/* RetroArch - A frontend for libretro.
* Copyright (C) 2010-2014 - Hans-Kristian Arntzen
* Copyright (C) 2011-2016 - Daniel De Matteis
*
* RetroArch is free software: you can redistribute it and/or modify it under the terms
* of the GNU General Public License as published by the Free Software Found-
* ation, either version 3 of the License, or (at your option) any later version.
*
* RetroArch is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with RetroArch.
* If not, see .
*/
#include
#include
#include
#include "audio_driver.h"
#include "audio_resampler_driver.h"
#include "../record/record_driver.h"
#include "audio_utils.h"
#include "audio_thread_wrapper.h"
#include "../command.h"
#include "../configuration.h"
#include "../retroarch.h"
#include "../runloop.h"
#include "../performance.h"
#include "../verbosity.h"
#include "../list_special.h"
#ifndef AUDIO_BUFFER_FREE_SAMPLES_COUNT
#define AUDIO_BUFFER_FREE_SAMPLES_COUNT (8 * 1024)
#endif
typedef struct audio_driver_input_data
{
float *data;
size_t data_ptr;
struct
{
size_t size;
size_t nonblock_size;
size_t block_size;
} chunk;
struct
{
float input;
bool control;
struct
{
double original;
double current;
} source_ratio;
} audio_rate;
bool use_float;
struct
{
int16_t *buf;
size_t ptr;
size_t size;
} rewind;
rarch_dsp_filter_t *dsp;
size_t driver_buffer_size;
float volume_gain;
struct
{
float *buf;
int16_t *conv_buf;
} output_samples;
struct
{
unsigned buf[AUDIO_BUFFER_FREE_SAMPLES_COUNT];
uint64_t count;
} free_samples;
} audio_driver_input_data_t;
static const audio_driver_t *audio_drivers[] = {
#ifdef HAVE_ALSA
&audio_alsa,
#ifndef __QNX__
&audio_alsathread,
#endif
#endif
#if defined(HAVE_OSS) || defined(HAVE_OSS_BSD)
&audio_oss,
#endif
#ifdef HAVE_RSOUND
&audio_rsound,
#endif
#ifdef HAVE_COREAUDIO
&audio_coreaudio,
#endif
#ifdef HAVE_AL
&audio_openal,
#endif
#ifdef HAVE_SL
&audio_opensl,
#endif
#ifdef HAVE_ROAR
&audio_roar,
#endif
#ifdef HAVE_JACK
&audio_jack,
#endif
#if defined(HAVE_SDL) || defined(HAVE_SDL2)
&audio_sdl,
#endif
#ifdef HAVE_XAUDIO
&audio_xa,
#endif
#ifdef HAVE_DSOUND
&audio_dsound,
#endif
#ifdef HAVE_PULSE
&audio_pulse,
#endif
#ifdef __CELLOS_LV2__
&audio_ps3,
#endif
#ifdef XENON
&audio_xenon360,
#endif
#ifdef GEKKO
&audio_gx,
#endif
#ifdef EMSCRIPTEN
&audio_rwebaudio,
#endif
#if defined(PSP) || defined(VITA)
&audio_psp,
#endif
#ifdef _3DS
&audio_ctr_csnd,
&audio_ctr_dsp,
#endif
&audio_null,
NULL,
};
static audio_driver_input_data_t audio_driver_data;
static struct retro_audio_callback audio_callback;
static struct string_list *audio_driver_devices_list = NULL;
static struct retro_perf_counter resampler_proc = {0};
static const rarch_resampler_t *audio_driver_resampler = NULL;
static void *audio_driver_resampler_data = NULL;
static bool audio_driver_active = false;
static bool audio_driver_data_own = false;
static const audio_driver_t *current_audio = NULL;
static void *audio_driver_context_audio_data = NULL;
/**
* compute_audio_buffer_statistics:
*
* Computes audio buffer statistics.
*
**/
static void compute_audio_buffer_statistics(void)
{
unsigned i, low_water_size, high_water_size, avg, stddev;
float avg_filled, deviation;
uint64_t accum = 0;
uint64_t accum_var = 0;
unsigned low_water_count = 0;
unsigned high_water_count = 0;
unsigned samples = MIN(
audio_driver_data.free_samples.count,
AUDIO_BUFFER_FREE_SAMPLES_COUNT);
if (samples < 3)
return;
for (i = 1; i < samples; i++)
accum += audio_driver_data.free_samples.buf[i];
avg = accum / (samples - 1);
for (i = 1; i < samples; i++)
{
int diff = avg - audio_driver_data.free_samples.buf[i];
accum_var += diff * diff;
}
stddev = (unsigned)sqrt((double)accum_var / (samples - 2));
avg_filled = 1.0f - (float)avg / audio_driver_data.driver_buffer_size;
deviation = (float)stddev / audio_driver_data.driver_buffer_size;
low_water_size = audio_driver_data.driver_buffer_size * 3 / 4;
high_water_size = audio_driver_data.driver_buffer_size / 4;
for (i = 1; i < samples; i++)
{
if (audio_driver_data.free_samples.buf[i] >= low_water_size)
low_water_count++;
else if (audio_driver_data.free_samples.buf[i] <= high_water_size)
high_water_count++;
}
RARCH_LOG("Average audio buffer saturation: %.2f %%, standard deviation (percentage points): %.2f %%.\n",
avg_filled * 100.0, deviation * 100.0);
RARCH_LOG("Amount of time spent close to underrun: %.2f %%. Close to blocking: %.2f %%.\n",
(100.0 * low_water_count) / (samples - 1),
(100.0 * high_water_count) / (samples - 1));
}
/**
* audio_driver_find_handle:
* @idx : index of driver to get handle to.
*
* Returns: handle to audio driver at index. Can be NULL
* if nothing found.
**/
const void *audio_driver_find_handle(int idx)
{
const void *drv = audio_drivers[idx];
if (!drv)
return NULL;
return drv;
}
/**
* audio_driver_find_ident:
* @idx : index of driver to get handle to.
*
* Returns: Human-readable identifier of audio driver at index. Can be NULL
* if nothing found.
**/
const char *audio_driver_find_ident(int idx)
{
const audio_driver_t *drv = audio_drivers[idx];
if (!drv)
return NULL;
return drv->ident;
}
/**
* config_get_audio_driver_options:
*
* Get an enumerated list of all audio driver names, separated by '|'.
*
* Returns: string listing of all audio driver names, separated by '|'.
**/
const char *config_get_audio_driver_options(void)
{
return char_list_new_special(STRING_LIST_AUDIO_DRIVERS, NULL);
}
static bool uninit_audio(void)
{
settings_t *settings = config_get_ptr();
if (current_audio && current_audio->free)
{
if (audio_driver_context_audio_data)
current_audio->free(audio_driver_context_audio_data);
audio_driver_context_audio_data = NULL;
}
if (audio_driver_data.output_samples.conv_buf)
free(audio_driver_data.output_samples.conv_buf);
audio_driver_data.output_samples.conv_buf = NULL;
audio_driver_data.data_ptr = 0;
if (audio_driver_data.rewind.buf)
free(audio_driver_data.rewind.buf);
audio_driver_data.rewind.buf = NULL;
audio_driver_data.rewind.size = 0;
if (!settings->audio.enable)
{
audio_driver_unset_active();
return false;
}
audio_driver_deinit_resampler();
if (audio_driver_data.data)
free(audio_driver_data.data);
audio_driver_data.data = NULL;
if (audio_driver_data.output_samples.buf)
free(audio_driver_data.output_samples.buf);
audio_driver_data.output_samples.buf = NULL;
command_event(CMD_EVENT_DSP_FILTER_DEINIT, NULL);
compute_audio_buffer_statistics();
return true;
}
static bool audio_driver_init_internal(bool audio_cb_inited)
{
size_t outsamples_max, max_bufsamples = AUDIO_CHUNK_SIZE_NONBLOCKING * 2;
settings_t *settings = config_get_ptr();
audio_convert_init_simd();
/* Accomodate rewind since at some point we might have two full buffers. */
outsamples_max = max_bufsamples * AUDIO_MAX_RATIO *
settings->slowmotion_ratio;
/* Used for recording even if audio isn't enabled. */
retro_assert(audio_driver_data.output_samples.conv_buf =
(int16_t*)malloc(outsamples_max * sizeof(int16_t)));
if (!audio_driver_data.output_samples.conv_buf)
goto error;
audio_driver_data.chunk.block_size = AUDIO_CHUNK_SIZE_BLOCKING;
audio_driver_data.chunk.nonblock_size = AUDIO_CHUNK_SIZE_NONBLOCKING;
audio_driver_data.chunk.size = audio_driver_data.chunk.block_size;
/* Needs to be able to hold full content of a full max_bufsamples
* in addition to its own. */
retro_assert(audio_driver_data.rewind.buf = (int16_t*)
malloc(max_bufsamples * sizeof(int16_t)));
if (!audio_driver_data.rewind.buf)
goto error;
audio_driver_data.rewind.size = max_bufsamples;
if (!settings->audio.enable)
{
audio_driver_unset_active();
return false;
}
audio_driver_find_driver();
#ifdef HAVE_THREADS
if (audio_cb_inited)
{
RARCH_LOG("Starting threaded audio driver ...\n");
if (!rarch_threaded_audio_init(
¤t_audio,
&audio_driver_context_audio_data,
*settings->audio.device ? settings->audio.device : NULL,
settings->audio.out_rate, settings->audio.latency,
current_audio))
{
RARCH_ERR("Cannot open threaded audio driver ... Exiting ...\n");
retroarch_fail(1, "audio_driver_init_internal()");
}
}
else
#endif
{
audio_driver_context_audio_data =
current_audio->init(*settings->audio.device ?
settings->audio.device : NULL,
settings->audio.out_rate, settings->audio.latency);
}
if (!audio_driver_context_audio_data)
{
RARCH_ERR("Failed to initialize audio driver. Will continue without audio.\n");
audio_driver_unset_active();
}
audio_driver_data.use_float = false;
if ( audio_driver_is_active()
&& current_audio->use_float(audio_driver_context_audio_data))
audio_driver_data.use_float = true;
if (!settings->audio.sync && audio_driver_is_active())
{
command_event(CMD_EVENT_AUDIO_SET_NONBLOCKING_STATE, NULL);
audio_driver_data.chunk.size = audio_driver_data.chunk.nonblock_size;
}
if (audio_driver_data.audio_rate.input <= 0.0f)
{
/* Should never happen. */
RARCH_WARN("Input rate is invalid (%.3f Hz). Using output rate (%u Hz).\n",
audio_driver_data.audio_rate.input, settings->audio.out_rate);
audio_driver_data.audio_rate.input = settings->audio.out_rate;
}
audio_driver_data.audio_rate.source_ratio.original =
audio_driver_data.audio_rate.source_ratio.current =
(double)settings->audio.out_rate / audio_driver_data.audio_rate.input;
if (!audio_driver_init_resampler())
{
RARCH_ERR("Failed to initialize resampler \"%s\".\n",
settings->audio.resampler);
audio_driver_unset_active();
}
retro_assert(audio_driver_data.data = (float*)
malloc(max_bufsamples * sizeof(float)));
if (!audio_driver_data.data)
goto error;
audio_driver_data.data_ptr = 0;
retro_assert(settings->audio.out_rate <
audio_driver_data.audio_rate.input * AUDIO_MAX_RATIO);
retro_assert(audio_driver_data.output_samples.buf = (float*)
malloc(outsamples_max * sizeof(float)));
if (!audio_driver_data.output_samples.buf)
goto error;
audio_driver_data.audio_rate.control = false;
if (
!audio_cb_inited
&& audio_driver_is_active()
&& settings->audio.rate_control
)
{
/* Audio rate control requires write_avail
* and buffer_size to be implemented. */
if (current_audio->buffer_size)
{
audio_driver_data.driver_buffer_size =
current_audio->buffer_size(audio_driver_context_audio_data);
audio_driver_data.audio_rate.control = true;
}
else
RARCH_WARN("Audio rate control was desired, but driver does not support needed features.\n");
}
command_event(CMD_EVENT_DSP_FILTER_INIT, NULL);
audio_driver_data.free_samples.count = 0;
/* Threaded driver is initially stopped. */
if (
audio_driver_is_active()
&& !settings->audio.mute_enable
&& audio_cb_inited
)
audio_driver_start();
return true;
error:
return audio_driver_deinit();
}
/*
* audio_driver_readjust_input_rate:
*
* Readjust the audio input rate.
*/
static void audio_driver_readjust_input_rate(void)
{
settings_t *settings = config_get_ptr();
unsigned write_idx = audio_driver_data.free_samples.count++ &
(AUDIO_BUFFER_FREE_SAMPLES_COUNT - 1);
int half_size = audio_driver_data.driver_buffer_size / 2;
int avail =
current_audio->write_avail(audio_driver_context_audio_data);
int delta_mid = avail - half_size;
double direction = (double)delta_mid / half_size;
double adjust = 1.0 + settings->audio.rate_control_delta * direction;
#if 0
RARCH_LOG_OUTPUT("Audio buffer is %u%% full\n",
(unsigned)(100 - (avail * 100) / audio_driver_data.driver_buffer_size));
#endif
audio_driver_data.free_samples.buf[write_idx] = avail;
audio_driver_data.audio_rate.source_ratio.current =
audio_driver_data.audio_rate.source_ratio.original * adjust;
#if 0
RARCH_LOG_OUTPUT("New rate: %lf, Orig rate: %lf\n",
audio_driver_data.audio_rate.source_ratio.current,
audio_driver_data.audio_rate.source_ratio.original);
#endif
}
void audio_driver_set_nonblocking_state(bool enable)
{
settings_t *settings = config_get_ptr();
if (
audio_driver_is_active()
&& audio_driver_context_audio_data
)
current_audio->set_nonblock_state(audio_driver_context_audio_data,
settings->audio.sync ? enable : true);
audio_driver_data.chunk.size = enable ?
audio_driver_data.chunk.nonblock_size :
audio_driver_data.chunk.block_size;
}
/**
* audio_driver_flush:
* @data : pointer to audio buffer.
* @right : amount of samples to write.
*
* Writes audio samples to audio driver. Will first
* perform DSP processing (if enabled) and resampling.
*
* Returns: true (1) if audio samples were written to the audio
* driver, false (0) in case of an error.
**/
static bool audio_driver_flush(const int16_t *data, size_t samples)
{
static struct retro_perf_counter audio_convert_s16 = {0};
static struct retro_perf_counter audio_convert_float = {0};
static struct retro_perf_counter audio_dsp = {0};
struct resampler_data src_data = {0};
struct rarch_dsp_data dsp_data = {0};
const void *output_data = NULL;
unsigned output_frames = 0;
size_t output_size = sizeof(float);
settings_t *settings = config_get_ptr();
recording_push_audio(data, samples);
if (runloop_ctl(RUNLOOP_CTL_IS_PAUSED, NULL) || settings->audio.mute_enable)
return true;
if (!audio_driver_is_active())
return false;
if (!audio_driver_data.data)
return false;
rarch_perf_init(&audio_convert_s16, "audio_convert_s16");
retro_perf_start(&audio_convert_s16);
audio_convert_s16_to_float(audio_driver_data.data, data, samples,
audio_driver_data.volume_gain);
retro_perf_stop(&audio_convert_s16);
src_data.data_in = audio_driver_data.data;
src_data.input_frames = samples >> 1;
dsp_data.input = audio_driver_data.data;
dsp_data.input_frames = samples >> 1;
if (audio_driver_data.dsp)
{
rarch_perf_init(&audio_dsp, "audio_dsp");
retro_perf_start(&audio_dsp);
rarch_dsp_filter_process(audio_driver_data.dsp, &dsp_data);
retro_perf_stop(&audio_dsp);
if (dsp_data.output)
{
src_data.data_in = dsp_data.output;
src_data.input_frames = dsp_data.output_frames;
}
}
src_data.data_out = audio_driver_data.output_samples.buf;
if (audio_driver_data.audio_rate.control)
audio_driver_readjust_input_rate();
src_data.ratio = audio_driver_data.audio_rate.source_ratio.current;
if (runloop_ctl(RUNLOOP_CTL_IS_SLOWMOTION, NULL))
src_data.ratio *= settings->slowmotion_ratio;
audio_driver_process_resampler(&src_data);
output_data = audio_driver_data.output_samples.buf;
output_frames = src_data.output_frames;
if (!audio_driver_data.use_float)
{
rarch_perf_init(&audio_convert_float, "audio_convert_float");
retro_perf_start(&audio_convert_float);
audio_convert_float_to_s16(audio_driver_data.output_samples.conv_buf,
(const float*)output_data, output_frames * 2);
retro_perf_stop(&audio_convert_float);
output_data = audio_driver_data.output_samples.conv_buf;
output_size = sizeof(int16_t);
}
if (current_audio->write(audio_driver_context_audio_data,
output_data, output_frames * output_size * 2) < 0)
{
audio_driver_unset_active();
return false;
}
return true;
}
/**
* audio_driver_sample:
* @left : value of the left audio channel.
* @right : value of the right audio channel.
*
* Audio sample render callback function.
**/
void audio_driver_sample(int16_t left, int16_t right)
{
audio_driver_data.output_samples.conv_buf[audio_driver_data.data_ptr++] = left;
audio_driver_data.output_samples.conv_buf[audio_driver_data.data_ptr++] = right;
if (audio_driver_data.data_ptr < audio_driver_data.chunk.size)
return;
audio_driver_flush(audio_driver_data.output_samples.conv_buf,
audio_driver_data.data_ptr);
audio_driver_data.data_ptr = 0;
}
/**
* audio_driver_sample_batch:
* @data : pointer to audio buffer.
* @frames : amount of audio frames to push.
*
* Batched audio sample render callback function.
*
* Returns: amount of frames sampled. Will be equal to @frames
* unless @frames exceeds (AUDIO_CHUNK_SIZE_NONBLOCKING / 2).
**/
size_t audio_driver_sample_batch(const int16_t *data, size_t frames)
{
if (frames > (AUDIO_CHUNK_SIZE_NONBLOCKING >> 1))
frames = AUDIO_CHUNK_SIZE_NONBLOCKING >> 1;
audio_driver_flush(data, frames << 1);
return frames;
}
/**
* audio_driver_sample_rewind:
* @left : value of the left audio channel.
* @right : value of the right audio channel.
*
* Audio sample render callback function (rewind version).
* This callback function will be used instead of
* audio_driver_sample when rewinding is activated.
**/
void audio_driver_sample_rewind(int16_t left, int16_t right)
{
audio_driver_data.rewind.buf[--audio_driver_data.rewind.ptr] = right;
audio_driver_data.rewind.buf[--audio_driver_data.rewind.ptr] = left;
}
/**
* audio_driver_sample_batch_rewind:
* @data : pointer to audio buffer.
* @frames : amount of audio frames to push.
*
* Batched audio sample render callback function (rewind version).
*
* This callback function will be used instead of
* audio_driver_sample_batch when rewinding is activated.
*
* Returns: amount of frames sampled. Will be equal to @frames
* unless @frames exceeds (AUDIO_CHUNK_SIZE_NONBLOCKING / 2).
**/
size_t audio_driver_sample_batch_rewind(const int16_t *data, size_t frames)
{
size_t i;
size_t samples = frames << 1;
for (i = 0; i < samples; i++)
audio_driver_data.rewind.buf[--audio_driver_data.rewind.ptr] = data[i];
return frames;
}
void audio_driver_set_volume_gain(float gain)
{
audio_driver_data.volume_gain = gain;
}
void audio_driver_dsp_filter_free(void)
{
if (audio_driver_data.dsp)
rarch_dsp_filter_free(audio_driver_data.dsp);
audio_driver_data.dsp = NULL;
}
void audio_driver_dsp_filter_init(const char *device)
{
audio_driver_data.dsp = rarch_dsp_filter_new(
device, audio_driver_data.audio_rate.input);
if (!audio_driver_data.dsp)
RARCH_ERR("[DSP]: Failed to initialize DSP filter \"%s\".\n", device);
}
void audio_driver_set_buffer_size(size_t bufsize)
{
audio_driver_data.driver_buffer_size = bufsize;
}
void audio_driver_monitor_adjust_system_rates(void)
{
float timing_skew;
settings_t *settings = config_get_ptr();
const struct retro_system_timing *info = NULL;
struct retro_system_av_info *av_info = video_viewport_get_system_av_info();
if (av_info)
info = (const struct retro_system_timing*)&av_info->timing;
if (!info || info->sample_rate <= 0.0)
return;
timing_skew = fabs(1.0f - info->fps / settings->video.refresh_rate);
audio_driver_data.audio_rate.input = info->sample_rate;
if (timing_skew <= settings->audio.max_timing_skew)
audio_driver_data.audio_rate.input *= (settings->video.refresh_rate / info->fps);
RARCH_LOG("Set audio input rate to: %.2f Hz.\n",
audio_driver_data.audio_rate.input);
}
void audio_driver_setup_rewind(void)
{
unsigned i;
/* Push audio ready to be played. */
audio_driver_data.rewind.ptr = audio_driver_data.rewind.size;
for (i = 0; i < audio_driver_data.data_ptr; i += 2)
{
audio_driver_data.rewind.buf[--audio_driver_data.rewind.ptr] =
audio_driver_data.output_samples.conv_buf[i + 1];
audio_driver_data.rewind.buf[--audio_driver_data.rewind.ptr] =
audio_driver_data.output_samples.conv_buf[i + 0];
}
audio_driver_data.data_ptr = 0;
}
bool audio_driver_find_driver(void)
{
int i;
driver_ctx_info_t drv;
settings_t *settings = config_get_ptr();
drv.label = "audio_driver";
drv.s = settings->audio.driver;
driver_ctl(RARCH_DRIVER_CTL_FIND_INDEX, &drv);
i = drv.len;
if (i >= 0)
current_audio = (const audio_driver_t*)audio_driver_find_handle(i);
else
{
unsigned d;
RARCH_ERR("Couldn't find any audio driver named \"%s\"\n",
settings->audio.driver);
RARCH_LOG_OUTPUT("Available audio drivers are:\n");
for (d = 0; audio_driver_find_handle(d); d++)
RARCH_LOG_OUTPUT("\t%s\n", audio_driver_find_ident(d));
RARCH_WARN("Going to default to first audio driver...\n");
current_audio = (const audio_driver_t*)audio_driver_find_handle(0);
if (!current_audio)
retroarch_fail(1, "audio_driver_find()");
}
return true;
}
void audio_driver_deinit_resampler(void)
{
rarch_resampler_freep(&audio_driver_resampler,
&audio_driver_resampler_data);
}
bool audio_driver_free_devices_list(void)
{
if (!current_audio || !current_audio->device_list_free
|| !audio_driver_context_audio_data)
return false;
current_audio->device_list_free(audio_driver_context_audio_data,
audio_driver_devices_list);
audio_driver_devices_list = NULL;
return true;
}
bool audio_driver_new_devices_list(void)
{
if (!current_audio || !current_audio->device_list_new
|| !audio_driver_context_audio_data)
return false;
audio_driver_devices_list = (struct string_list*)
current_audio->device_list_new(audio_driver_context_audio_data);
if (!audio_driver_devices_list)
return false;
return true;
}
bool audio_driver_init(void)
{
return audio_driver_init_internal(audio_callback.callback != NULL);
}
bool audio_driver_get_devices_list(void **data)
{
struct string_list**ptr = (struct string_list**)data;
if (!ptr)
return false;
*ptr = audio_driver_devices_list;
return true;
}
bool audio_driver_init_resampler(void)
{
settings_t *settings = config_get_ptr();
return rarch_resampler_realloc(
&audio_driver_resampler_data,
&audio_driver_resampler,
settings->audio.resampler,
audio_driver_data.audio_rate.source_ratio.original);
}
void audio_driver_process_resampler(struct resampler_data *data)
{
rarch_perf_init(&resampler_proc, "resampler_proc");
retro_perf_start(&resampler_proc);
rarch_resampler_process(audio_driver_resampler,
audio_driver_resampler_data, data);
retro_perf_stop(&resampler_proc);
}
bool audio_driver_deinit(void)
{
audio_driver_free_devices_list();
if (!uninit_audio())
return false;
return true;
}
bool audio_driver_set_callback(const void *data)
{
const struct retro_audio_callback *cb = (const struct retro_audio_callback*)data;
#ifdef HAVE_NETPLAY
global_t *global = global_get_ptr();
#endif
if (recording_driver_get_data_ptr()) /* A/V sync is a must. */
return false;
#ifdef HAVE_NETPLAY
if (global->netplay.enable)
return false;
#endif
if (cb)
audio_callback = *cb;
return true;
}
bool audio_driver_enable_callback(void)
{
if (!audio_driver_has_callback())
return false;
if (audio_callback.set_state)
audio_callback.set_state(true);
return true;
}
bool audio_driver_disable_callback(void)
{
if (!audio_driver_has_callback())
return false;
if (audio_callback.set_state)
audio_callback.set_state(false);
return true;
}
/* Sets audio monitor rate to new value. */
void audio_driver_monitor_set_rate(void)
{
settings_t *settings = config_get_ptr();
double new_src_ratio = (double)settings->audio.out_rate /
audio_driver_data.audio_rate.input;
audio_driver_data.audio_rate.source_ratio.original = new_src_ratio;
audio_driver_data.audio_rate.source_ratio.current = new_src_ratio;
}
bool audio_driver_callback(void)
{
if (!audio_driver_has_callback())
return false;
if (audio_callback.callback)
audio_callback.callback();
return true;
}
bool audio_driver_has_callback(void)
{
return audio_callback.callback;
}
bool audio_driver_toggle_mute(void)
{
settings_t *settings = config_get_ptr();
if (!audio_driver_context_audio_data)
return false;
if (!audio_driver_is_active())
return false;
settings->audio.mute_enable = !settings->audio.mute_enable;
if (settings->audio.mute_enable)
command_event(CMD_EVENT_AUDIO_STOP, NULL);
else if (!command_event(CMD_EVENT_AUDIO_START, NULL))
{
audio_driver_unset_active();
return false;
}
return true;
}
bool audio_driver_start(void)
{
if (!current_audio || !current_audio->start
|| !audio_driver_context_audio_data)
return false;
return current_audio->start(audio_driver_context_audio_data);
}
bool audio_driver_stop(void)
{
if (!current_audio || !current_audio->stop
|| !audio_driver_context_audio_data)
return false;
return current_audio->stop(audio_driver_context_audio_data);
}
void audio_driver_unset_callback(void)
{
audio_callback.callback = NULL;
audio_callback.set_state = NULL;
}
bool audio_driver_alive(void)
{
if (!current_audio || !current_audio->alive
|| !audio_driver_context_audio_data)
return false;
return current_audio->alive(audio_driver_context_audio_data);
}
void audio_driver_frame_is_reverse(void)
{
/* We just rewound. Flush rewind audio buffer. */
audio_driver_flush(
audio_driver_data.rewind.buf + audio_driver_data.rewind.ptr,
audio_driver_data.rewind.size - audio_driver_data.rewind.ptr);
}
void audio_driver_destroy_data(void)
{
audio_driver_context_audio_data = NULL;
}
void audio_driver_set_own_driver(void)
{
audio_driver_data_own = true;
}
void audio_driver_unset_own_driver(void)
{
audio_driver_data_own = false;
}
bool audio_driver_owns_driver(void)
{
return audio_driver_data_own;
}
void audio_driver_set_active(void)
{
audio_driver_active = true;
}
void audio_driver_unset_active(void)
{
audio_driver_active = false;
}
bool audio_driver_is_active(void)
{
return audio_driver_active;
}
void audio_driver_destroy(void)
{
audio_driver_active = false;
audio_driver_data_own = false;
current_audio = NULL;
}