/* RetroArch - A frontend for libretro.
* Copyright (C) 2010-2012 - Hans-Kristian Arntzen
*
* RetroArch is free software: you can redistribute it and/or modify it under the terms
* of the GNU General Public License as published by the Free Software Found-
* ation, either version 3 of the License, or (at your option) any later version.
*
* RetroArch is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with RetroArch.
* If not, see .
*/
#include "../boolean.h"
#include
#include "../general.h"
#include "shader_glsl.h"
#include "../compat/strl.h"
#include "../compat/posix_string.h"
#include "state_tracker.h"
#include "../dynamic.h"
#ifdef HAVE_CONFIG_H
#include "../config.h"
#endif
#if defined(__APPLE__) // Because they like to be "oh, so, special".
#include
#include
#elif defined(HAVE_PSGL)
#include
#include
#include
#elif defined(HAVE_OPENGL_MODERN)
#include
#include
#include
#elif defined(HAVE_OPENGLES2)
#include
#elif defined(HAVE_OPENGLES1)
#include
#include
#else
#define GL_GLEXT_PROTOTYPES
#include
#include
#endif
#include "gfx_context.h"
#include
#ifdef HAVE_XML
#include
#include
#endif
#include "gl_common.h"
#include "image.h"
#if defined(HAVE_OPENGLES2) || defined(HAVE_OPENGL_MODERN) || defined(__APPLE__)
#define pglCreateProgram glCreateProgram
#define pglUseProgram glUseProgram
#define pglCreateShader glCreateShader
#define pglDeleteShader glDeleteShader
#define pglShaderSource glShaderSource
#define pglCompileShader glCompileShader
#define pglAttachShader glAttachShader
#define pglDetachShader glDetachShader
#define pglLinkProgram glLinkProgram
#define pglGetUniformLocation glGetUniformLocation
#define pglUniform1i glUniform1i
#define pglUniform1f glUniform1f
#define pglUniform2fv glUniform2fv
#define pglUniform4fv glUniform4fv
#define pglUniformMatrix4fv glUniformMatrix4fv
#define pglGetShaderiv glGetShaderiv
#define pglGetShaderInfoLog glGetShaderInfoLog
#define pglGetProgramiv glGetProgramiv
#define pglGetProgramInfoLog glGetProgramInfoLog
#define pglDeleteProgram glDeleteProgram
#define pglGetAttachedShaders glGetAttachedShaders
#define pglGetAttribLocation glGetAttribLocation
#define pglEnableVertexAttribArray glEnableVertexAttribArray
#define pglDisableVertexAttribArray glDisableVertexAttribArray
#define pglVertexAttribPointer glVertexAttribPointer
#else
static PFNGLCREATEPROGRAMPROC pglCreateProgram;
static PFNGLUSEPROGRAMPROC pglUseProgram;
static PFNGLCREATESHADERPROC pglCreateShader;
static PFNGLDELETESHADERPROC pglDeleteShader;
static PFNGLSHADERSOURCEPROC pglShaderSource;
static PFNGLCOMPILESHADERPROC pglCompileShader;
static PFNGLATTACHSHADERPROC pglAttachShader;
static PFNGLDETACHSHADERPROC pglDetachShader;
static PFNGLLINKPROGRAMPROC pglLinkProgram;
static PFNGLGETUNIFORMLOCATIONPROC pglGetUniformLocation;
static PFNGLUNIFORM1IPROC pglUniform1i;
static PFNGLUNIFORM1FPROC pglUniform1f;
static PFNGLUNIFORM2FVPROC pglUniform2fv;
static PFNGLUNIFORM4FVPROC pglUniform4fv;
static PFNGLUNIFORMMATRIX4FVPROC pglUniformMatrix4fv;
static PFNGLGETSHADERIVPROC pglGetShaderiv;
static PFNGLGETSHADERINFOLOGPROC pglGetShaderInfoLog;
static PFNGLGETPROGRAMIVPROC pglGetProgramiv;
static PFNGLGETPROGRAMINFOLOGPROC pglGetProgramInfoLog;
static PFNGLDELETEPROGRAMPROC pglDeleteProgram;
static PFNGLGETATTACHEDSHADERSPROC pglGetAttachedShaders;
static PFNGLGETATTRIBLOCATIONPROC pglGetAttribLocation;
static PFNGLENABLEVERTEXATTRIBARRAYPROC pglEnableVertexAttribArray;
static PFNGLDISABLEVERTEXATTRIBARRAYPROC pglDisableVertexAttribArray;
static PFNGLVERTEXATTRIBPOINTERPROC pglVertexAttribPointer;
#endif
#ifdef HAVE_OPENGLES2
#define BORDER_FUNC GL_CLAMP_TO_EDGE
#else
#define BORDER_FUNC GL_CLAMP_TO_BORDER
#endif
#define MAX_VARIABLES 256
#ifdef RARCH_GPU_PERFORMANCE_MODE
#define MAX_PROGRAMS 8
#define MAX_TEXTURES 4
#define PREV_TEXTURES 3
#else
#define MAX_PROGRAMS 16
#define MAX_TEXTURES 8
#define PREV_TEXTURES 7
#endif
enum filter_type
{
RARCH_GL_NOFORCE,
RARCH_GL_LINEAR,
RARCH_GL_NEAREST
};
static bool glsl_enable;
static bool glsl_modern;
static GLuint gl_program[MAX_PROGRAMS];
static enum filter_type gl_filter_type[MAX_PROGRAMS];
static struct gl_fbo_scale gl_scale[MAX_PROGRAMS];
static unsigned gl_num_programs;
static unsigned active_index;
static GLuint gl_teximage[MAX_TEXTURES];
static unsigned gl_teximage_cnt;
static char gl_teximage_uniforms[MAX_TEXTURES][64];
static state_tracker_t *gl_state_tracker;
static struct state_tracker_uniform_info gl_tracker_info[MAX_VARIABLES];
static unsigned gl_tracker_info_cnt;
static char gl_tracker_script[PATH_MAX];
static char gl_tracker_script_class[64];
static char *gl_script_program;
static GLint gl_attribs[PREV_TEXTURES + 1 + 4 + MAX_PROGRAMS];
static unsigned gl_attrib_index;
static gfx_ctx_proc_t (*glsl_get_proc_address)(const char*);
struct shader_program
{
char *vertex;
char *fragment;
enum filter_type filter;
float scale_x;
float scale_y;
unsigned abs_x;
unsigned abs_y;
enum gl_scale_type type_x;
enum gl_scale_type type_y;
bool valid_scale;
};
struct shader_uniforms_frame
{
int texture;
int input_size;
int texture_size;
int tex_coord;
};
struct shader_uniforms
{
int mvp;
int tex_coord;
int vertex_coord;
int color;
int lut_tex_coord;
int input_size;
int output_size;
int texture_size;
int frame_count;
int frame_direction;
int lut_texture[MAX_TEXTURES];
struct shader_uniforms_frame orig;
struct shader_uniforms_frame pass[MAX_PROGRAMS];
struct shader_uniforms_frame prev[PREV_TEXTURES];
};
static struct shader_uniforms gl_uniforms[MAX_PROGRAMS];
static const char *stock_vertex_legacy =
"varying vec4 color;\n"
"void main() {\n"
" gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;\n"
" gl_TexCoord[0] = gl_MultiTexCoord0;\n"
" color = gl_Color;\n"
"}";
static const char *stock_fragment_legacy =
"uniform sampler2D rubyTexture;\n"
"varying vec4 color;\n"
"void main() {\n"
" gl_FragColor = color * texture2D(rubyTexture, gl_TexCoord[0].xy);\n"
"}";
static const char *stock_vertex_modern =
"attribute vec2 rubyTexCoord;\n"
"attribute vec2 rubyVertexCoord;\n"
"attribute vec4 rubyColor;\n"
"uniform mat4 rubyMVPMatrix;\n"
"varying vec2 tex_coord;\n"
"varying vec4 color;\n"
"void main() {\n"
" gl_Position = rubyMVPMatrix * vec4(rubyVertexCoord, 0.0, 1.0);\n"
" tex_coord = rubyTexCoord;\n"
" color = rubyColor;\n"
"}";
static const char *stock_fragment_modern =
"#ifdef GL_ES\n"
"precision mediump float;\n"
"#endif\n"
"uniform sampler2D rubyTexture;\n"
"varying vec2 tex_coord;\n"
"varying vec4 color;\n"
"void main() {\n"
" gl_FragColor = color * texture2D(rubyTexture, tex_coord);\n"
"}";
#ifdef HAVE_XML
static bool get_xml_attrs(struct shader_program *prog, xmlNodePtr ptr)
{
prog->scale_x = 1.0;
prog->scale_y = 1.0;
prog->type_x = prog->type_y = RARCH_SCALE_INPUT;
prog->valid_scale = false;
// Check if shader forces a certain texture filtering.
xmlChar *attr = xmlGetProp(ptr, (const xmlChar*)"filter");
if (attr)
{
if (strcmp((const char*)attr, "nearest") == 0)
{
prog->filter = RARCH_GL_NEAREST;
RARCH_LOG("XML: Shader forces GL_NEAREST.\n");
}
else if (strcmp((const char*)attr, "linear") == 0)
{
prog->filter = RARCH_GL_LINEAR;
RARCH_LOG("XML: Shader forces GL_LINEAR.\n");
}
else
RARCH_WARN("XML: Invalid property for filter.\n");
xmlFree(attr);
}
else
prog->filter = RARCH_GL_NOFORCE;
// Check for scaling attributes *lots of code <_<*
xmlChar *attr_scale = xmlGetProp(ptr, (const xmlChar*)"scale");
xmlChar *attr_scale_x = xmlGetProp(ptr, (const xmlChar*)"scale_x");
xmlChar *attr_scale_y = xmlGetProp(ptr, (const xmlChar*)"scale_y");
xmlChar *attr_size = xmlGetProp(ptr, (const xmlChar*)"size");
xmlChar *attr_size_x = xmlGetProp(ptr, (const xmlChar*)"size_x");
xmlChar *attr_size_y = xmlGetProp(ptr, (const xmlChar*)"size_y");
xmlChar *attr_outscale = xmlGetProp(ptr, (const xmlChar*)"outscale");
xmlChar *attr_outscale_x = xmlGetProp(ptr, (const xmlChar*)"outscale_x");
xmlChar *attr_outscale_y = xmlGetProp(ptr, (const xmlChar*)"outscale_y");
unsigned x_attr_cnt = 0, y_attr_cnt = 0;
if (attr_scale)
{
float scale = strtod((const char*)attr_scale, NULL);
prog->scale_x = scale;
prog->scale_y = scale;
prog->valid_scale = true;
prog->type_x = prog->type_y = RARCH_SCALE_INPUT;
RARCH_LOG("Got scale attr: %.1f\n", scale);
x_attr_cnt++;
y_attr_cnt++;
}
if (attr_scale_x)
{
float scale = strtod((const char*)attr_scale_x, NULL);
prog->scale_x = scale;
prog->valid_scale = true;
prog->type_x = RARCH_SCALE_INPUT;
RARCH_LOG("Got scale_x attr: %.1f\n", scale);
x_attr_cnt++;
}
if (attr_scale_y)
{
float scale = strtod((const char*)attr_scale_y, NULL);
prog->scale_y = scale;
prog->valid_scale = true;
prog->type_y = RARCH_SCALE_INPUT;
RARCH_LOG("Got scale_y attr: %.1f\n", scale);
y_attr_cnt++;
}
if (attr_size)
{
prog->abs_x = prog->abs_y = strtoul((const char*)attr_size, NULL, 0);
prog->valid_scale = true;
prog->type_x = prog->type_y = RARCH_SCALE_ABSOLUTE;
RARCH_LOG("Got size attr: %u\n", prog->abs_x);
x_attr_cnt++;
y_attr_cnt++;
}
if (attr_size_x)
{
prog->abs_x = strtoul((const char*)attr_size_x, NULL, 0);
prog->valid_scale = true;
prog->type_x = RARCH_SCALE_ABSOLUTE;
RARCH_LOG("Got size_x attr: %u\n", prog->abs_x);
x_attr_cnt++;
}
if (attr_size_y)
{
prog->abs_y = strtoul((const char*)attr_size_y, NULL, 0);
prog->valid_scale = true;
prog->type_y = RARCH_SCALE_ABSOLUTE;
RARCH_LOG("Got size_y attr: %u\n", prog->abs_y);
y_attr_cnt++;
}
if (attr_outscale)
{
float scale = strtod((const char*)attr_outscale, NULL);
prog->scale_x = scale;
prog->scale_y = scale;
prog->valid_scale = true;
prog->type_x = prog->type_y = RARCH_SCALE_VIEWPORT;
RARCH_LOG("Got outscale attr: %.1f\n", scale);
x_attr_cnt++;
y_attr_cnt++;
}
if (attr_outscale_x)
{
float scale = strtod((const char*)attr_outscale_x, NULL);
prog->scale_x = scale;
prog->valid_scale = true;
prog->type_x = RARCH_SCALE_VIEWPORT;
RARCH_LOG("Got outscale_x attr: %.1f\n", scale);
x_attr_cnt++;
}
if (attr_outscale_y)
{
float scale = strtod((const char*)attr_outscale_y, NULL);
prog->scale_y = scale;
prog->valid_scale = true;
prog->type_y = RARCH_SCALE_VIEWPORT;
RARCH_LOG("Got outscale_y attr: %.1f\n", scale);
y_attr_cnt++;
}
if (attr_scale)
xmlFree(attr_scale);
if (attr_scale_x)
xmlFree(attr_scale_x);
if (attr_scale_y)
xmlFree(attr_scale_y);
if (attr_size)
xmlFree(attr_size);
if (attr_size_x)
xmlFree(attr_size_x);
if (attr_size_y)
xmlFree(attr_size_y);
if (attr_outscale)
xmlFree(attr_outscale);
if (attr_outscale_x)
xmlFree(attr_outscale_x);
if (attr_outscale_y)
xmlFree(attr_outscale_y);
if (x_attr_cnt > 1)
return false;
if (y_attr_cnt > 1)
return false;
return true;
}
static bool get_texture_image(const char *shader_path, xmlNodePtr ptr)
{
if (gl_teximage_cnt >= MAX_TEXTURES)
{
RARCH_WARN("Too many texture images. Ignoring ...\n");
return true;
}
bool linear = true;
xmlChar *filename = xmlGetProp(ptr, (const xmlChar*)"file");
xmlChar *filter = xmlGetProp(ptr, (const xmlChar*)"filter");
xmlChar *id = xmlGetProp(ptr, (const xmlChar*)"id");
char *last = NULL;
struct texture_image img;
if (!id)
{
RARCH_ERR("Could not find ID in texture.\n");
goto error;
}
if (!filename)
{
RARCH_ERR("Could not find filename in texture.\n");
goto error;
}
if (filter && strcmp((const char*)filter, "nearest") == 0)
linear = false;
char tex_path[PATH_MAX];
strlcpy(tex_path, shader_path, sizeof(tex_path));
last = strrchr(tex_path, '/');
if (!last) last = strrchr(tex_path, '\\');
if (last) last[1] = '\0';
strlcat(tex_path, (const char*)filename, sizeof(tex_path));
RARCH_LOG("Loading texture image from: \"%s\" ...\n", tex_path);
if (!texture_image_load(tex_path, &img))
{
RARCH_ERR("Failed to load texture image from: \"%s\"\n", tex_path);
goto error;
}
strlcpy(gl_teximage_uniforms[gl_teximage_cnt], (const char*)id, sizeof(gl_teximage_uniforms[0]));
glGenTextures(1, &gl_teximage[gl_teximage_cnt]);
pglActiveTexture(GL_TEXTURE0 + gl_teximage_cnt + 1);
glBindTexture(GL_TEXTURE_2D, gl_teximage[gl_teximage_cnt]);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, BORDER_FUNC);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, BORDER_FUNC);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, linear ? GL_LINEAR : GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, linear ? GL_LINEAR : GL_NEAREST);
glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
glTexImage2D(GL_TEXTURE_2D,
0, RARCH_GL_INTERNAL_FORMAT32,
img.width, img.height, 0, RARCH_GL_TEXTURE_TYPE32, RARCH_GL_FORMAT32, img.pixels);
pglActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, 0);
free(img.pixels);
xmlFree(filename);
xmlFree(id);
if (filter)
xmlFree(filter);
gl_teximage_cnt++;
return true;
error:
if (filename)
xmlFree(filename);
if (filter)
xmlFree(filter);
if (filter)
xmlFree(id);
return false;
}
#ifdef HAVE_PYTHON
static bool get_script(const char *path, xmlNodePtr ptr)
{
if (*gl_tracker_script || gl_script_program)
{
RARCH_ERR("Script already imported.\n");
return false;
}
xmlChar *script_class = xmlGetProp(ptr, (const xmlChar*)"class");
if (script_class)
{
strlcpy(gl_tracker_script_class, (const char*)script_class, sizeof(gl_tracker_script_class));
xmlFree(script_class);
}
xmlChar *language = xmlGetProp(ptr, (const xmlChar*)"language");
if (!language || strcmp((const char*)language, "python") != 0)
{
RARCH_ERR("Script language is not Python.\n");
if (language)
xmlFree(language);
return false;
}
if (language)
xmlFree(language);
xmlChar *src = xmlGetProp(ptr, (const xmlChar*)"src");
if (src)
{
strlcpy(gl_tracker_script, path, sizeof(gl_tracker_script));
char *dir_ptr = strrchr(gl_tracker_script, '/');
if (!dir_ptr) dir_ptr = strrchr(gl_tracker_script, '\\');
if (dir_ptr) dir_ptr[1] = '\0';
strlcat(gl_tracker_script, (const char*)src, sizeof(gl_tracker_script));
xmlFree(src);
}
else
{
xmlChar *script = xmlNodeGetContent(ptr);
if (!script)
{
RARCH_ERR("No content in script.\n");
return false;
}
gl_script_program = strdup((const char*)script);
xmlFree(script);
}
return true;
}
#endif
static bool get_import_value(xmlNodePtr ptr)
{
bool ret = true;
if (gl_tracker_info_cnt >= MAX_VARIABLES)
{
RARCH_ERR("Too many import variables ...\n");
return false;
}
xmlChar *id = xmlGetProp(ptr, (const xmlChar*)"id");
xmlChar *semantic = xmlGetProp(ptr, (const xmlChar*)"semantic");
xmlChar *wram = xmlGetProp(ptr, (const xmlChar*)"wram");
xmlChar *input = xmlGetProp(ptr, (const xmlChar*)"input_slot");
xmlChar *bitmask = xmlGetProp(ptr, (const xmlChar*)"mask");
xmlChar *bitequal = xmlGetProp(ptr, (const xmlChar*)"equal");
unsigned memtype;
enum state_tracker_type tracker_type;
enum state_ram_type ram_type = RARCH_STATE_NONE;
uint32_t addr = 0;
unsigned mask_value = 0;
unsigned mask_equal = 0;
if (!semantic || !id)
{
RARCH_ERR("No semantic or ID for import value.\n");
ret = false;
goto end;
}
if (strcmp((const char*)semantic, "capture") == 0)
tracker_type = RARCH_STATE_CAPTURE;
else if (strcmp((const char*)semantic, "capture_previous") == 0)
tracker_type = RARCH_STATE_CAPTURE_PREV;
else if (strcmp((const char*)semantic, "transition") == 0)
tracker_type = RARCH_STATE_TRANSITION;
else if (strcmp((const char*)semantic, "transition_count") == 0)
tracker_type = RARCH_STATE_TRANSITION_COUNT;
else if (strcmp((const char*)semantic, "transition_previous") == 0)
tracker_type = RARCH_STATE_TRANSITION_PREV;
#ifdef HAVE_PYTHON
else if (strcmp((const char*)semantic, "python") == 0)
tracker_type = RARCH_STATE_PYTHON;
#endif
else
{
RARCH_ERR("Invalid semantic for import value.\n");
ret = false;
goto end;
}
#ifdef HAVE_PYTHON
if (tracker_type != RARCH_STATE_PYTHON)
#endif
{
if (input)
{
unsigned slot = strtoul((const char*)input, NULL, 0);
switch (slot)
{
case 1:
ram_type = RARCH_STATE_INPUT_SLOT1;
break;
case 2:
ram_type = RARCH_STATE_INPUT_SLOT2;
break;
default:
RARCH_ERR("Invalid input slot for import.\n");
ret = false;
goto end;
}
}
else if (wram)
{
addr = strtoul((const char*)wram, NULL, 16);
ram_type = RARCH_STATE_WRAM;
}
else
{
RARCH_ERR("No RAM address specificed for import value.\n");
ret = false;
goto end;
}
}
switch (ram_type)
{
case RARCH_STATE_WRAM:
memtype = RETRO_MEMORY_SYSTEM_RAM;
break;
default:
memtype = -1u;
}
if ((memtype != -1u) && (addr >= pretro_get_memory_size(memtype)))
{
RARCH_ERR("Address out of bounds.\n");
ret = false;
goto end;
}
if (bitmask)
mask_value = strtoul((const char*)bitmask, NULL, 16);
if (bitequal)
mask_equal = strtoul((const char*)bitequal, NULL, 16);
strlcpy(gl_tracker_info[gl_tracker_info_cnt].id, (const char*)id, sizeof(gl_tracker_info[0].id));
gl_tracker_info[gl_tracker_info_cnt].addr = addr;
gl_tracker_info[gl_tracker_info_cnt].type = tracker_type;
gl_tracker_info[gl_tracker_info_cnt].ram_type = ram_type;
gl_tracker_info[gl_tracker_info_cnt].mask = mask_value;
gl_tracker_info[gl_tracker_info_cnt].equal = mask_equal;
gl_tracker_info_cnt++;
end:
if (id) xmlFree(id);
if (semantic) xmlFree(semantic);
if (wram) xmlFree(wram);
if (input) xmlFree(input);
if (bitmask) xmlFree(bitmask);
if (bitequal) xmlFree(bitequal);
return ret;
}
static unsigned get_xml_shaders(const char *path, struct shader_program *prog, size_t size)
{
LIBXML_TEST_VERSION;
xmlParserCtxtPtr ctx = xmlNewParserCtxt();
if (!ctx)
{
RARCH_ERR("Failed to load libxml2 context.\n");
return false;
}
RARCH_LOG("Loading XML shader: %s\n", path);
xmlDocPtr doc = xmlCtxtReadFile(ctx, path, NULL, 0);
xmlNodePtr head = NULL;
xmlNodePtr cur = NULL;
unsigned num = 0;
if (!doc)
{
RARCH_ERR("Failed to parse XML file: %s\n", path);
goto error;
}
if (ctx->valid == 0)
{
RARCH_ERR("Cannot validate XML shader: %s\n", path);
goto error;
}
head = xmlDocGetRootElement(doc);
for (cur = head; cur; cur = cur->next)
{
if (cur->type != XML_ELEMENT_NODE)
continue;
if (strcmp((const char*)cur->name, "shader") != 0)
continue;
xmlChar *attr;
attr = xmlGetProp(cur, (const xmlChar*)"language");
if (attr && strcmp((const char*)attr, "GLSL") != 0)
{
xmlFree(attr);
continue;
}
if (attr)
xmlFree(attr);
attr = xmlGetProp(cur, (const xmlChar*)"style");
glsl_modern = attr && (strcmp((const char*)attr, "GLES2") == 0);
if (attr)
xmlFree(attr);
if (glsl_modern)
RARCH_LOG("[GL]: Shader reports a GLES2 style shader.\n");
break;
}
if (!cur) // We couldn't find any GLSL shader :(
goto error;
memset(prog, 0, sizeof(struct shader_program) * size);
// Iterate to check if we find fragment and/or vertex shaders.
for (cur = cur->children; cur && num < size; cur = cur->next)
{
if (cur->type != XML_ELEMENT_NODE)
continue;
xmlChar *content = xmlNodeGetContent(cur);
if (!content)
continue;
if (strcmp((const char*)cur->name, "vertex") == 0)
{
if (prog[num].vertex)
{
RARCH_ERR("Cannot have more than one vertex shader in a program.\n");
xmlFree(content);
goto error;
}
prog[num].vertex = (char*)content;
}
else if (strcmp((const char*)cur->name, "fragment") == 0)
{
if (glsl_modern && !prog[num].vertex)
{
RARCH_ERR("Modern GLSL was chosen and vertex shader was not provided. This is an error.\n");
xmlFree(content);
goto error;
}
prog[num].fragment = (char*)content;
if (!get_xml_attrs(&prog[num], cur))
{
RARCH_ERR("XML shader attributes do not comply with specifications.\n");
goto error;
}
num++;
}
else if (strcmp((const char*)cur->name, "texture") == 0)
{
if (!get_texture_image(path, cur))
{
RARCH_ERR("Texture image failed to load.\n");
goto error;
}
}
else if (strcmp((const char*)cur->name, "import") == 0)
{
if (!get_import_value(cur))
{
RARCH_ERR("Import value is invalid.\n");
goto error;
}
}
#ifdef HAVE_PYTHON
else if (strcmp((const char*)cur->name, "script") == 0)
{
if (!get_script(path, cur))
{
RARCH_ERR("Script is invalid.\n");
goto error;
}
}
#endif
}
if (num == 0)
{
RARCH_ERR("Couldn't find vertex shader nor fragment shader in XML file.\n");
goto error;
}
xmlFreeDoc(doc);
xmlFreeParserCtxt(ctx);
return num;
error:
RARCH_ERR("Failed to load XML shader ...\n");
if (doc)
xmlFreeDoc(doc);
xmlFreeParserCtxt(ctx);
return 0;
}
#endif // HAVE_XML
static void print_shader_log(GLuint obj)
{
GLint info_len = 0;
GLint max_len;
pglGetShaderiv(obj, GL_INFO_LOG_LENGTH, &max_len);
if (max_len == 0)
return;
char *info_log = (char*)malloc(max_len);
if (!info_log)
return;
pglGetShaderInfoLog(obj, max_len, &info_len, info_log);
if (info_len > 0)
RARCH_LOG("Shader log: %s\n", info_log);
free(info_log);
}
static void print_linker_log(GLuint obj)
{
GLint info_len = 0;
GLint max_len;
pglGetProgramiv(obj, GL_INFO_LOG_LENGTH, &max_len);
if (max_len == 0)
return;
char *info_log = (char*)malloc(max_len);
if (!info_log)
return;
pglGetProgramInfoLog(obj, max_len, &info_len, info_log);
if (info_len > 0)
RARCH_LOG("Linker log: %s\n", info_log);
free(info_log);
}
static bool compile_shader(GLuint shader, const char *program)
{
pglShaderSource(shader, 1, &program, 0);
pglCompileShader(shader);
GLint status;
pglGetShaderiv(shader, GL_COMPILE_STATUS, &status);
print_shader_log(shader);
return status == GL_TRUE;
}
static bool link_program(GLuint prog)
{
pglLinkProgram(prog);
GLint status;
pglGetProgramiv(prog, GL_LINK_STATUS, &status);
print_linker_log(prog);
if (status == GL_TRUE)
{
pglUseProgram(prog);
return true;
}
else
return false;
}
static bool compile_programs(GLuint *gl_prog, struct shader_program *progs, size_t num)
{
for (unsigned i = 0; i < num; i++)
{
gl_prog[i] = pglCreateProgram();
if (gl_prog[i] == 0)
{
RARCH_ERR("Failed to create GL program #%u.\n", i);
return false;
}
if (progs[i].vertex)
{
RARCH_LOG("Found GLSL vertex shader.\n");
GLuint shader = pglCreateShader(GL_VERTEX_SHADER);
if (!compile_shader(shader, progs[i].vertex))
{
RARCH_ERR("Failed to compile vertex shader #%u\n", i);
return false;
}
pglAttachShader(gl_prog[i], shader);
free(progs[i].vertex);
}
if (progs[i].fragment)
{
RARCH_LOG("Found GLSL fragment shader.\n");
GLuint shader = pglCreateShader(GL_FRAGMENT_SHADER);
if (!compile_shader(shader, progs[i].fragment))
{
RARCH_ERR("Failed to compile fragment shader #%u\n", i);
return false;
}
pglAttachShader(gl_prog[i], shader);
free(progs[i].fragment);
}
if (progs[i].vertex || progs[i].fragment)
{
RARCH_LOG("Linking GLSL program.\n");
if (!link_program(gl_prog[i]))
{
RARCH_ERR("Failed to link program #%u\n", i);
return false;
}
GLint location = pglGetUniformLocation(gl_prog[i], "rubyTexture");
pglUniform1i(location, 0);
pglUseProgram(0);
}
}
return true;
}
static void gl_glsl_reset_attrib(void)
{
for (unsigned i = 0; i < gl_attrib_index; i++)
pglDisableVertexAttribArray(gl_attribs[i]);
gl_attrib_index = 0;
}
static void find_uniforms_frame(GLuint prog, struct shader_uniforms_frame *frame, const char *base)
{
char texture[64];
char texture_size[64];
char input_size[64];
char tex_coord[64];
snprintf(texture, sizeof(texture), "%s%s", base, "Texture");
snprintf(texture_size, sizeof(texture_size), "%s%s", base, "TextureSize");
snprintf(input_size, sizeof(input_size), "%s%s", base, "InputSize");
snprintf(tex_coord, sizeof(tex_coord), "%s%s", base, "TexCoord");
frame->texture = pglGetUniformLocation(prog, texture);
frame->texture_size = pglGetUniformLocation(prog, texture_size);
frame->input_size = pglGetUniformLocation(prog, input_size);
frame->tex_coord = pglGetAttribLocation(prog, tex_coord);
}
static void find_uniforms(GLuint prog, struct shader_uniforms *uni)
{
pglUseProgram(prog);
uni->mvp = pglGetUniformLocation(prog, "rubyMVPMatrix");
uni->tex_coord = pglGetAttribLocation(prog, "rubyTexCoord");
uni->vertex_coord = pglGetAttribLocation(prog, "rubyVertexCoord");
uni->color = pglGetAttribLocation(prog, "rubyColor");
uni->lut_tex_coord = pglGetAttribLocation(prog, "rubyLUTTexCoord");
uni->input_size = pglGetUniformLocation(prog, "rubyInputSize");
uni->output_size = pglGetUniformLocation(prog, "rubyOutputSize");
uni->texture_size = pglGetUniformLocation(prog, "rubyTextureSize");
uni->frame_count = pglGetUniformLocation(prog, "rubyFrameCount");
uni->frame_direction = pglGetUniformLocation(prog, "rubyFrameDirection");
for (unsigned i = 0; i < gl_teximage_cnt; i++)
uni->lut_texture[i] = pglGetUniformLocation(prog, gl_teximage_uniforms[i]);
find_uniforms_frame(prog, &uni->orig, "rubyOrig");
char frame_base[64];
for (unsigned i = 0; i < MAX_PROGRAMS; i++)
{
snprintf(frame_base, sizeof(frame_base), "rubyPass%u", i + 1);
find_uniforms_frame(prog, &uni->pass[i], frame_base);
}
find_uniforms_frame(prog, &uni->prev[0], "rubyPrev");
for (unsigned i = 1; i < PREV_TEXTURES; i++)
{
snprintf(frame_base, sizeof(frame_base), "rubyPrev%u", i);
find_uniforms_frame(prog, &uni->prev[i], frame_base);
}
pglUseProgram(0);
}
// Platforms with broken get_proc_address.
// Assume functions are available without proc_address.
#undef LOAD_GL_SYM
#define LOAD_GL_SYM(SYM) if (!pgl##SYM) { \
gfx_ctx_proc_t sym = glsl_get_proc_address("gl" #SYM); \
memcpy(&(pgl##SYM), &sym, sizeof(sym)); \
}
bool gl_glsl_init(const char *path)
{
#if !defined(HAVE_OPENGLES2) && !defined(HAVE_OPENGL_MODERN) && !defined(__APPLE__)
// Load shader functions.
LOAD_GL_SYM(CreateProgram);
LOAD_GL_SYM(UseProgram);
LOAD_GL_SYM(CreateShader);
LOAD_GL_SYM(DeleteShader);
LOAD_GL_SYM(ShaderSource);
LOAD_GL_SYM(CompileShader);
LOAD_GL_SYM(AttachShader);
LOAD_GL_SYM(DetachShader);
LOAD_GL_SYM(LinkProgram);
LOAD_GL_SYM(GetUniformLocation);
LOAD_GL_SYM(Uniform1i);
LOAD_GL_SYM(Uniform1f);
LOAD_GL_SYM(Uniform2fv);
LOAD_GL_SYM(Uniform4fv);
LOAD_GL_SYM(UniformMatrix4fv);
LOAD_GL_SYM(GetShaderiv);
LOAD_GL_SYM(GetShaderInfoLog);
LOAD_GL_SYM(GetProgramiv);
LOAD_GL_SYM(GetProgramInfoLog);
LOAD_GL_SYM(DeleteProgram);
LOAD_GL_SYM(GetAttachedShaders);
LOAD_GL_SYM(GetAttribLocation);
LOAD_GL_SYM(EnableVertexAttribArray);
LOAD_GL_SYM(DisableVertexAttribArray);
LOAD_GL_SYM(VertexAttribPointer);
RARCH_LOG("Checking GLSL shader support ...\n");
bool shader_support = pglCreateProgram && pglUseProgram && pglCreateShader
&& pglDeleteShader && pglShaderSource && pglCompileShader && pglAttachShader
&& pglDetachShader && pglLinkProgram && pglGetUniformLocation
&& pglUniform1i && pglUniform1f && pglUniform2fv && pglUniform4fv && pglUniformMatrix4fv
&& pglGetShaderiv && pglGetShaderInfoLog && pglGetProgramiv && pglGetProgramInfoLog
&& pglDeleteProgram && pglGetAttachedShaders
&& pglGetAttribLocation && pglEnableVertexAttribArray && pglDisableVertexAttribArray
&& pglVertexAttribPointer;
if (!shader_support)
{
RARCH_ERR("GLSL shaders aren't supported by your OpenGL driver.\n");
return false;
}
#endif
unsigned num_progs = 0;
struct shader_program progs[MAX_PROGRAMS] = {{0}};
#ifdef HAVE_XML
if (path)
{
num_progs = get_xml_shaders(path, progs, MAX_PROGRAMS - 1);
if (num_progs == 0)
{
RARCH_ERR("Couldn't find any valid shaders in XML file.\n");
return false;
}
}
else
#endif
{
RARCH_WARN("[GL]: Stock GLSL shaders will be used.\n");
num_progs = 1;
progs[0].vertex = strdup(stock_vertex_modern);
progs[0].fragment = strdup(stock_fragment_modern);
glsl_modern = true;
}
#ifdef HAVE_OPENGLES2
if (!glsl_modern)
{
RARCH_ERR("[GL]: GLES context is used, but shader is not modern. Cannot use it.\n");
return false;
}
#endif
struct shader_program stock_prog = {0};
stock_prog.vertex = strdup(glsl_modern ? stock_vertex_modern : stock_vertex_legacy);
stock_prog.fragment = strdup(glsl_modern ? stock_fragment_modern : stock_fragment_legacy);
if (!compile_programs(&gl_program[0], &stock_prog, 1))
{
RARCH_ERR("GLSL stock programs failed to compile.\n");
return false;
}
for (unsigned i = 0; i < num_progs; i++)
{
gl_filter_type[i + 1] = progs[i].filter;
gl_scale[i + 1].type_x = progs[i].type_x;
gl_scale[i + 1].type_y = progs[i].type_y;
gl_scale[i + 1].scale_x = progs[i].scale_x;
gl_scale[i + 1].scale_y = progs[i].scale_y;
gl_scale[i + 1].abs_x = progs[i].abs_x;
gl_scale[i + 1].abs_y = progs[i].abs_y;
gl_scale[i + 1].valid = progs[i].valid_scale;
}
if (!compile_programs(&gl_program[1], progs, num_progs))
return false;
#ifdef HAVE_XML
// RetroArch custom two-pass with two different files.
if (num_progs == 1 && *g_settings.video.second_pass_shader && g_settings.video.render_to_texture)
{
unsigned secondary_progs = get_xml_shaders(g_settings.video.second_pass_shader, progs, 1);
if (secondary_progs == 1)
{
compile_programs(&gl_program[2], progs, 1);
num_progs++;
}
else
{
RARCH_ERR("Did not find exactly one valid shader in secondary shader file.\n");
return false;
}
}
#endif
for (unsigned i = 0; i <= num_progs; i++)
find_uniforms(gl_program[i], &gl_uniforms[i]);
#ifdef GLSL_DEBUG
if (!gl_check_error())
RARCH_WARN("Detected GL error in GLSL.\n");
#endif
#ifdef HAVE_XML
if (gl_tracker_info_cnt > 0)
{
struct state_tracker_info info = {0};
info.wram = (uint8_t*)pretro_get_memory_data(RETRO_MEMORY_SYSTEM_RAM);
info.info = gl_tracker_info;
info.info_elem = gl_tracker_info_cnt;
#ifdef HAVE_PYTHON
if (*gl_tracker_script)
info.script = gl_tracker_script;
else if (gl_script_program)
info.script = gl_script_program;
else
info.script = NULL;
info.script_class = *gl_tracker_script_class ? gl_tracker_script_class : NULL;
info.script_is_file = *gl_tracker_script;
#endif
gl_state_tracker = state_tracker_init(&info);
if (!gl_state_tracker)
RARCH_WARN("Failed to init state tracker.\n");
}
#endif
glsl_enable = true;
gl_num_programs = num_progs;
gl_program[gl_num_programs + 1] = gl_program[0];
gl_uniforms[gl_num_programs + 1] = gl_uniforms[0];
gl_glsl_reset_attrib();
return true;
}
void gl_glsl_deinit(void)
{
if (glsl_enable)
{
pglUseProgram(0);
for (unsigned i = 0; i <= gl_num_programs; i++)
{
if (gl_program[i] == 0 || (i && gl_program[i] == gl_program[0]))
continue;
GLsizei count;
GLuint shaders[2];
pglGetAttachedShaders(gl_program[i], 2, &count, shaders);
for (GLsizei j = 0; j < count; j++)
{
pglDetachShader(gl_program[i], shaders[j]);
pglDeleteShader(shaders[j]);
}
pglDeleteProgram(gl_program[i]);
}
glDeleteTextures(gl_teximage_cnt, gl_teximage);
gl_teximage_cnt = 0;
memset(gl_teximage_uniforms, 0, sizeof(gl_teximage_uniforms));
}
memset(gl_program, 0, sizeof(gl_program));
glsl_enable = false;
active_index = 0;
gl_tracker_info_cnt = 0;
memset(gl_tracker_info, 0, sizeof(gl_tracker_info));
memset(gl_tracker_script, 0, sizeof(gl_tracker_script));
memset(gl_tracker_script_class, 0, sizeof(gl_tracker_script_class));
if (gl_script_program)
{
free(gl_script_program);
gl_script_program = NULL;
}
if (gl_state_tracker)
{
state_tracker_free(gl_state_tracker);
gl_state_tracker = NULL;
}
gl_glsl_reset_attrib();
}
void gl_glsl_set_params(unsigned width, unsigned height,
unsigned tex_width, unsigned tex_height,
unsigned out_width, unsigned out_height,
unsigned frame_count,
const struct gl_tex_info *info,
const struct gl_tex_info *prev_info,
const struct gl_tex_info *fbo_info, unsigned fbo_info_cnt)
{
// We enforce a certain layout for our various texture types in the texunits.
// - Regular frame (rubyTexture) (always bound).
// - LUT textures (always bound).
// - Original texture (always bound if meaningful).
// - FBO textures (always bound if available).
// - Previous textures.
if (!glsl_enable || (gl_program[active_index] == 0))
return;
const struct shader_uniforms *uni = &gl_uniforms[active_index];
float input_size[2] = {(float)width, (float)height};
float output_size[2] = {(float)out_width, (float)out_height};
float texture_size[2] = {(float)tex_width, (float)tex_height};
if (uni->input_size >= 0)
pglUniform2fv(uni->input_size, 1, input_size);
if (uni->output_size >= 0)
pglUniform2fv(uni->output_size, 1, output_size);
if (uni->texture_size >= 0)
pglUniform2fv(uni->texture_size, 1, texture_size);
if (uni->frame_count >= 0)
pglUniform1i(uni->frame_count, frame_count);
if (uni->frame_direction >= 0)
pglUniform1i(uni->frame_direction, g_extern.frame_is_reverse ? -1 : 1);
for (unsigned i = 0; i < gl_teximage_cnt; i++)
{
if (uni->lut_texture[i] >= 0)
pglUniform1i(uni->lut_texture[i], i + 1);
}
unsigned texunit = gl_teximage_cnt + 1;
// Set original texture unless we're in first pass (pointless).
if (active_index > 1)
{
if (uni->orig.texture >= 0)
{
// Bind original texture.
pglActiveTexture(GL_TEXTURE0 + texunit);
pglUniform1i(uni->orig.texture, texunit);
glBindTexture(GL_TEXTURE_2D, info->tex);
}
texunit++;
if (uni->orig.texture_size >= 0)
pglUniform2fv(uni->orig.texture_size, 1, info->tex_size);
if (uni->orig.input_size >= 0)
pglUniform2fv(uni->orig.input_size, 1, info->input_size);
// Pass texture coordinates.
if (uni->orig.tex_coord >= 0)
{
int loc = uni->orig.tex_coord;
pglEnableVertexAttribArray(loc);
pglVertexAttribPointer(loc, 2, GL_FLOAT, GL_FALSE, 0, info->coord);
gl_attribs[gl_attrib_index++] = loc;
}
// Bind new texture in the chain.
if (fbo_info_cnt > 0)
{
pglActiveTexture(GL_TEXTURE0 + texunit + fbo_info_cnt - 1);
glBindTexture(GL_TEXTURE_2D, fbo_info[fbo_info_cnt - 1].tex);
}
// Bind FBO textures.
for (unsigned i = 0; i < fbo_info_cnt; i++)
{
if (uni->pass[i].texture)
pglUniform1i(uni->pass[i].texture, texunit);
texunit++;
if (uni->pass[i].texture_size >= 0)
pglUniform2fv(uni->pass[i].texture_size, 1, fbo_info[i].tex_size);
if (uni->pass[i].input_size >= 0)
pglUniform2fv(uni->pass[i].input_size, 1, fbo_info[i].input_size);
if (uni->pass[i].tex_coord >= 0)
{
int loc = uni->pass[i].tex_coord;
pglEnableVertexAttribArray(loc);
pglVertexAttribPointer(loc, 2, GL_FLOAT, GL_FALSE, 0, fbo_info[i].coord);
gl_attribs[gl_attrib_index++] = loc;
}
}
}
else
{
// First pass, so unbind everything to avoid collitions.
// Unbind ORIG.
pglActiveTexture(GL_TEXTURE0 + texunit);
glBindTexture(GL_TEXTURE_2D, 0);
GLuint base_tex = texunit + 1;
// Unbind any lurking FBO passes.
// Rendering to a texture that is bound to a texture unit
// sounds very shaky ... ;)
for (unsigned i = 0; i < gl_num_programs; i++)
{
pglActiveTexture(GL_TEXTURE0 + base_tex + i);
glBindTexture(GL_TEXTURE_2D, 0);
}
}
// Set previous textures. Only bind if they're actually used.
for (unsigned i = 0; i < PREV_TEXTURES; i++)
{
if (uni->prev[i].texture >= 0)
{
pglActiveTexture(GL_TEXTURE0 + texunit);
glBindTexture(GL_TEXTURE_2D, prev_info[i].tex);
pglUniform1i(uni->prev[i].texture, texunit++);
}
texunit++;
if (uni->prev[i].texture_size >= 0)
pglUniform2fv(uni->prev[i].texture_size, 1, prev_info[i].tex_size);
if (uni->prev[i].input_size >= 0)
pglUniform2fv(uni->prev[i].input_size, 1, prev_info[i].input_size);
// Pass texture coordinates.
if (uni->prev[i].tex_coord >= 0)
{
int loc = uni->prev[i].tex_coord;
pglEnableVertexAttribArray(loc);
pglVertexAttribPointer(loc, 2, GL_FLOAT, GL_FALSE, 0, prev_info[i].coord);
gl_attribs[gl_attrib_index++] = loc;
}
}
pglActiveTexture(GL_TEXTURE0);
if (gl_state_tracker)
{
static struct state_tracker_uniform info[MAX_VARIABLES];
static unsigned cnt = 0;
if (active_index == 1)
cnt = state_get_uniform(gl_state_tracker, info, MAX_VARIABLES, frame_count);
for (unsigned i = 0; i < cnt; i++)
{
int location = pglGetUniformLocation(gl_program[active_index], info[i].id);
pglUniform1f(location, info[i].value);
}
}
}
bool gl_glsl_set_mvp(const math_matrix *mat)
{
if (!glsl_enable || !glsl_modern)
return false;
int loc = gl_uniforms[active_index].mvp;
if (loc >= 0)
pglUniformMatrix4fv(loc, 1, GL_FALSE, mat->data);
return true;
}
bool gl_glsl_set_coords(const struct gl_coords *coords)
{
if (!glsl_enable || !glsl_modern)
return false;
const struct shader_uniforms *uni = &gl_uniforms[active_index];
if (uni->tex_coord >= 0)
{
int loc = uni->tex_coord;
pglEnableVertexAttribArray(loc);
pglVertexAttribPointer(loc, 2, GL_FLOAT, GL_FALSE, 0, coords->tex_coord);
gl_attribs[gl_attrib_index++] = loc;
}
if (uni->vertex_coord >= 0)
{
int loc = uni->vertex_coord;
pglEnableVertexAttribArray(loc);
pglVertexAttribPointer(loc, 2, GL_FLOAT, GL_FALSE, 0, coords->vertex);
gl_attribs[gl_attrib_index++] = loc;
}
if (uni->color >= 0)
{
int loc = uni->color;
pglEnableVertexAttribArray(loc);
pglVertexAttribPointer(loc, 4, GL_FLOAT, GL_FALSE, 0, coords->color);
gl_attribs[gl_attrib_index++] = loc;
}
if (uni->lut_tex_coord >= 0)
{
int loc = uni->lut_tex_coord;
pglEnableVertexAttribArray(loc);
pglVertexAttribPointer(loc, 2, GL_FLOAT, GL_FALSE, 0, coords->lut_tex_coord);
gl_attribs[gl_attrib_index++] = loc;
}
return true;
}
void gl_glsl_use(unsigned index)
{
if (glsl_enable)
{
gl_glsl_reset_attrib();
active_index = index;
pglUseProgram(gl_program[index]);
}
}
unsigned gl_glsl_num(void)
{
return gl_num_programs;
}
bool gl_glsl_filter_type(unsigned index, bool *smooth)
{
if (!glsl_enable)
return false;
switch (gl_filter_type[index])
{
case RARCH_GL_NOFORCE:
return false;
case RARCH_GL_NEAREST:
*smooth = false;
return true;
case RARCH_GL_LINEAR:
*smooth = true;
return true;
default:
return false;
}
}
void gl_glsl_shader_scale(unsigned index, struct gl_fbo_scale *scale)
{
if (glsl_enable)
*scale = gl_scale[index];
else
scale->valid = false;
}
void gl_glsl_set_get_proc_address(gfx_ctx_proc_t (*proc)(const char*))
{
glsl_get_proc_address = proc;
}