/* RetroArch - A frontend for libretro. * Copyright (C) 2010-2012 - Hans-Kristian Arntzen * * RetroArch is free software: you can redistribute it and/or modify it under the terms * of the GNU General Public License as published by the Free Software Found- * ation, either version 3 of the License, or (at your option) any later version. * * RetroArch is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; * without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR * PURPOSE. See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with RetroArch. * If not, see . */ #include "netplay_compat.h" #include "netplay.h" #include "general.h" #include "autosave.h" #include "dynamic.h" #include "message.h" #include #include // Checks if input port/index is controlled by netplay or not. static bool netplay_is_alive(netplay_t *handle); static bool netplay_poll(netplay_t *handle); static int16_t netplay_input_state(netplay_t *handle, bool port, unsigned device, unsigned index, unsigned id); // If we're fast-forward replaying to resync, check if we should actually show frame. static bool netplay_should_skip(netplay_t *handle); static bool netplay_can_poll(netplay_t *handle); static void netplay_set_spectate_input(netplay_t *handle, int16_t input); static bool netplay_send_cmd(netplay_t *handle, uint32_t cmd, const void *data, size_t size); static bool netplay_get_cmd(netplay_t *handle); #define PREV_PTR(x) ((x) == 0 ? handle->buffer_size - 1 : (x) - 1) #define NEXT_PTR(x) ((x + 1) % handle->buffer_size) struct delta_frame { void *state; uint16_t real_input_state; uint16_t simulated_input_state; bool is_simulated; uint16_t self_state; bool used_real; }; #define UDP_FRAME_PACKETS 16 #define MAX_SPECTATORS 16 #define NETPLAY_CMD_ACK 0 #define NETPLAY_CMD_NAK 1 #define NETPLAY_CMD_FLIP_PLAYERS 2 struct netplay { char nick[32]; char other_nick[32]; struct sockaddr_storage other_addr; struct retro_callbacks cbs; int fd; // TCP connection for state sending, etc. Also used for commands. int udp_fd; // UDP connection for game state updates. unsigned port; // Which port is governed by netplay (other player)? bool has_connection; struct delta_frame *buffer; size_t buffer_size; size_t self_ptr; // Ptr where we are now. size_t other_ptr; // Points to the last reliable state that self ever had. size_t read_ptr; // Ptr to where we are reading. Generally, other_ptr <= read_ptr <= self_ptr. size_t tmp_ptr; // A temporary pointer used on replay. size_t state_size; bool is_replay; // Are we replaying old frames? bool can_poll; // We don't want to poll several times on a frame. uint32_t packet_buffer[UDP_FRAME_PACKETS * 2]; // To compat UDP packet loss we also send old data along with the packets. uint32_t frame_count; uint32_t read_frame_count; uint32_t other_frame_count; uint32_t tmp_frame_count; struct addrinfo *addr; struct sockaddr_storage their_addr; bool has_client_addr; unsigned timeout_cnt; // Spectating. bool spectate; bool spectate_client; int spectate_fds[MAX_SPECTATORS]; uint16_t *spectate_input; size_t spectate_input_ptr; size_t spectate_input_size; // Player flipping // Flipping state. If ptr >= flip_frame, we apply the flip. // If not, we apply the opposite, effectively creating a trigger point. // To avoid collition we need to make sure our client/host is synced up well after flip_frame // before allowing another flip. bool flip; uint32_t flip_frame; }; static bool send_all(int fd, const void *data_, size_t size) { const uint8_t *data = (const uint8_t*)data_; while (size) { ssize_t ret = send(fd, CONST_CAST data, size, 0); if (ret <= 0) return false; data += ret; size -= ret; } return true; } static bool recv_all(int fd, void *data_, size_t size) { uint8_t *data = (uint8_t*)data_; while (size) { ssize_t ret = recv(fd, NONCONST_CAST data, size, 0); if (ret <= 0) return false; data += ret; size -= ret; } return true; } static void warn_hangup(void) { RARCH_WARN("Netplay has disconnected. Will continue without connection ...\n"); if (g_extern.msg_queue) msg_queue_push(g_extern.msg_queue, "Netplay has disconnected. Will continue without connection.", 0, 480); } void input_poll_net(void) { if (!netplay_should_skip(g_extern.netplay) && netplay_can_poll(g_extern.netplay)) netplay_poll(g_extern.netplay); } void video_frame_net(const void *data, unsigned width, unsigned height, size_t pitch) { if (!netplay_should_skip(g_extern.netplay)) g_extern.netplay->cbs.frame_cb(data, width, height, pitch); } void audio_sample_net(int16_t left, int16_t right) { if (!netplay_should_skip(g_extern.netplay)) g_extern.netplay->cbs.sample_cb(left, right); } size_t audio_sample_batch_net(const int16_t *data, size_t frames) { if (!netplay_should_skip(g_extern.netplay)) return g_extern.netplay->cbs.sample_batch_cb(data, frames); else return frames; } int16_t input_state_net(unsigned port, unsigned device, unsigned index, unsigned id) { if (netplay_is_alive(g_extern.netplay)) return netplay_input_state(g_extern.netplay, port, device, index, id); else return g_extern.netplay->cbs.state_cb(port, device, index, id); } #ifndef HAVE_SOCKET_LEGACY // Custom inet_ntop. Win32 doesn't seem to support this ... static void log_connection(const struct sockaddr_storage *their_addr, unsigned slot, const char *nick) { union { const struct sockaddr_storage *storage; const struct sockaddr_in *v4; const struct sockaddr_in6 *v6; } u; u.storage = their_addr; const char *str = NULL; char buf_v4[INET_ADDRSTRLEN] = {0}; char buf_v6[INET6_ADDRSTRLEN] = {0}; if (their_addr->ss_family == AF_INET) { str = buf_v4; struct sockaddr_in in; memset(&in, 0, sizeof(in)); in.sin_family = AF_INET; memcpy(&in.sin_addr, &u.v4->sin_addr, sizeof(struct in_addr)); getnameinfo((struct sockaddr*)&in, sizeof(struct sockaddr_in), buf_v4, sizeof(buf_v4), NULL, 0, NI_NUMERICHOST); } else if (their_addr->ss_family == AF_INET6) { str = buf_v6; struct sockaddr_in6 in; memset(&in, 0, sizeof(in)); in.sin6_family = AF_INET6; memcpy(&in.sin6_addr, &u.v6->sin6_addr, sizeof(struct in6_addr)); getnameinfo((struct sockaddr*)&in, sizeof(struct sockaddr_in6), buf_v6, sizeof(buf_v6), NULL, 0, NI_NUMERICHOST); } if (str) { char msg[512]; snprintf(msg, sizeof(msg), "Got connection from: \"%s (%s)\" (#%u)", nick, str, slot); msg_queue_push(g_extern.msg_queue, msg, 1, 180); RARCH_LOG("%s\n", msg); } } #endif static int init_tcp_connection(const struct addrinfo *res, bool server, bool spectate, struct sockaddr *other_addr, socklen_t addr_size) { bool ret = true; int fd = socket(res->ai_family, res->ai_socktype, res->ai_protocol); if (fd < 0) { ret = false; goto end; } if (server) { if (connect(fd, res->ai_addr, res->ai_addrlen) < 0) { ret = false; goto end; } } else if (spectate) { int yes = 1; setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, CONST_CAST &yes, sizeof(int)); if (bind(fd, res->ai_addr, res->ai_addrlen) < 0 || listen(fd, MAX_SPECTATORS) < 0) { ret = false; goto end; } } else { int yes = 1; setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, CONST_CAST &yes, sizeof(int)); if (bind(fd, res->ai_addr, res->ai_addrlen) < 0 || listen(fd, 1) < 0) { ret = false; goto end; } int new_fd = accept(fd, other_addr, &addr_size); if (new_fd < 0) { ret = false; goto end; } close(fd); fd = new_fd; } end: if (!ret && fd >= 0) { close(fd); fd = -1; } return fd; } static bool init_tcp_socket(netplay_t *handle, const char *server, uint16_t port, bool spectate) { struct addrinfo hints, *res = NULL; memset(&hints, 0, sizeof(hints)); #if defined(_WIN32) || defined(HAVE_SOCKET_LEGACY) hints.ai_family = AF_INET; #else hints.ai_family = AF_UNSPEC; #endif hints.ai_socktype = SOCK_STREAM; if (!server) hints.ai_flags = AI_PASSIVE; bool ret = false; char port_buf[16]; snprintf(port_buf, sizeof(port_buf), "%hu", (unsigned short)port); if (getaddrinfo(server, port_buf, &hints, &res) < 0) return false; if (!res) return false; // If "localhost" is used, it is important to check every possible address for ipv4/ipv6. const struct addrinfo *tmp_info = res; while (tmp_info) { int fd; if ((fd = init_tcp_connection(tmp_info, server, handle->spectate, (struct sockaddr*)&handle->other_addr, sizeof(handle->other_addr))) >= 0) { ret = true; handle->fd = fd; break; } tmp_info = tmp_info->ai_next; } if (res) freeaddrinfo(res); if (!ret) RARCH_ERR("Failed to set up netplay sockets.\n"); return ret; } static bool init_udp_socket(netplay_t *handle, const char *server, uint16_t port) { struct addrinfo hints; memset(&hints, 0, sizeof(hints)); #if defined(_WIN32) || defined(HAVE_SOCKET_LEGACY) hints.ai_family = AF_INET; #else hints.ai_family = AF_UNSPEC; #endif hints.ai_socktype = SOCK_DGRAM; if (!server) hints.ai_flags = AI_PASSIVE; char port_buf[16]; snprintf(port_buf, sizeof(port_buf), "%hu", (unsigned short)port); if (getaddrinfo(server, port_buf, &hints, &handle->addr) < 0) return false; if (!handle->addr) return false; handle->udp_fd = socket(handle->addr->ai_family, handle->addr->ai_socktype, handle->addr->ai_protocol); if (handle->udp_fd < 0) { RARCH_ERR("Failed to init socket...\n"); return false; } if (!server) { // Note sure if we have to do this for UDP, but hey :) int yes = 1; setsockopt(handle->udp_fd, SOL_SOCKET, SO_REUSEADDR, CONST_CAST &yes, sizeof(int)); if (bind(handle->udp_fd, handle->addr->ai_addr, handle->addr->ai_addrlen) < 0) { RARCH_ERR("Failed to bind socket.\n"); close(handle->udp_fd); handle->udp_fd = -1; } freeaddrinfo(handle->addr); handle->addr = NULL; } return true; } // Platform specific socket library init. bool netplay_init_network(void) { static bool inited = false; if (inited) return true; #if defined(_WIN32) WSADATA wsaData; if (WSAStartup(MAKEWORD(2, 2), &wsaData) != 0) { WSACleanup(); return false; } #elif defined(__CELLOS_LV2__) && !defined(__PSL1GHT__) cellSysmoduleLoadModule(CELL_SYSMODULE_NET); sys_net_initialize_network(); #else signal(SIGPIPE, SIG_IGN); // Do not like SIGPIPE killing our app :( #endif inited = true; return true; } static bool init_socket(netplay_t *handle, const char *server, uint16_t port) { if (!netplay_init_network()) return false; if (!init_tcp_socket(handle, server, port, handle->spectate)) return false; if (!handle->spectate && !init_udp_socket(handle, server, port)) return false; return true; } bool netplay_can_poll(netplay_t *handle) { return handle->can_poll; } // Not really a hash, but should be enough to differentiate implementations from each other. // Subtle differences in the implementation will not be possible to spot. // The alternative would have been checking serialization sizes, but it was troublesome for cross platform compat. static uint32_t implementation_magic_value(void) { uint32_t res = 0; unsigned api = pretro_api_version(); res |= api; const char *lib = g_extern.system.info.library_name; size_t len = strlen(lib); for (size_t i = 0; i < len; i++) res ^= lib[i] << (i & 0xf); lib = g_extern.system.info.library_version; len = strlen(lib); for (size_t i = 0; i < len; i++) res ^= lib[i] << (i & 0xf); const char *ver = PACKAGE_VERSION; len = strlen(ver); for (size_t i = 0; i < len; i++) res ^= ver[i] << ((i & 0xf) + 16); return res; } static bool send_nickname(netplay_t *handle, int fd) { uint8_t nick_size = strlen(handle->nick); if (!send_all(fd, &nick_size, sizeof(nick_size))) { RARCH_ERR("Failed to send nick size.\n"); return false; } if (!send_all(fd, handle->nick, nick_size)) { RARCH_ERR("Failed to send nick.\n"); return false; } return true; } static bool get_nickname(netplay_t *handle, int fd) { uint8_t nick_size; if (!recv_all(fd, &nick_size, sizeof(nick_size))) { RARCH_ERR("Failed to receive nick size from host.\n"); return false; } if (nick_size >= sizeof(handle->other_nick)) { RARCH_ERR("Invalid nick size.\n"); return false; } if (!recv_all(fd, handle->other_nick, nick_size)) { RARCH_ERR("Failed to receive nick.\n"); return false; } return true; } static bool send_info(netplay_t *handle) { uint32_t header[3] = { htonl(g_extern.cart_crc), htonl(implementation_magic_value()), htonl(pretro_get_memory_size(RETRO_MEMORY_SAVE_RAM)) }; if (!send_all(handle->fd, header, sizeof(header))) return false; if (!send_nickname(handle, handle->fd)) { RARCH_ERR("Failed to send nick to host.\n"); return false; } // Get SRAM data from Player 1. void *sram = pretro_get_memory_data(RETRO_MEMORY_SAVE_RAM); unsigned sram_size = pretro_get_memory_size(RETRO_MEMORY_SAVE_RAM); if (!recv_all(handle->fd, sram, sram_size)) { RARCH_ERR("Failed to receive SRAM data from host.\n"); return false; } if (!get_nickname(handle, handle->fd)) { RARCH_ERR("Failed to receive nick from host.\n"); return false; } char msg[512]; snprintf(msg, sizeof(msg), "Connected to: \"%s\"", handle->other_nick); RARCH_LOG("%s\n", msg); msg_queue_push(g_extern.msg_queue, msg, 1, 180); return true; } static bool get_info(netplay_t *handle) { uint32_t header[3]; if (!recv_all(handle->fd, header, sizeof(header))) { RARCH_ERR("Failed to receive header from client.\n"); return false; } if (g_extern.cart_crc != ntohl(header[0])) { RARCH_ERR("Cart CRC32s differ. Cannot use different games.\n"); return false; } if (implementation_magic_value() != ntohl(header[1])) { RARCH_ERR("Implementations differ, make sure you're using exact same libretro implementations and RetroArch version.\n"); return false; } if (pretro_get_memory_size(RETRO_MEMORY_SAVE_RAM) != ntohl(header[2])) { RARCH_ERR("Cartridge SRAM sizes do not correspond.\n"); return false; } if (!get_nickname(handle, handle->fd)) { RARCH_ERR("Failed to get nickname from client.\n"); return false; } // Send SRAM data to our Player 2. const void *sram = pretro_get_memory_data(RETRO_MEMORY_SAVE_RAM); unsigned sram_size = pretro_get_memory_size(RETRO_MEMORY_SAVE_RAM); if (!send_all(handle->fd, sram, sram_size)) { RARCH_ERR("Failed to send SRAM data to client.\n"); return false; } if (!send_nickname(handle, handle->fd)) { RARCH_ERR("Failed to send nickname to client.\n"); return false; } #ifndef HAVE_SOCKET_LEGACY log_connection(&handle->other_addr, 0, handle->other_nick); #endif return true; } static uint32_t *bsv_header_generate(size_t *size, uint32_t magic) { uint32_t bsv_header[4] = {0}; size_t serialize_size = pretro_serialize_size(); size_t header_size = sizeof(bsv_header) + serialize_size; *size = header_size; uint32_t *header = (uint32_t*)malloc(header_size); if (!header) return NULL; bsv_header[MAGIC_INDEX] = swap_if_little32(BSV_MAGIC); bsv_header[SERIALIZER_INDEX] = swap_if_big32(magic); bsv_header[CRC_INDEX] = swap_if_big32(g_extern.cart_crc); bsv_header[STATE_SIZE_INDEX] = swap_if_big32(serialize_size); if (serialize_size && !pretro_serialize(header + 4, serialize_size)) { free(header); return NULL; } memcpy(header, bsv_header, sizeof(bsv_header)); return header; } static bool bsv_parse_header(const uint32_t *header, uint32_t magic) { uint32_t in_bsv = swap_if_little32(header[MAGIC_INDEX]); if (in_bsv != BSV_MAGIC) { RARCH_ERR("BSV magic mismatch, got 0x%x, expected 0x%x.\n", in_bsv, BSV_MAGIC); return false; } uint32_t in_magic = swap_if_big32(header[SERIALIZER_INDEX]); if (in_magic != magic) { RARCH_ERR("Magic mismatch, got 0x%x, expected 0x%x.\n", in_magic, magic); return false; } uint32_t in_crc = swap_if_big32(header[CRC_INDEX]); if (in_crc != g_extern.cart_crc) { RARCH_ERR("CRC32 mismatch, got 0x%x, expected 0x%x.\n", in_crc, g_extern.cart_crc); return false; } uint32_t in_state_size = swap_if_big32(header[STATE_SIZE_INDEX]); if (in_state_size != pretro_serialize_size()) { RARCH_ERR("Serialization size mismatch, got 0x%x, expected 0x%x.\n", (unsigned)in_state_size, (unsigned)pretro_serialize_size()); return false; } return true; } static bool get_info_spectate(netplay_t *handle) { if (!send_nickname(handle, handle->fd)) { RARCH_ERR("Failed to send nickname to host.\n"); return false; } if (!get_nickname(handle, handle->fd)) { RARCH_ERR("Failed to receive nickname from host.\n"); return false; } char msg[512]; snprintf(msg, sizeof(msg), "Connected to \"%s\"", handle->other_nick); msg_queue_push(g_extern.msg_queue, msg, 1, 180); RARCH_LOG("%s\n", msg); uint32_t header[4]; if (!recv_all(handle->fd, header, sizeof(header))) { RARCH_ERR("Cannot get header from host.\n"); return false; } size_t save_state_size = pretro_serialize_size(); if (!bsv_parse_header(header, implementation_magic_value())) { RARCH_ERR("Received invalid BSV header from host.\n"); return false; } void *buf = malloc(save_state_size); if (!buf) return false; size_t size = save_state_size; if (!recv_all(handle->fd, buf, size)) { RARCH_ERR("Failed to receive save state from host.\n"); free(buf); return false; } bool ret = true; if (save_state_size) ret = pretro_unserialize(buf, save_state_size); free(buf); return ret; } static void init_buffers(netplay_t *handle) { handle->buffer = (struct delta_frame*)calloc(handle->buffer_size, sizeof(*handle->buffer)); handle->state_size = pretro_serialize_size(); for (unsigned i = 0; i < handle->buffer_size; i++) { handle->buffer[i].state = malloc(handle->state_size); handle->buffer[i].is_simulated = true; } } netplay_t *netplay_new(const char *server, uint16_t port, unsigned frames, const struct retro_callbacks *cb, bool spectate, const char *nick) { if (frames > UDP_FRAME_PACKETS) frames = UDP_FRAME_PACKETS; netplay_t *handle = (netplay_t*)calloc(1, sizeof(*handle)); if (!handle) return NULL; handle->fd = -1; handle->udp_fd = -1; handle->cbs = *cb; handle->port = server ? 0 : 1; handle->spectate = spectate; handle->spectate_client = server != NULL; strlcpy(handle->nick, nick, sizeof(handle->nick)); if (!init_socket(handle, server, port)) { free(handle); return NULL; } if (spectate) { if (server) { if (!get_info_spectate(handle)) goto error; } for (unsigned i = 0; i < MAX_SPECTATORS; i++) handle->spectate_fds[i] = -1; } else { if (server) { if (!send_info(handle)) goto error; } else { if (!get_info(handle)) goto error; } handle->buffer_size = frames + 1; init_buffers(handle); handle->has_connection = true; } return handle; error: if (handle->fd >= 0) close(handle->fd); if (handle->udp_fd >= 0) close(handle->udp_fd); free(handle); return NULL; } static bool netplay_is_alive(netplay_t *handle) { return handle->has_connection; } static bool send_chunk(netplay_t *handle) { const struct sockaddr *addr = NULL; if (handle->addr) addr = handle->addr->ai_addr; else if (handle->has_client_addr) addr = (const struct sockaddr*)&handle->their_addr; if (addr) { if (sendto(handle->udp_fd, CONST_CAST handle->packet_buffer, sizeof(handle->packet_buffer), 0, addr, sizeof(struct sockaddr)) != sizeof(handle->packet_buffer)) { warn_hangup(); handle->has_connection = false; return false; } } return true; } #define MAX_RETRIES 16 #define RETRY_MS 500 static int poll_input(netplay_t *handle, bool block) { int max_fd = (handle->fd > handle->udp_fd ? handle->fd : handle->udp_fd) + 1; struct timeval tv = {0}; tv.tv_sec = 0; tv.tv_usec = block ? (RETRY_MS * 1000) : 0; do { handle->timeout_cnt++; // select() does not take pointer to const struct timeval. // Technically possible for select() to modify tmp_tv, so we go paranoia mode. struct timeval tmp_tv = tv; fd_set fds; FD_ZERO(&fds); FD_SET(handle->udp_fd, &fds); FD_SET(handle->fd, &fds); if (select(max_fd, &fds, NULL, NULL, &tmp_tv) < 0) return -1; // Somewhat hacky, // but we aren't using the TCP connection for anything useful atm. if (FD_ISSET(handle->fd, &fds) && !netplay_get_cmd(handle)) return -1; if (FD_ISSET(handle->udp_fd, &fds)) return 1; if (block && !send_chunk(handle)) { warn_hangup(); handle->has_connection = false; return -1; } if (block) { RARCH_LOG("Network is stalling, resending packet... Count %u of %d ...\n", handle->timeout_cnt, MAX_RETRIES); } } while ((handle->timeout_cnt < MAX_RETRIES) && block); if (block) return -1; return 0; } // Grab our own input state and send this over the network. static bool get_self_input_state(netplay_t *handle) { struct delta_frame *ptr = &handle->buffer[handle->self_ptr]; uint32_t state = 0; if (handle->frame_count > 0) // First frame we always give zero input since relying on input from first frame screws up when we use -F 0. { retro_input_state_t cb = handle->cbs.state_cb; for (unsigned i = 0; i < RARCH_FIRST_META_KEY; i++) { int16_t tmp = cb(g_settings.input.netplay_client_swap_input ? 0 : !handle->port, RETRO_DEVICE_JOYPAD, 0, i); state |= tmp ? 1 << i : 0; } } memmove(handle->packet_buffer, handle->packet_buffer + 2, sizeof (handle->packet_buffer) - 2 * sizeof(uint32_t)); handle->packet_buffer[(UDP_FRAME_PACKETS - 1) * 2] = htonl(handle->frame_count); handle->packet_buffer[(UDP_FRAME_PACKETS - 1) * 2 + 1] = htonl(state); if (!send_chunk(handle)) { warn_hangup(); handle->has_connection = false; return false; } ptr->self_state = state; handle->self_ptr = NEXT_PTR(handle->self_ptr); return true; } // TODO: Somewhat better prediction. :P static void simulate_input(netplay_t *handle) { size_t ptr = PREV_PTR(handle->self_ptr); size_t prev = PREV_PTR(handle->read_ptr); handle->buffer[ptr].simulated_input_state = handle->buffer[prev].real_input_state; handle->buffer[ptr].is_simulated = true; handle->buffer[ptr].used_real = false; } static void parse_packet(netplay_t *handle, uint32_t *buffer, unsigned size) { for (unsigned i = 0; i < size * 2; i++) buffer[i] = ntohl(buffer[i]); for (unsigned i = 0; i < size && handle->read_frame_count <= handle->frame_count; i++) { uint32_t frame = buffer[2 * i + 0]; uint32_t state = buffer[2 * i + 1]; if (frame == handle->read_frame_count) { handle->buffer[handle->read_ptr].is_simulated = false; handle->buffer[handle->read_ptr].real_input_state = state; handle->read_ptr = NEXT_PTR(handle->read_ptr); handle->read_frame_count++; handle->timeout_cnt = 0; } } } static bool receive_data(netplay_t *handle, uint32_t *buffer, size_t size) { socklen_t addrlen = sizeof(handle->their_addr); if (recvfrom(handle->udp_fd, NONCONST_CAST buffer, size, 0, (struct sockaddr*)&handle->their_addr, &addrlen) != (ssize_t)size) return false; handle->has_client_addr = true; return true; } // Poll network to see if we have anything new. If our network buffer is full, we simply have to block for new input data. static bool netplay_poll(netplay_t *handle) { if (!handle->has_connection) return false; handle->can_poll = false; if (!get_self_input_state(handle)) return false; // We skip reading the first frame so the host has a chance to grab our host info so we don't block forever :') if (handle->frame_count == 0) { handle->buffer[0].used_real = true; handle->buffer[0].is_simulated = false; handle->buffer[0].real_input_state = 0; handle->read_ptr = NEXT_PTR(handle->read_ptr); handle->read_frame_count++; return true; } // We might have reached the end of the buffer, where we simply have to block. int res = poll_input(handle, handle->other_ptr == handle->self_ptr); if (res == -1) { handle->has_connection = false; warn_hangup(); return false; } if (res == 1) { uint32_t first_read = handle->read_frame_count; do { uint32_t buffer[UDP_FRAME_PACKETS * 2]; if (!receive_data(handle, buffer, sizeof(buffer))) { warn_hangup(); handle->has_connection = false; return false; } parse_packet(handle, buffer, UDP_FRAME_PACKETS); } while ((handle->read_frame_count <= handle->frame_count) && poll_input(handle, (handle->other_ptr == handle->self_ptr) && (first_read == handle->read_frame_count)) == 1); } else { // Cannot allow this. Should not happen though. if (handle->self_ptr == handle->other_ptr) { warn_hangup(); return false; } } if (handle->read_ptr != handle->self_ptr) simulate_input(handle); else handle->buffer[PREV_PTR(handle->self_ptr)].used_real = true; return true; } static bool netplay_send_cmd(netplay_t *handle, uint32_t cmd, const void *data, size_t size) { cmd = (cmd << 16) | (size & 0xffff); cmd = htonl(cmd); if (!send_all(handle->fd, &cmd, sizeof(cmd))) return false; if (!send_all(handle->fd, data, size)) return false; return true; } static bool netplay_cmd_ack(netplay_t *handle) { uint32_t cmd = htonl(NETPLAY_CMD_ACK); return send_all(handle->fd, &cmd, sizeof(cmd)); } static bool netplay_cmd_nak(netplay_t *handle) { uint32_t cmd = htonl(NETPLAY_CMD_NAK); return send_all(handle->fd, &cmd, sizeof(cmd)); } static bool netplay_get_response(netplay_t *handle) { uint32_t response; if (!recv_all(handle->fd, &response, sizeof(response))) return false; return ntohl(response) == NETPLAY_CMD_ACK; } static bool netplay_get_cmd(netplay_t *handle) { uint32_t cmd; if (!recv_all(handle->fd, &cmd, sizeof(cmd))) return false; cmd = ntohl(cmd); size_t cmd_size = cmd & 0xffff; cmd = cmd >> 16; switch (cmd) { case NETPLAY_CMD_FLIP_PLAYERS: { if (cmd_size != sizeof(uint32_t)) { RARCH_ERR("CMD_FLIP_PLAYERS has unexpected command size.\n"); return netplay_cmd_nak(handle); } uint32_t flip_frame; if (!recv_all(handle->fd, &flip_frame, sizeof(flip_frame))) { RARCH_ERR("Failed to receive CMD_FLIP_PLAYERS argument.\n"); return netplay_cmd_nak(handle); } flip_frame = ntohl(flip_frame); if (flip_frame < handle->flip_frame) { RARCH_ERR("Host asked us to flip players in the past. Not possible ...\n"); return netplay_cmd_nak(handle); } handle->flip ^= true; handle->flip_frame = flip_frame; RARCH_LOG("Netplay players are flipped.\n"); msg_queue_push(g_extern.msg_queue, "Netplay players are flipped.", 1, 180); return netplay_cmd_ack(handle); } default: RARCH_ERR("Unknown netplay command received.\n"); return netplay_cmd_nak(handle); } } void netplay_flip_players(netplay_t *handle) { uint32_t flip_frame = handle->frame_count + 2 * UDP_FRAME_PACKETS; uint32_t flip_frame_net = htonl(flip_frame); const char *msg = NULL; if (handle->spectate) { msg = "Cannot flip players in spectate mode."; goto error; } if (handle->port == 0) { msg = "Cannot flip players if you're not the host."; goto error; } // Make sure both clients are definitely synced up. if (handle->frame_count < (handle->flip_frame + 2 * UDP_FRAME_PACKETS)) { msg = "Cannot flip players yet. Wait a second or two before attempting flip."; goto error; } if (netplay_send_cmd(handle, NETPLAY_CMD_FLIP_PLAYERS, &flip_frame_net, sizeof(flip_frame_net)) && netplay_get_response(handle)) { RARCH_LOG("Netplay players are flipped.\n"); msg_queue_push(g_extern.msg_queue, "Netplay players are flipped.", 1, 180); // Queue up a flip well enough in the future. handle->flip ^= true; handle->flip_frame = flip_frame; } else { msg = "Failed to flip players."; goto error; } return; error: RARCH_WARN("%s\n", msg); msg_queue_push(g_extern.msg_queue, msg, 1, 180); } static bool netplay_flip_port(netplay_t *handle, bool port) { if (handle->flip_frame == 0) return port; size_t frame = handle->is_replay ? handle->tmp_frame_count : handle->frame_count; return port ^ handle->flip ^ (frame < handle->flip_frame); } int16_t netplay_input_state(netplay_t *handle, bool port, unsigned device, unsigned index, unsigned id) { uint16_t input_state = 0; size_t ptr = handle->is_replay ? handle->tmp_ptr : PREV_PTR(handle->self_ptr); port = netplay_flip_port(handle, port); if ((port ? 1 : 0) == handle->port) { if (handle->buffer[ptr].is_simulated) input_state = handle->buffer[ptr].simulated_input_state; else input_state = handle->buffer[ptr].real_input_state; } else input_state = handle->buffer[ptr].self_state; return ((1 << id) & input_state) ? 1 : 0; } void netplay_free(netplay_t *handle) { close(handle->fd); if (handle->spectate) { for (unsigned i = 0; i < MAX_SPECTATORS; i++) if (handle->spectate_fds[i] >= 0) close(handle->spectate_fds[i]); free(handle->spectate_input); } else { close(handle->udp_fd); for (unsigned i = 0; i < handle->buffer_size; i++) free(handle->buffer[i].state); free(handle->buffer); } if (handle->addr) freeaddrinfo(handle->addr); free(handle); } static bool netplay_should_skip(netplay_t *handle) { return handle->is_replay && handle->has_connection; } static void netplay_pre_frame_net(netplay_t *handle) { pretro_serialize(handle->buffer[handle->self_ptr].state, handle->state_size); handle->can_poll = true; input_poll_net(); } static void netplay_set_spectate_input(netplay_t *handle, int16_t input) { if (handle->spectate_input_ptr >= handle->spectate_input_size) { handle->spectate_input_size++; handle->spectate_input_size *= 2; handle->spectate_input = (uint16_t*)realloc(handle->spectate_input, handle->spectate_input_size * sizeof(uint16_t)); } handle->spectate_input[handle->spectate_input_ptr++] = swap_if_big16(input); } int16_t input_state_spectate(unsigned port, unsigned device, unsigned index, unsigned id) { int16_t res = g_extern.netplay->cbs.state_cb(port, device, index, id); netplay_set_spectate_input(g_extern.netplay, res); return res; } static int16_t netplay_get_spectate_input(netplay_t *handle, bool port, unsigned device, unsigned index, unsigned id) { int16_t inp; if (recv_all(handle->fd, NONCONST_CAST &inp, sizeof(inp))) return swap_if_big16(inp); else { RARCH_ERR("Connection with host was cut.\n"); msg_queue_clear(g_extern.msg_queue); msg_queue_push(g_extern.msg_queue, "Connection with host was cut.", 1, 180); pretro_set_input_state(g_extern.netplay->cbs.state_cb); return g_extern.netplay->cbs.state_cb(port, device, index, id); } } int16_t input_state_spectate_client(unsigned port, unsigned device, unsigned index, unsigned id) { return netplay_get_spectate_input(g_extern.netplay, port, device, index, id); } static void netplay_pre_frame_spectate(netplay_t *handle) { if (handle->spectate_client) return; fd_set fds; FD_ZERO(&fds); FD_SET(handle->fd, &fds); struct timeval tmp_tv = {0}; if (select(handle->fd + 1, &fds, NULL, NULL, &tmp_tv) <= 0) return; if (!FD_ISSET(handle->fd, &fds)) return; struct sockaddr_storage their_addr; socklen_t addr_size = sizeof(their_addr); int new_fd = accept(handle->fd, (struct sockaddr*)&their_addr, &addr_size); if (new_fd < 0) { RARCH_ERR("Failed to accept incoming spectator.\n"); return; } int index = -1; for (unsigned i = 0; i < MAX_SPECTATORS; i++) { if (handle->spectate_fds[i] == -1) { index = i; break; } } // No vacant client streams :( if (index == -1) { close(new_fd); return; } if (!get_nickname(handle, new_fd)) { RARCH_ERR("Failed to get nickname from client.\n"); close(new_fd); return; } if (!send_nickname(handle, new_fd)) { RARCH_ERR("Failed to send nickname to client.\n"); close(new_fd); return; } size_t header_size; uint32_t *header = bsv_header_generate(&header_size, implementation_magic_value()); if (!header) { RARCH_ERR("Failed to generate BSV header.\n"); close(new_fd); return; } int bufsize = header_size; setsockopt(new_fd, SOL_SOCKET, SO_SNDBUF, CONST_CAST &bufsize, sizeof(int)); if (!send_all(new_fd, header, header_size)) { RARCH_ERR("Failed to send header to client.\n"); close(new_fd); free(header); return; } free(header); handle->spectate_fds[index] = new_fd; #ifndef HAVE_SOCKET_LEGACY log_connection(&their_addr, index, handle->other_nick); #endif } void netplay_pre_frame(netplay_t *handle) { if (handle->spectate) netplay_pre_frame_spectate(handle); else netplay_pre_frame_net(handle); } static void netplay_post_frame_net(netplay_t *handle) { handle->frame_count++; // Nothing to do... if (handle->other_frame_count == handle->read_frame_count) return; // Skip ahead if we predicted correctly. Skip until our simulation failed. while (handle->other_frame_count < handle->read_frame_count) { const struct delta_frame *ptr = &handle->buffer[handle->other_ptr]; if ((ptr->simulated_input_state != ptr->real_input_state) && !ptr->used_real) break; handle->other_ptr = NEXT_PTR(handle->other_ptr); handle->other_frame_count++; } if (handle->other_frame_count < handle->read_frame_count) { // Replay frames handle->is_replay = true; handle->tmp_ptr = handle->other_ptr; handle->tmp_frame_count = handle->other_frame_count; pretro_unserialize(handle->buffer[handle->other_ptr].state, handle->state_size); bool first = true; while (first || (handle->tmp_ptr != handle->self_ptr)) { pretro_serialize(handle->buffer[handle->tmp_ptr].state, handle->state_size); #ifdef HAVE_THREADS lock_autosave(); #endif pretro_run(); #ifdef HAVE_THREADS unlock_autosave(); #endif handle->tmp_ptr = NEXT_PTR(handle->tmp_ptr); handle->tmp_frame_count++; first = false; } handle->other_ptr = handle->read_ptr; handle->other_frame_count = handle->read_frame_count; handle->is_replay = false; } } static void netplay_post_frame_spectate(netplay_t *handle) { if (handle->spectate_client) return; for (unsigned i = 0; i < MAX_SPECTATORS; i++) { if (handle->spectate_fds[i] == -1) continue; if (!send_all(handle->spectate_fds[i], handle->spectate_input, handle->spectate_input_ptr * sizeof(int16_t))) { RARCH_LOG("Client (#%u) disconnected ...\n", i); char msg[512]; snprintf(msg, sizeof(msg), "Client (#%u) disconnected.", i); msg_queue_push(g_extern.msg_queue, msg, 1, 180); close(handle->spectate_fds[i]); handle->spectate_fds[i] = -1; break; } } handle->spectate_input_ptr = 0; } // Here we check if we have new input and replay from recorded input. void netplay_post_frame(netplay_t *handle) { if (handle->spectate) netplay_post_frame_spectate(handle); else netplay_post_frame_net(handle); } #ifdef HAVE_SOCKET_LEGACY #undef getaddrinfo #undef freeaddrinfo #undef sockaddr_storage #undef addrinfo #include #include #include #define addrinfo addrinfo_rarch__ // Yes, we love shitty implementations, don't we? :( #ifdef _XBOX struct hostent { char **h_addr_list; // Just do the minimal needed ... }; static struct hostent *gethostbyname(const char *name) { static struct hostent he; static struct in_addr addr; static char *addr_ptr; he.h_addr_list = &addr_ptr; addr_ptr = (char*)&addr; if (!name) return NULL; XNDNS *dns = NULL; WSAEVENT event = WSACreateEvent(); XNetDnsLookup(name, event, &dns); if (!dns) goto error; WaitForSingleObject((HANDLE)event, INFINITE); if (dns->iStatus) goto error; memcpy(&addr, dns->aina, sizeof(addr)); WSACloseEvent(event); XNetDnsRelease(dns); return &he; error: if (event) WSACloseEvent(event); return NULL; } #endif int getaddrinfo_rarch__(const char *node, const char *service, const struct addrinfo *hints, struct addrinfo **res) { struct addrinfo *info = (struct addrinfo*)calloc(1, sizeof(*info)); if (!info) return -1; info->ai_family = AF_INET; info->ai_socktype = hints->ai_socktype; struct sockaddr_in *in_addr = (struct sockaddr_in*)calloc(1, sizeof(*in_addr)); if (!in_addr) { free(info); return -1; } info->ai_addrlen = sizeof(*in_addr); in_addr->sin_family = AF_INET; in_addr->sin_port = htons(strtoul(service, NULL, 0)); if (!node && (hints->ai_flags & AI_PASSIVE)) in_addr->sin_addr.s_addr = INADDR_ANY; else if (node && isdigit(*node)) in_addr->sin_addr.s_addr = inet_addr(node); else if (node && !isdigit(*node)) { struct hostent *host = gethostbyname(node); if (!host || !host->h_addr_list[0]) goto error; in_addr->sin_addr.s_addr = inet_addr(host->h_addr_list[0]); } else goto error; info->ai_addr = (struct sockaddr*)in_addr; *res = info; return 0; error: free(in_addr); free(info); return -1; } void freeaddrinfo_rarch__(struct addrinfo *res) { free(res->ai_addr); free(res); } #endif