/* RetroArch - A frontend for libretro. * Copyright (C) 2011-2016 - Daniel De Matteis * * RetroArch is free software: you can redistribute it and/or modify it under the terms * of the GNU General Public License as published by the Free Software Found- * ation, either version 3 of the License, or (at your option) any later version. * * RetroArch is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; * without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR * PURPOSE. See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with RetroArch. * If not, see . */ #include #include #include #include #include #include #ifdef _WIN32 #include #else #include #endif #include #include #include #include #include #include #include #include "../core.h" #include "../file_path_special.h" #include "../configuration.h" #include "../msg_hash.h" #include "../runloop.h" #include "../verbosity.h" #include "tasks_internal.h" /* TODO/FIXME - turn this into actual task */ static struct string_list *task_save_files = NULL; typedef struct ram_type ram_type_t; struct ram_type { const char *path; int type; }; struct save_state_buf { void* data; char path[PATH_MAX_LENGTH]; size_t size; }; /* Holds the previous saved state * Can be restored to disk with undo_save_state(). */ static struct save_state_buf undo_save_buf; /* Holds the data from before a load_state() operation * Can be restored with undo_load_state(). */ static struct save_state_buf undo_load_buf; struct sram_block { unsigned type; void *data; size_t size; }; #ifdef HAVE_THREADS typedef struct autosave autosave_t; /* Autosave support. */ struct autosave_st { autosave_t **list; unsigned num; }; struct autosave { volatile bool quit; slock_t *lock; slock_t *cond_lock; scond_t *cond; sthread_t *thread; void *buffer; const void *retro_buffer; const char *path; size_t bufsize; unsigned interval; }; static struct autosave_st autosave_state; /** * autosave_thread: * @data : pointer to autosave object * * Callback function for (threaded) autosave. **/ static void autosave_thread(void *data) { bool first_log = true; autosave_t *save = (autosave_t*)data; while (!save->quit) { bool differ; slock_lock(save->lock); differ = memcmp(save->buffer, save->retro_buffer, save->bufsize) != 0; if (differ) memcpy(save->buffer, save->retro_buffer, save->bufsize); slock_unlock(save->lock); if (differ) { /* Should probably deal with this more elegantly. */ FILE *file = fopen(save->path, "wb"); if (file) { bool failed = false; /* Avoid spamming down stderr ... */ if (first_log) { RARCH_LOG("Autosaving SRAM to \"%s\", will continue to check every %u seconds ...\n", save->path, save->interval); first_log = false; } else RARCH_LOG("SRAM changed ... autosaving ...\n"); failed |= fwrite(save->buffer, 1, save->bufsize, file) != save->bufsize; failed |= fflush(file) != 0; failed |= fclose(file) != 0; if (failed) RARCH_WARN("Failed to autosave SRAM. Disk might be full.\n"); } } slock_lock(save->cond_lock); if (!save->quit) scond_wait_timeout(save->cond, save->cond_lock, save->interval * 1000000LL); slock_unlock(save->cond_lock); } } /** * autosave_new: * @path : path to autosave file * @data : pointer to buffer * @size : size of @data buffer * @interval : interval at which saves should be performed. * * Create and initialize autosave object. * * Returns: pointer to new autosave_t object if successful, otherwise * NULL. **/ static autosave_t *autosave_new(const char *path, const void *data, size_t size, unsigned interval) { autosave_t *handle = (autosave_t*)calloc(1, sizeof(*handle)); if (!handle) goto error; handle->bufsize = size; handle->interval = interval; handle->path = path; handle->buffer = malloc(size); handle->retro_buffer = data; if (!handle->buffer) goto error; memcpy(handle->buffer, handle->retro_buffer, handle->bufsize); handle->lock = slock_new(); handle->cond_lock = slock_new(); handle->cond = scond_new(); handle->thread = sthread_create(autosave_thread, handle); return handle; error: if (handle) free(handle); return NULL; } /** * autosave_free: * @handle : pointer to autosave object * * Frees autosave object. **/ static void autosave_free(autosave_t *handle) { if (!handle) return; slock_lock(handle->cond_lock); handle->quit = true; slock_unlock(handle->cond_lock); scond_signal(handle->cond); sthread_join(handle->thread); slock_free(handle->lock); slock_free(handle->cond_lock); scond_free(handle->cond); free(handle->buffer); free(handle); } /** * autosave_lock: * * Lock autosave. **/ void autosave_lock(void) { unsigned i; for (i = 0; i < autosave_state.num; i++) { if (autosave_state.list[i]) slock_lock(autosave_state.list[i]->lock); } } /** * autosave_unlock: * * Unlocks autosave. **/ void autosave_unlock(void) { unsigned i; for (i = 0; i < autosave_state.num; i++) { if (autosave_state.list[i]) slock_unlock(autosave_state.list[i]->lock); } } void autosave_init(void) { unsigned i; autosave_t **list = NULL; settings_t *settings = config_get_ptr(); if (settings->autosave_interval < 1 || !task_save_files) return; list = (autosave_t**)calloc(task_save_files->size, sizeof(*autosave_state.list)); if (!list) return; autosave_state.list = list; autosave_state.num = task_save_files->size; for (i = 0; i < task_save_files->size; i++) { retro_ctx_memory_info_t mem_info; const char *path = task_save_files->elems[i].data; unsigned type = task_save_files->elems[i].attr.i; mem_info.id = type; core_get_memory(&mem_info); if (mem_info.size <= 0) continue; autosave_state.list[i] = autosave_new(path, mem_info.data, mem_info.size, settings->autosave_interval); if (!autosave_state.list[i]) RARCH_WARN("%s\n", msg_hash_to_str(MSG_AUTOSAVE_FAILED)); } } void autosave_deinit(void) { unsigned i; for (i = 0; i < autosave_state.num; i++) autosave_free(autosave_state.list[i]); if (autosave_state.list) free(autosave_state.list); autosave_state.list = NULL; autosave_state.num = 0; } #endif static unsigned content_allocate_save_blocks(struct sram_block *blocks) { unsigned i; unsigned num_blocks = 0; settings_t *settings = config_get_ptr(); /* Checking of SRAM overwrite, the backing up of it and flushing. */ if (settings->block_sram_overwrite && task_save_files && task_save_files->size) { RARCH_LOG("%s.\n", msg_hash_to_str(MSG_BLOCKING_SRAM_OVERWRITE)); blocks = (struct sram_block*) calloc(task_save_files->size, sizeof(*blocks)); if (blocks) { num_blocks = task_save_files->size; for (i = 0; i < num_blocks; i++) blocks[i].type = task_save_files->elems[i].attr.i; } } for (i = 0; i < num_blocks; i++) { retro_ctx_memory_info_t mem_info; mem_info.id = blocks[i].type; core_get_memory(&mem_info); blocks[i].size = mem_info.size; } for (i = 0; i < num_blocks; i++) if (blocks[i].size) blocks[i].data = malloc(blocks[i].size); /* Backup current SRAM which is overwritten by unserialize. */ for (i = 0; i < num_blocks; i++) { if (blocks[i].data) { retro_ctx_memory_info_t mem_info; void *dst = NULL; const void *src = NULL; mem_info.id = blocks[i].type; core_get_memory(&mem_info); src = mem_info.data; dst = blocks[i].data; if (src) memcpy(dst, src, blocks[i].size); } } return num_blocks; } static void content_flush_save_blocks(struct sram_block *blocks, unsigned num_blocks) { unsigned i; /* Flush back. */ for (i = 0; i < num_blocks; i++) { if (blocks[i].data) { retro_ctx_memory_info_t mem_info; const void *src = NULL; void *dst = NULL; mem_info.id = blocks[i].type; core_get_memory(&mem_info); src = blocks[i].data; dst = mem_info.data; if (dst) memcpy(dst, src, blocks[i].size); } } for (i = 0; i < num_blocks; i++) free(blocks[i].data); free(blocks); } /** * undo_load_state: * Revert to the state before a state was loaded. * * Returns: true if successful, false otherwise. **/ bool content_undo_load_state(void) { retro_ctx_serialize_info_t serial_info; size_t temp_data_size; bool ret = false; void* temp_data = NULL; unsigned num_blocks = 0; struct sram_block *blocks = NULL; settings_t *settings = config_get_ptr(); RARCH_LOG("%s: \"%s\".\n", msg_hash_to_str(MSG_LOADING_STATE), undo_load_buf.path); RARCH_LOG("%s: %u %s.\n", msg_hash_to_str(MSG_STATE_SIZE), undo_load_buf.size, msg_hash_to_str(MSG_BYTES)); num_blocks = content_allocate_save_blocks(blocks); /* We need to make a temporary copy of the buffer, to allow the swap below */ temp_data = malloc(undo_load_buf.size); temp_data_size = undo_load_buf.size; memcpy(temp_data, undo_load_buf.data, undo_load_buf.size); serial_info.data_const = temp_data; serial_info.size = temp_data_size; /* Swap the current state with the backup state. This way, we can undo what we're undoing */ content_save_state("RAM", false); ret = core_unserialize(&serial_info); /* Clean up the temporary copy */ free(temp_data); temp_data = NULL; content_flush_save_blocks(blocks, num_blocks); if (!ret) { RARCH_ERR("%s \"%s\".\n", msg_hash_to_str(MSG_FAILED_TO_UNDO_LOAD_STATE), undo_load_buf.path); } return ret; } /** * undo_save_state: * Reverts the last save operation * * Returns: true if successful, false otherwise. **/ bool content_undo_save_state(void) { bool ret = filestream_write_file(undo_save_buf.path, undo_save_buf.data, undo_save_buf.size); /* Wipe the save file buffer as it's intended to be one use only */ undo_save_buf.path[0] = '\0'; undo_save_buf.size = 0; if (undo_save_buf.data) { free(undo_save_buf.data); undo_save_buf.data = NULL; } if (!ret) { RARCH_ERR("%s \"%s\".\n", msg_hash_to_str(MSG_FAILED_TO_UNDO_SAVE_STATE), undo_save_buf.path); } return ret; } /* TODO/FIXME - turn this into actual task */ /** * save_state: * @path : path of saved state that shall be written to. * @save_to_disk: If false, saves the state onto undo_load_buf. * Save a state from memory to disk. * * Returns: true if successful, false otherwise. **/ bool content_save_state(const char *path, bool save_to_disk) { retro_ctx_serialize_info_t serial_info; retro_ctx_size_info_t info; bool ret = false; void *data = NULL; core_serialize_size(&info); RARCH_LOG("%s: \"%s\".\n", msg_hash_to_str(MSG_SAVING_STATE), path); if (info.size == 0) return false; data = malloc(info.size); if (!data) return false; RARCH_LOG("%s: %d %s.\n", msg_hash_to_str(MSG_STATE_SIZE), (int)info.size, msg_hash_to_str(MSG_BYTES)); serial_info.data = data; serial_info.size = info.size; ret = core_serialize(&serial_info); if (ret) { if (save_to_disk) { if (path_file_exists(path)) { /* Before overwritting the savestate file, load it into a buffer to allow undo_save_state() to work */ /* TODO/FIXME - Use msg_hash_to_str here */ RARCH_LOG("%s\n", "File already exists. Saving to backup buffer..."); content_load_state(path, true); } ret = filestream_write_file(path, data, info.size); } else { /* save_to_disk is false, which means we are saving the state in undo_load_buf to allow content_undo_load_state() to restore it */ /* If we were holding onto an old state already, clean it up first */ if (undo_load_buf.data) { free(undo_load_buf.data); undo_load_buf.data = NULL; } undo_load_buf.data = malloc(info.size); if (!undo_load_buf.data) { free(data); return false; } memcpy(undo_load_buf.data, data, info.size); undo_load_buf.size = info.size; strlcpy(undo_load_buf.path, path, sizeof(undo_load_buf.path)); } } else { RARCH_ERR("%s \"%s\".\n", msg_hash_to_str(MSG_FAILED_TO_SAVE_STATE_TO), path); } free(data); return ret; } /** * content_load_state: * @path : path that state will be loaded from. * @load_to_backup_buffer: If true, the state will be loaded into undo_save_buf. * Load a state from disk to memory. * * Returns: true if successful, false otherwise. * * **/ bool content_load_state(const char *path, bool load_to_backup_buffer) { unsigned i; ssize_t size; retro_ctx_serialize_info_t serial_info; unsigned num_blocks = 0; void *buf = NULL; struct sram_block *blocks = NULL; settings_t *settings = config_get_ptr(); bool ret = filestream_read_file(path, &buf, &size); RARCH_LOG("%s: \"%s\".\n", msg_hash_to_str(MSG_LOADING_STATE), path); if (!ret || size < 0) goto error; RARCH_LOG("%s: %u %s.\n", msg_hash_to_str(MSG_STATE_SIZE), (unsigned)size, msg_hash_to_str(MSG_BYTES)); /* This means we're backing up the file in memory, so content_undo_save_state() can restore it */ if (load_to_backup_buffer) { /* If we were previously backing up a file, let go of it first */ if (undo_save_buf.data) { free(undo_save_buf.data); undo_save_buf.data = NULL; } undo_save_buf.data = malloc(size); if (!undo_save_buf.data) goto error; memcpy(undo_save_buf.data, buf, size); undo_save_buf.size = size; strlcpy(undo_save_buf.path, path, sizeof(undo_save_buf.path)); free(buf); return true; } num_blocks = content_allocate_save_blocks(blocks); serial_info.data_const = buf; serial_info.size = size; /* Backup the current state so we can undo this load */ content_save_state("RAM", false); ret = core_unserialize(&serial_info); content_flush_save_blocks(blocks, num_blocks); if (!ret) goto error; free(buf); return true; error: RARCH_ERR("%s \"%s\".\n", msg_hash_to_str(MSG_FAILED_TO_LOAD_STATE), path); free(buf); return false; } bool content_rename_state(const char *origin, const char *dest) { int ret = 0; if (path_file_exists(dest)) unlink(dest); ret = rename (origin, dest); if (!ret) return true; RARCH_LOG("Error %d renaming file %s\n", ret, origin); return false; } /* * * TODO/FIXME: Figure out when and where this should be called. * As it is, when e.g. closing Gambatte, we get the same printf message 4 times. * */ bool content_reset_savestate_backups(void) { RARCH_LOG("Resetting undo buffers.\n"); if (undo_save_buf.data) { free(undo_save_buf.data); undo_save_buf.data = NULL; } undo_save_buf.path[0] = '\0'; undo_save_buf.size = 0; if (undo_load_buf.data) { free(undo_load_buf.data); undo_load_buf.data = NULL; } undo_load_buf.path[0] = '\0'; undo_load_buf.size = 0; return true; } bool content_undo_load_buf_is_empty(void) { return undo_load_buf.data == NULL || undo_load_buf.size == 0; } bool content_undo_save_buf_is_empty(void) { return undo_save_buf.data == NULL || undo_save_buf.size == 0; } static bool content_get_memory(retro_ctx_memory_info_t *mem_info, ram_type_t *ram, unsigned slot) { ram->type = task_save_files->elems[slot].attr.i; ram->path = task_save_files->elems[slot].data; mem_info->id = ram->type; core_get_memory(mem_info); if (!mem_info->data || mem_info->size == 0) return false; return true; } /** * content_load_ram_file: * @path : path of RAM state that will be loaded from. * @type : type of memory * * Load a RAM state from disk to memory. */ bool content_load_ram_file(unsigned slot) { ssize_t rc; ram_type_t ram; retro_ctx_memory_info_t mem_info; void *buf = NULL; if (!content_get_memory(&mem_info, &ram, slot)) return false; if (!filestream_read_file(ram.path, &buf, &rc)) return false; if (rc > 0) { if (rc > (ssize_t)mem_info.size) { RARCH_WARN("SRAM is larger than implementation expects, " "doing partial load (truncating %u %s %s %u).\n", (unsigned)rc, msg_hash_to_str(MSG_BYTES), msg_hash_to_str(MSG_TO), (unsigned)mem_info.size); rc = mem_info.size; } memcpy(mem_info.data, buf, rc); } if (buf) free(buf); return true; } /** * content_save_ram_file: * @path : path of RAM state that shall be written to. * @type : type of memory * * Save a RAM state from memory to disk. * */ bool content_save_ram_file(unsigned slot) { ram_type_t ram; retro_ctx_memory_info_t mem_info; if (!content_get_memory(&mem_info, &ram, slot)) return false; RARCH_LOG("%s #%u %s \"%s\".\n", msg_hash_to_str(MSG_SAVING_RAM_TYPE), ram.type, msg_hash_to_str(MSG_TO), ram.path); if (!filestream_write_file(ram.path, mem_info.data, mem_info.size)) { RARCH_ERR("%s.\n", msg_hash_to_str(MSG_FAILED_TO_SAVE_SRAM)); RARCH_WARN("Attempting to recover ...\n"); /* In case the file could not be written to, * the fallback function 'dump_to_file_desperate' * will be called. */ if (!dump_to_file_desperate(mem_info.data, mem_info.size, ram.type)) { RARCH_WARN("Failed ... Cannot recover save file.\n"); } return false; } RARCH_LOG("%s \"%s\".\n", msg_hash_to_str(MSG_SAVED_SUCCESSFULLY_TO), ram.path); return true; } bool event_save_files(void) { unsigned i; global_t *global = global_get_ptr(); if (!global || !task_save_files || !global->sram.use) return false; for (i = 0; i < task_save_files->size; i++) content_save_ram_file(i); return true; } bool event_load_save_files(void) { unsigned i; global_t *global = global_get_ptr(); if (!global) return false; if (!task_save_files || global->sram.load_disable) return false; for (i = 0; i < task_save_files->size; i++) content_load_ram_file(i); return true; } void path_init_savefile_rtc(void) { union string_list_elem_attr attr; char savefile_name_rtc[PATH_MAX_LENGTH] = {0}; global_t *global = global_get_ptr(); attr.i = RETRO_MEMORY_SAVE_RAM; string_list_append(task_save_files, global->name.savefile, attr); /* Infer .rtc save path from save ram path. */ attr.i = RETRO_MEMORY_RTC; fill_pathname(savefile_name_rtc, global->name.savefile, file_path_str(FILE_PATH_RTC_EXTENSION), sizeof(savefile_name_rtc)); string_list_append(task_save_files, savefile_name_rtc, attr); } void path_deinit_savefile(void) { if (task_save_files) string_list_free(task_save_files); task_save_files = NULL; } void path_init_savefile_new(void) { task_save_files = string_list_new(); retro_assert(task_save_files); } void *savefile_ptr_get(void) { return task_save_files; }