016 - Daniel De Matteis * * RetroArch is free software: you can redistribute it and/or modify it under the terms * of the GNU General Public License as published by the Free Software Found- * ation, either version 3 of the License, or (at your option) any later version. * * RetroArch is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; * without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR * PURPOSE. See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with RetroArch. * If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include "../core.h" #include "../msg_hash.h" #include "../verbosity.h" #include "../autosave.h" #include "../configuration.h" #include "../msg_hash.h" #include "../runloop.h" #include "tasks_internal.h" /* TODO/FIXME - turn this into actual task */ typedef struct ram_type ram_type_t; struct ram_type { const char *path; int type; }; #ifdef HAVE_THREADS typedef struct autosave autosave_t; /* Autosave support. */ struct autosave_st { autosave_t **list; unsigned num; }; struct autosave { volatile bool quit; slock_t *lock; slock_t *cond_lock; scond_t *cond; sthread_t *thread; void *buffer; const void *retro_buffer; const char *path; size_t bufsize; unsigned interval; }; static struct autosave_st autosave_state; /** * autosave_thread: * @data : pointer to autosave object * * Callback function for (threaded) autosave. **/ static void autosave_thread(void *data) { bool first_log = true; autosave_t *save = (autosave_t*)data; while (!save->quit) { bool differ; slock_lock(save->lock); differ = memcmp(save->buffer, save->retro_buffer, save->bufsize) != 0; if (differ) memcpy(save->buffer, save->retro_buffer, save->bufsize); slock_unlock(save->lock); if (differ) { /* Should probably deal with this more elegantly. */ FILE *file = fopen(save->path, "wb"); if (file) { bool failed = false; /* Avoid spamming down stderr ... */ if (first_log) { RARCH_LOG("Autosaving SRAM to \"%s\", will continue to check every %u seconds ...\n", save->path, save->interval); first_log = false; } else RARCH_LOG("SRAM changed ... autosaving ...\n"); failed |= fwrite(save->buffer, 1, save->bufsize, file) != save->bufsize; failed |= fflush(file) != 0; failed |= fclose(file) != 0; if (failed) RARCH_WARN("Failed to autosave SRAM. Disk might be full.\n"); } } slock_lock(save->cond_lock); if (!save->quit) scond_wait_timeout(save->cond, save->cond_lock, save->interval * 1000000LL); slock_unlock(save->cond_lock); } } /** * autosave_new: * @path : path to autosave file * @data : pointer to buffer * @size : size of @data buffer * @interval : interval at which saves should be performed. * * Create and initialize autosave object. * * Returns: pointer to new autosave_t object if successful, otherwise * NULL. **/ static autosave_t *autosave_new(const char *path, const void *data, size_t size, unsigned interval) { autosave_t *handle = (autosave_t*)calloc(1, sizeof(*handle)); if (!handle) goto error; handle->bufsize = size; handle->interval = interval; handle->path = path; handle->buffer = malloc(size); handle->retro_buffer = data; if (!handle->buffer) goto error; memcpy(handle->buffer, handle->retro_buffer, handle->bufsize); handle->lock = slock_new(); handle->cond_lock = slock_new(); handle->cond = scond_new(); handle->thread = sthread_create(autosave_thread, handle); return handle; error: if (handle) free(handle); return NULL; } /** * autosave_free: * @handle : pointer to autosave object * * Frees autosave object. **/ static void autosave_free(autosave_t *handle) { if (!handle) return; slock_lock(handle->cond_lock); handle->quit = true; slock_unlock(handle->cond_lock); scond_signal(handle->cond); sthread_join(handle->thread); slock_free(handle->lock); slock_free(handle->cond_lock); scond_free(handle->cond); free(handle->buffer); free(handle); } /** * autosave_lock: * * Lock autosave. **/ void autosave_lock(void) { unsigned i; for (i = 0; i < autosave_state.num; i++) { if (autosave_state.list[i]) slock_lock(autosave_state.list[i]->lock); } } /** * autosave_unlock: * * Unlocks autosave. **/ void autosave_unlock(void) { unsigned i; for (i = 0; i < autosave_state.num; i++) { if (autosave_state.list[i]) slock_unlock(autosave_state.list[i]->lock); } } void autosave_init(void) { unsigned i; autosave_t **list = NULL; settings_t *settings = config_get_ptr(); global_t *global = global_get_ptr(); if (settings->autosave_interval < 1 || !global->savefiles) return; list = (autosave_t**)calloc(global->savefiles->size, sizeof(*autosave_state.list)); if (!list) return; autosave_state.list = list; autosave_state.num = global->savefiles->size; for (i = 0; i < global->savefiles->size; i++) { retro_ctx_memory_info_t mem_info; const char *path = global->savefiles->elems[i].data; unsigned type = global->savefiles->elems[i].attr.i; mem_info.id = type; core_get_memory(&mem_info); if (mem_info.size <= 0) continue; autosave_state.list[i] = autosave_new(path, mem_info.data, mem_info.size, settings->autosave_interval); if (!autosave_state.list[i]) RARCH_WARN("%s\n", msg_hash_to_str(MSG_AUTOSAVE_FAILED)); } } void autosave_deinit(void) { unsigned i; for (i = 0; i < autosave_state.num; i++) autosave_free(autosave_state.list[i]); if (autosave_state.list) free(autosave_state.list); autosave_state.list = NULL; autosave_state.num = 0; } #endif /** * content_load_ram_file: * @path : path of RAM state that will be loaded from. * @type : type of memory * * Load a RAM state from disk to memory. */ bool content_load_ram_file(unsigned slot) { ssize_t rc; ram_type_t ram; retro_ctx_memory_info_t mem_info; global_t *global = global_get_ptr(); void *buf = NULL; ram.path = global->savefiles->elems[slot].data; ram.type = global->savefiles->elems[slot].attr.i; mem_info.id = ram.type; core_get_memory(&mem_info); if (mem_info.size == 0 || !mem_info.data) return false; if (!filestream_read_file(ram.path, &buf, &rc)) return false; if (rc > 0) { if (rc > (ssize_t)mem_info.size) { RARCH_WARN("SRAM is larger than implementation expects, " "doing partial load (truncating %u %s %s %u).\n", (unsigned)rc, msg_hash_to_str(MSG_BYTES), msg_hash_to_str(MSG_TO), (unsigned)mem_info.size); rc = mem_info.size; } memcpy(mem_info.data, buf, rc); } if (buf) free(buf); return true; } /** * content_save_ram_file: * @path : path of RAM state that shall be written to. * @type : type of memory * * Save a RAM state from memory to disk. * */ bool content_save_ram_file(unsigned slot) { ram_type_t ram; retro_ctx_memory_info_t mem_info; global_t *global = global_get_ptr(); if (!global) return false; ram.type = global->savefiles->elems[slot].attr.i; ram.path = global->savefiles->elems[slot].data; mem_info.id = ram.type; core_get_memory(&mem_info); if (!mem_info.data || mem_info.size == 0) return false; RARCH_LOG("%s #%u %s \"%s\".\n", msg_hash_to_str(MSG_SAVING_RAM_TYPE), ram.type, msg_hash_to_str(MSG_TO), ram.path); if (!filestream_write_file(ram.path, mem_info.data, mem_info.size)) { RARCH_ERR("%s.\n", msg_hash_to_str(MSG_FAILED_TO_SAVE_SRAM)); RARCH_WARN("Attempting to recover ...\n"); /* In case the file could not be written to, * the fallback function 'dump_to_file_desperate' * will be called. */ if (!dump_to_file_desperate(mem_info.data, mem_info.size, ram.type)) { RARCH_WARN("Failed ... Cannot recover save file.\n"); } return false; } RARCH_LOG("%s \"%s\".\n", msg_hash_to_str(MSG_SAVED_SUCCESSFULLY_TO), ram.path); return true; }