/* RetroArch - A frontend for libretro.
* Copyright (C) 2011-2016 - Daniel De Matteis
*
* RetroArch is free software: you can redistribute it and/or modify it under the terms
* of the GNU General Public License as published by the Free Software Found-
* ation, either version 3 of the License, or (at your option) any later version.
*
* RetroArch is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with RetroArch.
* If not, see .
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "../core.h"
#include "../msg_hash.h"
#include "../verbosity.h"
#include "../autosave.h"
#include "../configuration.h"
#include "../msg_hash.h"
#include "../runloop.h"
#include "tasks_internal.h"
/* TODO/FIXME - turn this into actual task */
struct ram_type
{
const char *path;
int type;
};
#ifdef HAVE_THREADS
/* Autosave support. */
struct autosave_st
{
autosave_t **list;
unsigned num;
};
struct autosave
{
volatile bool quit;
slock_t *lock;
slock_t *cond_lock;
scond_t *cond;
sthread_t *thread;
void *buffer;
const void *retro_buffer;
const char *path;
size_t bufsize;
unsigned interval;
};
static struct autosave_st autosave_state;
/**
* autosave_thread:
* @data : pointer to autosave object
*
* Callback function for (threaded) autosave.
**/
static void autosave_thread(void *data)
{
bool first_log = true;
autosave_t *save = (autosave_t*)data;
while (!save->quit)
{
bool differ;
slock_lock(save->lock);
differ = memcmp(save->buffer, save->retro_buffer,
save->bufsize) != 0;
if (differ)
memcpy(save->buffer, save->retro_buffer, save->bufsize);
slock_unlock(save->lock);
if (differ)
{
/* Should probably deal with this more elegantly. */
FILE *file = fopen(save->path, "wb");
if (file)
{
bool failed = false;
/* Avoid spamming down stderr ... */
if (first_log)
{
RARCH_LOG("Autosaving SRAM to \"%s\", will continue to check every %u seconds ...\n",
save->path, save->interval);
first_log = false;
}
else
RARCH_LOG("SRAM changed ... autosaving ...\n");
failed |= fwrite(save->buffer, 1, save->bufsize, file)
!= save->bufsize;
failed |= fflush(file) != 0;
failed |= fclose(file) != 0;
if (failed)
RARCH_WARN("Failed to autosave SRAM. Disk might be full.\n");
}
}
slock_lock(save->cond_lock);
if (!save->quit)
scond_wait_timeout(save->cond, save->cond_lock,
save->interval * 1000000LL);
slock_unlock(save->cond_lock);
}
}
/**
* autosave_new:
* @path : path to autosave file
* @data : pointer to buffer
* @size : size of @data buffer
* @interval : interval at which saves should be performed.
*
* Create and initialize autosave object.
*
* Returns: pointer to new autosave_t object if successful, otherwise
* NULL.
**/
static autosave_t *autosave_new(const char *path,
const void *data, size_t size,
unsigned interval)
{
autosave_t *handle = (autosave_t*)calloc(1, sizeof(*handle));
if (!handle)
goto error;
handle->bufsize = size;
handle->interval = interval;
handle->path = path;
handle->buffer = malloc(size);
handle->retro_buffer = data;
if (!handle->buffer)
goto error;
memcpy(handle->buffer, handle->retro_buffer, handle->bufsize);
handle->lock = slock_new();
handle->cond_lock = slock_new();
handle->cond = scond_new();
handle->thread = sthread_create(autosave_thread, handle);
return handle;
error:
if (handle)
free(handle);
return NULL;
}
/**
* autosave_free:
* @handle : pointer to autosave object
*
* Frees autosave object.
**/
static void autosave_free(autosave_t *handle)
{
if (!handle)
return;
slock_lock(handle->cond_lock);
handle->quit = true;
slock_unlock(handle->cond_lock);
scond_signal(handle->cond);
sthread_join(handle->thread);
slock_free(handle->lock);
slock_free(handle->cond_lock);
scond_free(handle->cond);
free(handle->buffer);
free(handle);
}
/**
* autosave_lock:
*
* Lock autosave.
**/
void autosave_lock(void)
{
unsigned i;
for (i = 0; i < autosave_state.num; i++)
{
if (autosave_state.list[i])
slock_lock(autosave_state.list[i]->lock);
}
}
/**
* autosave_unlock:
*
* Unlocks autosave.
**/
void autosave_unlock(void)
{
unsigned i;
for (i = 0; i < autosave_state.num; i++)
{
if (autosave_state.list[i])
slock_unlock(autosave_state.list[i]->lock);
}
}
void autosave_init(void)
{
unsigned i;
autosave_t **list = NULL;
settings_t *settings = config_get_ptr();
global_t *global = global_get_ptr();
if (settings->autosave_interval < 1 || !global->savefiles)
return;
list = (autosave_t**)calloc(global->savefiles->size,
sizeof(*autosave_state.list));
if (!list)
return;
autosave_state.list = list;
autosave_state.num = global->savefiles->size;
for (i = 0; i < global->savefiles->size; i++)
{
retro_ctx_memory_info_t mem_info;
const char *path = global->savefiles->elems[i].data;
unsigned type = global->savefiles->elems[i].attr.i;
mem_info.id = type;
core_get_memory(&mem_info);
if (mem_info.size <= 0)
continue;
autosave_state.list[i] = autosave_new(path,
mem_info.data,
mem_info.size,
settings->autosave_interval);
if (!autosave_state.list[i])
RARCH_WARN("%s\n", msg_hash_to_str(MSG_AUTOSAVE_FAILED));
}
}
void autosave_deinit(void)
{
unsigned i;
for (i = 0; i < autosave_state.num; i++)
autosave_free(autosave_state.list[i]);
if (autosave_state.list)
free(autosave_state.list);
autosave_state.list = NULL;
autosave_state.num = 0;
}
#endif
/**
* content_load_ram_file:
* @path : path of RAM state that will be loaded from.
* @type : type of memory
*
* Load a RAM state from disk to memory.
*/
bool content_load_ram_file(unsigned slot)
{
ssize_t rc;
ram_type_t ram;
retro_ctx_memory_info_t mem_info;
global_t *global = global_get_ptr();
void *buf = NULL;
ram.path = global->savefiles->elems[slot].data;
ram.type = global->savefiles->elems[slot].attr.i;
mem_info.id = ram.type;
core_get_memory(&mem_info);
if (mem_info.size == 0 || !mem_info.data)
return false;
if (!filestream_read_file(ram.path, &buf, &rc))
return false;
if (rc > 0)
{
if (rc > (ssize_t)mem_info.size)
{
RARCH_WARN("SRAM is larger than implementation expects, "
"doing partial load (truncating %u %s %s %u).\n",
(unsigned)rc,
msg_hash_to_str(MSG_BYTES),
msg_hash_to_str(MSG_TO),
(unsigned)mem_info.size);
rc = mem_info.size;
}
memcpy(mem_info.data, buf, rc);
}
if (buf)
free(buf);
return true;
}
/**
* content_save_ram_file:
* @path : path of RAM state that shall be written to.
* @type : type of memory
*
* Save a RAM state from memory to disk.
*
*/
bool content_save_ram_file(unsigned slot)
{
retro_ctx_memory_info_t mem_info;
ram_type_t ram;
global_t *global = global_get_ptr();
if (!global)
return false;
ram.type = global->savefiles->elems[slot].attr.i;
ram.path = global->savefiles->elems[slot].data;
mem_info.id = ram.type;
core_get_memory(&mem_info);
if (!mem_info.data || mem_info.size == 0)
return false;
RARCH_LOG("%s #%u %s \"%s\".\n",
msg_hash_to_str(MSG_SAVING_RAM_TYPE),
ram.type,
msg_hash_to_str(MSG_TO),
ram.path);
if (!filestream_write_file(ram.path, mem_info.data, mem_info.size))
{
RARCH_ERR("%s.\n",
msg_hash_to_str(MSG_FAILED_TO_SAVE_SRAM));
RARCH_WARN("Attempting to recover ...\n");
/* In case the file could not be written to,
* the fallback function 'dump_to_file_desperate'
* will be called. */
if (!dump_to_file_desperate(mem_info.data, mem_info.size, ram.type))
{
RARCH_WARN("Failed ... Cannot recover save file.\n");
}
return false;
}
RARCH_LOG("%s \"%s\".\n",
msg_hash_to_str(MSG_SAVED_SUCCESSFULLY_TO),
ram.path);
return true;
}