/* RetroArch - A frontend for libretro. * Copyright (C) 2010-2014 - Hans-Kristian Arntzen * Copyright (C) 2011-2016 - Daniel De Matteis * * RetroArch is free software: you can redistribute it and/or modify it under the terms * of the GNU General Public License as published by the Free Software Found- * ation, either version 3 of the License, or (at your option) any later version. * * RetroArch is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; * without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR * PURPOSE. See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with RetroArch. * If not, see . */ #include #include #include #include "audio_driver.h" #include "audio_resampler_driver.h" #include "../record/record_driver.h" #include "audio_utils.h" #include "audio_thread_wrapper.h" #include "../command.h" #include "../configuration.h" #include "../retroarch.h" #include "../runloop.h" #include "../performance.h" #include "../verbosity.h" #include "../list_special.h" #ifndef AUDIO_BUFFER_FREE_SAMPLES_COUNT #define AUDIO_BUFFER_FREE_SAMPLES_COUNT (8 * 1024) #endif typedef struct audio_driver_input_data { float *data; size_t data_ptr; struct { size_t size; size_t nonblock_size; size_t block_size; } chunk; struct { float input; bool control; struct { double original; double current; } source_ratio; } audio_rate; bool use_float; struct { int16_t *buf; size_t ptr; size_t size; } rewind; rarch_dsp_filter_t *dsp; size_t driver_buffer_size; float volume_gain; struct { float *buf; int16_t *conv_buf; } output_samples; struct { unsigned buf[AUDIO_BUFFER_FREE_SAMPLES_COUNT]; uint64_t count; } free_samples; } audio_driver_input_data_t; static const audio_driver_t *audio_drivers[] = { #ifdef HAVE_ALSA &audio_alsa, #ifndef __QNX__ &audio_alsathread, #endif #endif #if defined(HAVE_OSS) || defined(HAVE_OSS_BSD) &audio_oss, #endif #ifdef HAVE_RSOUND &audio_rsound, #endif #ifdef HAVE_COREAUDIO &audio_coreaudio, #endif #ifdef HAVE_AL &audio_openal, #endif #ifdef HAVE_SL &audio_opensl, #endif #ifdef HAVE_ROAR &audio_roar, #endif #ifdef HAVE_JACK &audio_jack, #endif #if defined(HAVE_SDL) || defined(HAVE_SDL2) &audio_sdl, #endif #ifdef HAVE_XAUDIO &audio_xa, #endif #ifdef HAVE_DSOUND &audio_dsound, #endif #ifdef HAVE_PULSE &audio_pulse, #endif #ifdef __CELLOS_LV2__ &audio_ps3, #endif #ifdef XENON &audio_xenon360, #endif #ifdef GEKKO &audio_gx, #endif #ifdef EMSCRIPTEN &audio_rwebaudio, #endif #if defined(PSP) || defined(VITA) &audio_psp, #endif #ifdef _3DS &audio_ctr_csnd, &audio_ctr_dsp, #endif &audio_null, NULL, }; static audio_driver_input_data_t audio_driver_data; static struct retro_audio_callback audio_callback; static struct string_list *audio_driver_devices_list = NULL; static struct retro_perf_counter resampler_proc = {0}; static const rarch_resampler_t *audio_driver_resampler = NULL; static void *audio_driver_resampler_data = NULL; static bool audio_driver_active = false; static bool audio_driver_data_own = false; static const audio_driver_t *current_audio = NULL; static void *audio_driver_context_audio_data = NULL; /** * compute_audio_buffer_statistics: * * Computes audio buffer statistics. * **/ static void compute_audio_buffer_statistics(void) { unsigned i, low_water_size, high_water_size, avg, stddev; float avg_filled, deviation; uint64_t accum = 0; uint64_t accum_var = 0; unsigned low_water_count = 0; unsigned high_water_count = 0; unsigned samples = MIN( audio_driver_data.free_samples.count, AUDIO_BUFFER_FREE_SAMPLES_COUNT); if (samples < 3) return; for (i = 1; i < samples; i++) accum += audio_driver_data.free_samples.buf[i]; avg = accum / (samples - 1); for (i = 1; i < samples; i++) { int diff = avg - audio_driver_data.free_samples.buf[i]; accum_var += diff * diff; } stddev = (unsigned)sqrt((double)accum_var / (samples - 2)); avg_filled = 1.0f - (float)avg / audio_driver_data.driver_buffer_size; deviation = (float)stddev / audio_driver_data.driver_buffer_size; low_water_size = audio_driver_data.driver_buffer_size * 3 / 4; high_water_size = audio_driver_data.driver_buffer_size / 4; for (i = 1; i < samples; i++) { if (audio_driver_data.free_samples.buf[i] >= low_water_size) low_water_count++; else if (audio_driver_data.free_samples.buf[i] <= high_water_size) high_water_count++; } RARCH_LOG("Average audio buffer saturation: %.2f %%, standard deviation (percentage points): %.2f %%.\n", avg_filled * 100.0, deviation * 100.0); RARCH_LOG("Amount of time spent close to underrun: %.2f %%. Close to blocking: %.2f %%.\n", (100.0 * low_water_count) / (samples - 1), (100.0 * high_water_count) / (samples - 1)); } /** * audio_driver_find_handle: * @idx : index of driver to get handle to. * * Returns: handle to audio driver at index. Can be NULL * if nothing found. **/ const void *audio_driver_find_handle(int idx) { const void *drv = audio_drivers[idx]; if (!drv) return NULL; return drv; } /** * audio_driver_find_ident: * @idx : index of driver to get handle to. * * Returns: Human-readable identifier of audio driver at index. Can be NULL * if nothing found. **/ const char *audio_driver_find_ident(int idx) { const audio_driver_t *drv = audio_drivers[idx]; if (!drv) return NULL; return drv->ident; } /** * config_get_audio_driver_options: * * Get an enumerated list of all audio driver names, separated by '|'. * * Returns: string listing of all audio driver names, separated by '|'. **/ const char *config_get_audio_driver_options(void) { return char_list_new_special(STRING_LIST_AUDIO_DRIVERS, NULL); } static bool uninit_audio(void) { settings_t *settings = config_get_ptr(); if (current_audio && current_audio->free) { if (audio_driver_context_audio_data) current_audio->free(audio_driver_context_audio_data); audio_driver_context_audio_data = NULL; } if (audio_driver_data.output_samples.conv_buf) free(audio_driver_data.output_samples.conv_buf); audio_driver_data.output_samples.conv_buf = NULL; audio_driver_data.data_ptr = 0; if (audio_driver_data.rewind.buf) free(audio_driver_data.rewind.buf); audio_driver_data.rewind.buf = NULL; audio_driver_data.rewind.size = 0; if (!settings->audio.enable) { audio_driver_unset_active(); return false; } audio_driver_deinit_resampler(); if (audio_driver_data.data) free(audio_driver_data.data); audio_driver_data.data = NULL; if (audio_driver_data.output_samples.buf) free(audio_driver_data.output_samples.buf); audio_driver_data.output_samples.buf = NULL; command_event(CMD_EVENT_DSP_FILTER_DEINIT, NULL); compute_audio_buffer_statistics(); return true; } static bool audio_driver_init_internal(bool audio_cb_inited) { size_t outsamples_max, max_bufsamples = AUDIO_CHUNK_SIZE_NONBLOCKING * 2; settings_t *settings = config_get_ptr(); audio_convert_init_simd(); /* Accomodate rewind since at some point we might have two full buffers. */ outsamples_max = max_bufsamples * AUDIO_MAX_RATIO * settings->slowmotion_ratio; /* Used for recording even if audio isn't enabled. */ retro_assert(audio_driver_data.output_samples.conv_buf = (int16_t*)malloc(outsamples_max * sizeof(int16_t))); if (!audio_driver_data.output_samples.conv_buf) goto error; audio_driver_data.chunk.block_size = AUDIO_CHUNK_SIZE_BLOCKING; audio_driver_data.chunk.nonblock_size = AUDIO_CHUNK_SIZE_NONBLOCKING; audio_driver_data.chunk.size = audio_driver_data.chunk.block_size; /* Needs to be able to hold full content of a full max_bufsamples * in addition to its own. */ retro_assert(audio_driver_data.rewind.buf = (int16_t*) malloc(max_bufsamples * sizeof(int16_t))); if (!audio_driver_data.rewind.buf) goto error; audio_driver_data.rewind.size = max_bufsamples; if (!settings->audio.enable) { audio_driver_unset_active(); return false; } audio_driver_find_driver(); #ifdef HAVE_THREADS if (audio_cb_inited) { RARCH_LOG("Starting threaded audio driver ...\n"); if (!rarch_threaded_audio_init( ¤t_audio, &audio_driver_context_audio_data, *settings->audio.device ? settings->audio.device : NULL, settings->audio.out_rate, settings->audio.latency, current_audio)) { RARCH_ERR("Cannot open threaded audio driver ... Exiting ...\n"); retroarch_fail(1, "audio_driver_init_internal()"); } } else #endif { audio_driver_context_audio_data = current_audio->init(*settings->audio.device ? settings->audio.device : NULL, settings->audio.out_rate, settings->audio.latency); } if (!audio_driver_context_audio_data) { RARCH_ERR("Failed to initialize audio driver. Will continue without audio.\n"); audio_driver_unset_active(); } audio_driver_data.use_float = false; if ( audio_driver_is_active() && current_audio->use_float(audio_driver_context_audio_data)) audio_driver_data.use_float = true; if (!settings->audio.sync && audio_driver_is_active()) { command_event(CMD_EVENT_AUDIO_SET_NONBLOCKING_STATE, NULL); audio_driver_data.chunk.size = audio_driver_data.chunk.nonblock_size; } if (audio_driver_data.audio_rate.input <= 0.0f) { /* Should never happen. */ RARCH_WARN("Input rate is invalid (%.3f Hz). Using output rate (%u Hz).\n", audio_driver_data.audio_rate.input, settings->audio.out_rate); audio_driver_data.audio_rate.input = settings->audio.out_rate; } audio_driver_data.audio_rate.source_ratio.original = audio_driver_data.audio_rate.source_ratio.current = (double)settings->audio.out_rate / audio_driver_data.audio_rate.input; if (!audio_driver_init_resampler()) { RARCH_ERR("Failed to initialize resampler \"%s\".\n", settings->audio.resampler); audio_driver_unset_active(); } retro_assert(audio_driver_data.data = (float*) malloc(max_bufsamples * sizeof(float))); if (!audio_driver_data.data) goto error; audio_driver_data.data_ptr = 0; retro_assert(settings->audio.out_rate < audio_driver_data.audio_rate.input * AUDIO_MAX_RATIO); retro_assert(audio_driver_data.output_samples.buf = (float*) malloc(outsamples_max * sizeof(float))); if (!audio_driver_data.output_samples.buf) goto error; audio_driver_data.audio_rate.control = false; if ( !audio_cb_inited && audio_driver_is_active() && settings->audio.rate_control ) { /* Audio rate control requires write_avail * and buffer_size to be implemented. */ if (current_audio->buffer_size) { audio_driver_data.driver_buffer_size = current_audio->buffer_size(audio_driver_context_audio_data); audio_driver_data.audio_rate.control = true; } else RARCH_WARN("Audio rate control was desired, but driver does not support needed features.\n"); } command_event(CMD_EVENT_DSP_FILTER_INIT, NULL); audio_driver_data.free_samples.count = 0; /* Threaded driver is initially stopped. */ if ( audio_driver_is_active() && !settings->audio.mute_enable && audio_cb_inited ) audio_driver_start(); return true; error: return audio_driver_deinit(); } /* * audio_driver_readjust_input_rate: * * Readjust the audio input rate. */ static void audio_driver_readjust_input_rate(void) { settings_t *settings = config_get_ptr(); unsigned write_idx = audio_driver_data.free_samples.count++ & (AUDIO_BUFFER_FREE_SAMPLES_COUNT - 1); int half_size = audio_driver_data.driver_buffer_size / 2; int avail = current_audio->write_avail(audio_driver_context_audio_data); int delta_mid = avail - half_size; double direction = (double)delta_mid / half_size; double adjust = 1.0 + settings->audio.rate_control_delta * direction; #if 0 RARCH_LOG_OUTPUT("Audio buffer is %u%% full\n", (unsigned)(100 - (avail * 100) / audio_driver_data.driver_buffer_size)); #endif audio_driver_data.free_samples.buf[write_idx] = avail; audio_driver_data.audio_rate.source_ratio.current = audio_driver_data.audio_rate.source_ratio.original * adjust; #if 0 RARCH_LOG_OUTPUT("New rate: %lf, Orig rate: %lf\n", audio_driver_data.audio_rate.source_ratio.current, audio_driver_data.audio_rate.source_ratio.original); #endif } void audio_driver_set_nonblocking_state(bool enable) { settings_t *settings = config_get_ptr(); if ( audio_driver_is_active() && audio_driver_context_audio_data ) current_audio->set_nonblock_state(audio_driver_context_audio_data, settings->audio.sync ? enable : true); audio_driver_data.chunk.size = enable ? audio_driver_data.chunk.nonblock_size : audio_driver_data.chunk.block_size; } /** * audio_driver_flush: * @data : pointer to audio buffer. * @right : amount of samples to write. * * Writes audio samples to audio driver. Will first * perform DSP processing (if enabled) and resampling. * * Returns: true (1) if audio samples were written to the audio * driver, false (0) in case of an error. **/ static bool audio_driver_flush(const int16_t *data, size_t samples) { static struct retro_perf_counter audio_convert_s16 = {0}; static struct retro_perf_counter audio_convert_float = {0}; static struct retro_perf_counter audio_dsp = {0}; struct resampler_data src_data = {0}; struct rarch_dsp_data dsp_data = {0}; const void *output_data = NULL; unsigned output_frames = 0; size_t output_size = sizeof(float); settings_t *settings = config_get_ptr(); recording_push_audio(data, samples); if (runloop_ctl(RUNLOOP_CTL_IS_PAUSED, NULL) || settings->audio.mute_enable) return true; if (!audio_driver_is_active()) return false; if (!audio_driver_data.data) return false; rarch_perf_init(&audio_convert_s16, "audio_convert_s16"); retro_perf_start(&audio_convert_s16); audio_convert_s16_to_float(audio_driver_data.data, data, samples, audio_driver_data.volume_gain); retro_perf_stop(&audio_convert_s16); src_data.data_in = audio_driver_data.data; src_data.input_frames = samples >> 1; dsp_data.input = audio_driver_data.data; dsp_data.input_frames = samples >> 1; if (audio_driver_data.dsp) { rarch_perf_init(&audio_dsp, "audio_dsp"); retro_perf_start(&audio_dsp); rarch_dsp_filter_process(audio_driver_data.dsp, &dsp_data); retro_perf_stop(&audio_dsp); if (dsp_data.output) { src_data.data_in = dsp_data.output; src_data.input_frames = dsp_data.output_frames; } } src_data.data_out = audio_driver_data.output_samples.buf; if (audio_driver_data.audio_rate.control) audio_driver_readjust_input_rate(); src_data.ratio = audio_driver_data.audio_rate.source_ratio.current; if (runloop_ctl(RUNLOOP_CTL_IS_SLOWMOTION, NULL)) src_data.ratio *= settings->slowmotion_ratio; audio_driver_process_resampler(&src_data); output_data = audio_driver_data.output_samples.buf; output_frames = src_data.output_frames; if (!audio_driver_data.use_float) { rarch_perf_init(&audio_convert_float, "audio_convert_float"); retro_perf_start(&audio_convert_float); audio_convert_float_to_s16(audio_driver_data.output_samples.conv_buf, (const float*)output_data, output_frames * 2); retro_perf_stop(&audio_convert_float); output_data = audio_driver_data.output_samples.conv_buf; output_size = sizeof(int16_t); } if (current_audio->write(audio_driver_context_audio_data, output_data, output_frames * output_size * 2) < 0) { audio_driver_unset_active(); return false; } return true; } /** * audio_driver_sample: * @left : value of the left audio channel. * @right : value of the right audio channel. * * Audio sample render callback function. **/ void audio_driver_sample(int16_t left, int16_t right) { audio_driver_data.output_samples.conv_buf[audio_driver_data.data_ptr++] = left; audio_driver_data.output_samples.conv_buf[audio_driver_data.data_ptr++] = right; if (audio_driver_data.data_ptr < audio_driver_data.chunk.size) return; audio_driver_flush(audio_driver_data.output_samples.conv_buf, audio_driver_data.data_ptr); audio_driver_data.data_ptr = 0; } /** * audio_driver_sample_batch: * @data : pointer to audio buffer. * @frames : amount of audio frames to push. * * Batched audio sample render callback function. * * Returns: amount of frames sampled. Will be equal to @frames * unless @frames exceeds (AUDIO_CHUNK_SIZE_NONBLOCKING / 2). **/ size_t audio_driver_sample_batch(const int16_t *data, size_t frames) { if (frames > (AUDIO_CHUNK_SIZE_NONBLOCKING >> 1)) frames = AUDIO_CHUNK_SIZE_NONBLOCKING >> 1; audio_driver_flush(data, frames << 1); return frames; } /** * audio_driver_sample_rewind: * @left : value of the left audio channel. * @right : value of the right audio channel. * * Audio sample render callback function (rewind version). * This callback function will be used instead of * audio_driver_sample when rewinding is activated. **/ void audio_driver_sample_rewind(int16_t left, int16_t right) { audio_driver_data.rewind.buf[--audio_driver_data.rewind.ptr] = right; audio_driver_data.rewind.buf[--audio_driver_data.rewind.ptr] = left; } /** * audio_driver_sample_batch_rewind: * @data : pointer to audio buffer. * @frames : amount of audio frames to push. * * Batched audio sample render callback function (rewind version). * * This callback function will be used instead of * audio_driver_sample_batch when rewinding is activated. * * Returns: amount of frames sampled. Will be equal to @frames * unless @frames exceeds (AUDIO_CHUNK_SIZE_NONBLOCKING / 2). **/ size_t audio_driver_sample_batch_rewind(const int16_t *data, size_t frames) { size_t i; size_t samples = frames << 1; for (i = 0; i < samples; i++) audio_driver_data.rewind.buf[--audio_driver_data.rewind.ptr] = data[i]; return frames; } void audio_driver_set_volume_gain(float gain) { audio_driver_data.volume_gain = gain; } void audio_driver_dsp_filter_free(void) { if (audio_driver_data.dsp) rarch_dsp_filter_free(audio_driver_data.dsp); audio_driver_data.dsp = NULL; } void audio_driver_dsp_filter_init(const char *device) { audio_driver_data.dsp = rarch_dsp_filter_new( device, audio_driver_data.audio_rate.input); if (!audio_driver_data.dsp) RARCH_ERR("[DSP]: Failed to initialize DSP filter \"%s\".\n", device); } void audio_driver_set_buffer_size(size_t bufsize) { audio_driver_data.driver_buffer_size = bufsize; } void audio_driver_monitor_adjust_system_rates(void) { float timing_skew; settings_t *settings = config_get_ptr(); const struct retro_system_timing *info = NULL; struct retro_system_av_info *av_info = video_viewport_get_system_av_info(); if (av_info) info = (const struct retro_system_timing*)&av_info->timing; if (!info || info->sample_rate <= 0.0) return; timing_skew = fabs(1.0f - info->fps / settings->video.refresh_rate); audio_driver_data.audio_rate.input = info->sample_rate; if (timing_skew <= settings->audio.max_timing_skew) audio_driver_data.audio_rate.input *= (settings->video.refresh_rate / info->fps); RARCH_LOG("Set audio input rate to: %.2f Hz.\n", audio_driver_data.audio_rate.input); } void audio_driver_setup_rewind(void) { unsigned i; /* Push audio ready to be played. */ audio_driver_data.rewind.ptr = audio_driver_data.rewind.size; for (i = 0; i < audio_driver_data.data_ptr; i += 2) { audio_driver_data.rewind.buf[--audio_driver_data.rewind.ptr] = audio_driver_data.output_samples.conv_buf[i + 1]; audio_driver_data.rewind.buf[--audio_driver_data.rewind.ptr] = audio_driver_data.output_samples.conv_buf[i + 0]; } audio_driver_data.data_ptr = 0; } bool audio_driver_find_driver(void) { int i; driver_ctx_info_t drv; settings_t *settings = config_get_ptr(); drv.label = "audio_driver"; drv.s = settings->audio.driver; driver_ctl(RARCH_DRIVER_CTL_FIND_INDEX, &drv); i = drv.len; if (i >= 0) current_audio = (const audio_driver_t*)audio_driver_find_handle(i); else { unsigned d; RARCH_ERR("Couldn't find any audio driver named \"%s\"\n", settings->audio.driver); RARCH_LOG_OUTPUT("Available audio drivers are:\n"); for (d = 0; audio_driver_find_handle(d); d++) RARCH_LOG_OUTPUT("\t%s\n", audio_driver_find_ident(d)); RARCH_WARN("Going to default to first audio driver...\n"); current_audio = (const audio_driver_t*)audio_driver_find_handle(0); if (!current_audio) retroarch_fail(1, "audio_driver_find()"); } return true; } void audio_driver_deinit_resampler(void) { rarch_resampler_freep(&audio_driver_resampler, &audio_driver_resampler_data); } bool audio_driver_free_devices_list(void) { if (!current_audio || !current_audio->device_list_free || !audio_driver_context_audio_data) return false; current_audio->device_list_free(audio_driver_context_audio_data, audio_driver_devices_list); audio_driver_devices_list = NULL; return true; } bool audio_driver_new_devices_list(void) { if (!current_audio || !current_audio->device_list_new || !audio_driver_context_audio_data) return false; audio_driver_devices_list = (struct string_list*) current_audio->device_list_new(audio_driver_context_audio_data); if (!audio_driver_devices_list) return false; return true; } bool audio_driver_init(void) { return audio_driver_init_internal(audio_callback.callback != NULL); } bool audio_driver_get_devices_list(void **data) { struct string_list**ptr = (struct string_list**)data; if (!ptr) return false; *ptr = audio_driver_devices_list; return true; } bool audio_driver_init_resampler(void) { settings_t *settings = config_get_ptr(); return rarch_resampler_realloc( &audio_driver_resampler_data, &audio_driver_resampler, settings->audio.resampler, audio_driver_data.audio_rate.source_ratio.original); } void audio_driver_process_resampler(struct resampler_data *data) { rarch_perf_init(&resampler_proc, "resampler_proc"); retro_perf_start(&resampler_proc); rarch_resampler_process(audio_driver_resampler, audio_driver_resampler_data, data); retro_perf_stop(&resampler_proc); } bool audio_driver_deinit(void) { audio_driver_free_devices_list(); if (!uninit_audio()) return false; return true; } bool audio_driver_set_callback(const void *data) { const struct retro_audio_callback *cb = (const struct retro_audio_callback*)data; #ifdef HAVE_NETPLAY global_t *global = global_get_ptr(); #endif if (recording_driver_get_data_ptr()) /* A/V sync is a must. */ return false; #ifdef HAVE_NETPLAY if (global->netplay.enable) return false; #endif if (cb) audio_callback = *cb; return true; } bool audio_driver_enable_callback(void) { if (!audio_driver_has_callback()) return false; if (audio_callback.set_state) audio_callback.set_state(true); return true; } bool audio_driver_disable_callback(void) { if (!audio_driver_has_callback()) return false; if (audio_callback.set_state) audio_callback.set_state(false); return true; } /* Sets audio monitor rate to new value. */ void audio_driver_monitor_set_rate(void) { settings_t *settings = config_get_ptr(); double new_src_ratio = (double)settings->audio.out_rate / audio_driver_data.audio_rate.input; audio_driver_data.audio_rate.source_ratio.original = new_src_ratio; audio_driver_data.audio_rate.source_ratio.current = new_src_ratio; } bool audio_driver_callback(void) { if (!audio_driver_has_callback()) return false; if (audio_callback.callback) audio_callback.callback(); return true; } bool audio_driver_has_callback(void) { return audio_callback.callback; } bool audio_driver_toggle_mute(void) { settings_t *settings = config_get_ptr(); if (!audio_driver_context_audio_data) return false; if (!audio_driver_is_active()) return false; settings->audio.mute_enable = !settings->audio.mute_enable; if (settings->audio.mute_enable) command_event(CMD_EVENT_AUDIO_STOP, NULL); else if (!command_event(CMD_EVENT_AUDIO_START, NULL)) { audio_driver_unset_active(); return false; } return true; } bool audio_driver_start(void) { if (!current_audio || !current_audio->start || !audio_driver_context_audio_data) return false; return current_audio->start(audio_driver_context_audio_data); } bool audio_driver_stop(void) { if (!current_audio || !current_audio->stop || !audio_driver_context_audio_data) return false; return current_audio->stop(audio_driver_context_audio_data); } void audio_driver_unset_callback(void) { audio_callback.callback = NULL; audio_callback.set_state = NULL; } bool audio_driver_alive(void) { if (!current_audio || !current_audio->alive || !audio_driver_context_audio_data) return false; return current_audio->alive(audio_driver_context_audio_data); } void audio_driver_frame_is_reverse(void) { /* We just rewound. Flush rewind audio buffer. */ audio_driver_flush( audio_driver_data.rewind.buf + audio_driver_data.rewind.ptr, audio_driver_data.rewind.size - audio_driver_data.rewind.ptr); } void audio_driver_destroy_data(void) { audio_driver_context_audio_data = NULL; } void audio_driver_set_own_driver(void) { audio_driver_data_own = true; } void audio_driver_unset_own_driver(void) { audio_driver_data_own = false; } bool audio_driver_owns_driver(void) { return audio_driver_data_own; } void audio_driver_set_active(void) { audio_driver_active = true; } void audio_driver_unset_active(void) { audio_driver_active = false; } bool audio_driver_is_active(void) { return audio_driver_active; } void audio_driver_destroy(void) { audio_driver_active = false; audio_driver_data_own = false; current_audio = NULL; }