/* RetroArch - A frontend for libretro. * Copyright (C) 2010-2013 - Hans-Kristian Arntzen * * RetroArch is free software: you can redistribute it and/or modify it under the terms * of the GNU General Public License as published by the Free Software Found- * ation, either version 3 of the License, or (at your option) any later version. * * RetroArch is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; * without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR * PURPOSE. See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with RetroArch. * If not, see . */ // Bog-standard windowed SINC implementation. // Only suitable as an upsampler, as cutoff frequency isn't dynamically configurable (yet). #include "resampler.h" #include "../performance.h" #include #include #include #include #include #ifndef RESAMPLER_TEST #include "../general.h" #else #define RARCH_LOG(...) fprintf(stderr, __VA_ARGS__) #endif #ifdef __SSE__ #include #endif // Rough SNR values for upsampling: // LOWEST: 40 dB // LOWER: 55 dB // NORMAL: 70 dB // HIGHER: 110 dB // HIGHEST: 140 dB // TODO, make all this more configurable. #if defined(SINC_LOWEST_QUALITY) #define SINC_WINDOW_LANCZOS #define CUTOFF 0.98 #define PHASE_BITS 12 #define SINC_COEFF_LERP 0 #define SUBPHASE_BITS 10 #define SIDELOBES 2 #define ENABLE_AVX 0 #elif defined(SINC_LOWER_QUALITY) #define SINC_WINDOW_LANCZOS #define CUTOFF 0.98 #define PHASE_BITS 12 #define SUBPHASE_BITS 10 #define SINC_COEFF_LERP 0 #define SIDELOBES 4 #define ENABLE_AVX 0 #elif defined(SINC_HIGHER_QUALITY) #define SINC_WINDOW_KAISER #define SINC_WINDOW_KAISER_BETA 10.5 #define CUTOFF 0.90 #define PHASE_BITS 10 #define SUBPHASE_BITS 14 #define SINC_COEFF_LERP 1 #define SIDELOBES 32 #define ENABLE_AVX 1 #elif defined(SINC_HIGHEST_QUALITY) #define SINC_WINDOW_KAISER #define SINC_WINDOW_KAISER_BETA 14.5 #define CUTOFF 0.95 #define PHASE_BITS 10 #define SUBPHASE_BITS 14 #define SINC_COEFF_LERP 1 #define SIDELOBES 128 #define ENABLE_AVX 1 #else #define SINC_WINDOW_KAISER #define SINC_WINDOW_KAISER_BETA 5.5 #define CUTOFF 0.825 #define PHASE_BITS 8 #define SUBPHASE_BITS 16 #define SINC_COEFF_LERP 1 #define SIDELOBES 8 #define ENABLE_AVX 0 #endif // For the little amount of taps we're using, // SSE1 is faster than AVX for some reason. // AVX code is kept here though as by increasing number // of sinc taps, the AVX code is clearly faster than SSE1. #if defined(__AVX__) && ENABLE_AVX #include #endif #define PHASES (1 << (PHASE_BITS + SUBPHASE_BITS)) #define TAPS (SIDELOBES * 2) #define SUBPHASE_MASK ((1 << SUBPHASE_BITS) - 1) #define SUBPHASE_MOD (1.0f / (1 << SUBPHASE_BITS)) typedef struct rarch_sinc_resampler { sample_t *phase_table; sample_t *buffer_l; sample_t *buffer_r; unsigned taps; unsigned ptr; uint32_t time; // A buffer for phase_table, buffer_l and buffer_r are created in a single calloc(). // Ensure that we get as good cache locality as we can hope for. sample_t *main_buffer; } rarch_sinc_resampler_t; static inline double sinc(double val) { if (fabs(val) < 0.00001) return 1.0; else return sin(val) / val; } #if defined(SINC_WINDOW_LANCZOS) static inline double window_function(double index) { return sinc(M_PI * index); } #elif defined(SINC_WINDOW_KAISER) // Modified Bessel function of first order. // Check Wiki for mathematical definition ... static inline double besseli0(double x) { double sum = 0.0; double factorial = 1.0; double factorial_mult = 0.0; double x_pow = 1.0; double two_div_pow = 1.0; double x_sqr = x * x; // Approximate. This is an infinite sum. // Luckily, it converges rather fast. for (unsigned i = 0; i < 18; i++) { sum += x_pow * two_div_pow / (factorial * factorial); factorial_mult += 1.0; x_pow *= x_sqr; two_div_pow *= 0.25; factorial *= factorial_mult; } return sum; } static inline double window_function(double index) { return besseli0(SINC_WINDOW_KAISER_BETA * sqrt(1 - index * index)); } #else #error "No SINC window function defined." #endif static void init_sinc_table(rarch_sinc_resampler_t *resamp, double cutoff, float *phase_table, int phases, int taps, bool calculate_delta) { double window_mod = window_function(0.0); // Need to normalize w(0) to 1.0. int stride = calculate_delta ? 2 : 1; double sidelobes = taps / 2.0; for (int i = 0; i < phases; i++) { for (int j = 0; j < taps; j++) { int n = j * phases + i; double window_phase = (double)n / (phases * taps); // [0, 1). window_phase = 2.0 * window_phase - 1.0; // [-1, 1) double sinc_phase = sidelobes * window_phase; float val = cutoff * sinc(M_PI * sinc_phase * cutoff) * window_function(window_phase) / window_mod; phase_table[i * stride * taps + j] = val; } } if (calculate_delta) { for (int p = 0; p < phases - 1; p++) { for (int j = 0; j < taps; j++) { float delta = phase_table[(p + 1) * stride * taps + j] - phase_table[p * stride * taps + j]; phase_table[(p * stride + 1) * taps + j] = delta; } } int phase = phases - 1; for (int j = 0; j < taps; j++) { int n = j * phases + (phase + 1); double window_phase = (double)n / (phases * taps); // (0, 1]. window_phase = 2.0 * window_phase - 1.0; // (-1, 1] double sinc_phase = sidelobes * window_phase; float val = cutoff * sinc(M_PI * sinc_phase * cutoff) * window_function(window_phase) / window_mod; float delta = (val - phase_table[phase * stride * taps + j]); phase_table[(phase * stride + 1) * taps + j] = delta; } } } // No memalign() for us on Win32 ... static void *aligned_alloc__(size_t boundary, size_t size) { void *ptr = malloc(boundary + size + sizeof(uintptr_t)); if (!ptr) return NULL; uintptr_t addr = ((uintptr_t)ptr + sizeof(uintptr_t) + boundary) & ~(boundary - 1); void **place = (void**)addr; place[-1] = ptr; return (void*)addr; } static void aligned_free__(void *ptr) { void **p = (void**)ptr; free(p[-1]); } static inline void process_sinc_C(rarch_sinc_resampler_t *resamp, float *out_buffer) { float sum_l = 0.0f; float sum_r = 0.0f; const float *buffer_l = resamp->buffer_l + resamp->ptr; const float *buffer_r = resamp->buffer_r + resamp->ptr; unsigned taps = resamp->taps; unsigned phase = resamp->time >> SUBPHASE_BITS; #if SINC_COEFF_LERP const float *phase_table = resamp->phase_table + phase * taps * 2; const float *delta_table = phase_table + taps; float delta = (float)(resamp->time & SUBPHASE_MASK) * SUBPHASE_MOD; #else const float *phase_table = resamp->phase_table + phase * taps; #endif for (unsigned i = 0; i < taps; i++) { #if SINC_COEFF_LERP float sinc_val = phase_table[i] + delta_table[i] * delta; #else float sinc_val = phase_table[i]; #endif sum_l += buffer_l[i] * sinc_val; sum_r += buffer_r[i] * sinc_val; } out_buffer[0] = sum_l; out_buffer[1] = sum_r; } #if defined(__AVX__) && ENABLE_AVX #define process_sinc_func process_sinc static void process_sinc(rarch_sinc_resampler_t *resamp, float *out_buffer) { __m256 sum_l = _mm256_setzero_ps(); __m256 sum_r = _mm256_setzero_ps(); const float *buffer_l = resamp->buffer_l + resamp->ptr; const float *buffer_r = resamp->buffer_r + resamp->ptr; unsigned taps = resamp->taps; unsigned phase = resamp->time >> SUBPHASE_BITS; #if SINC_COEFF_LERP const float *phase_table = resamp->phase_table + phase * taps * 2; const float *delta_table = phase_table + taps; __m256 delta = _mm256_set1_ps((float)(resamp->time & SUBPHASE_MASK) * SUBPHASE_MOD); #else const float *phase_table = resamp->phase_table + phase * taps; #endif for (unsigned i = 0; i < taps; i += 8) { __m256 buf_l = _mm256_loadu_ps(buffer_l + i); __m256 buf_r = _mm256_loadu_ps(buffer_r + i); #if SINC_COEFF_LERP __m256 deltas = _mm256_load_ps(delta_table + i); __m256 sinc = _mm256_add_ps(_mm256_load_ps(phase_table + i), _mm256_mul_ps(deltas, delta)); #else __m256 sinc = _mm256_load_ps(phase_table + i); #endif sum_l = _mm256_add_ps(sum_l, _mm256_mul_ps(buf_l, sinc)); sum_r = _mm256_add_ps(sum_r, _mm256_mul_ps(buf_r, sinc)); } // hadd on AVX is weird, and acts on low-lanes and high-lanes separately. __m256 res_l = _mm256_hadd_ps(sum_l, sum_l); __m256 res_r = _mm256_hadd_ps(sum_r, sum_r); res_l = _mm256_hadd_ps(res_l, res_l); res_r = _mm256_hadd_ps(res_r, res_r); res_l = _mm256_add_ps(_mm256_permute2f128_ps(res_l, res_l, 1), res_l); res_r = _mm256_add_ps(_mm256_permute2f128_ps(res_r, res_r, 1), res_r); // This is optimized to mov %xmmN, [mem]. // There doesn't seem to be any _mm256_store_ss intrinsic. _mm_store_ss(out_buffer + 0, _mm256_extractf128_ps(res_l, 0)); _mm_store_ss(out_buffer + 1, _mm256_extractf128_ps(res_r, 0)); } #elif defined(__SSE__) #define process_sinc_func process_sinc static void process_sinc(rarch_sinc_resampler_t *resamp, float *out_buffer) { __m128 sum_l = _mm_setzero_ps(); __m128 sum_r = _mm_setzero_ps(); const float *buffer_l = resamp->buffer_l + resamp->ptr; const float *buffer_r = resamp->buffer_r + resamp->ptr; unsigned taps = resamp->taps; unsigned phase = resamp->time >> SUBPHASE_BITS; #if SINC_COEFF_LERP const float *phase_table = resamp->phase_table + phase * taps * 2; const float *delta_table = phase_table + taps; __m128 delta = _mm_set1_ps((float)(resamp->time & SUBPHASE_MASK) * SUBPHASE_MOD); #else const float *phase_table = resamp->phase_table + phase * taps; #endif for (unsigned i = 0; i < taps; i += 4) { __m128 buf_l = _mm_loadu_ps(buffer_l + i); __m128 buf_r = _mm_loadu_ps(buffer_r + i); #if SINC_COEFF_LERP __m128 deltas = _mm_load_ps(delta_table + i); __m128 sinc = _mm_add_ps(_mm_load_ps(phase_table + i), _mm_mul_ps(deltas, delta)); #else __m128 sinc = _mm_load_ps(phase_table + i); #endif sum_l = _mm_add_ps(sum_l, _mm_mul_ps(buf_l, sinc)); sum_r = _mm_add_ps(sum_r, _mm_mul_ps(buf_r, sinc)); } // Them annoying shuffles :V // sum_l = { l3, l2, l1, l0 } // sum_r = { r3, r2, r1, r0 } __m128 sum = _mm_add_ps(_mm_shuffle_ps(sum_l, sum_r, _MM_SHUFFLE(1, 0, 1, 0)), _mm_shuffle_ps(sum_l, sum_r, _MM_SHUFFLE(3, 2, 3, 2))); // sum = { r1, r0, l1, l0 } + { r3, r2, l3, l2 } // sum = { R1, R0, L1, L0 } sum = _mm_add_ps(_mm_shuffle_ps(sum, sum, _MM_SHUFFLE(3, 3, 1, 1)), sum); // sum = {R1, R1, L1, L1 } + { R1, R0, L1, L0 } // sum = { X, R, X, L } // Store L _mm_store_ss(out_buffer + 0, sum); // movehl { X, R, X, L } == { X, R, X, R } _mm_store_ss(out_buffer + 1, _mm_movehl_ps(sum, sum)); } #elif defined(HAVE_NEON) #if SINC_COEFF_LERP #error "NEON asm does not support SINC lerp." #endif // Need to make this function pointer as Android doesn't have built-in targets // for NEON and plain ARMv7a. static void (*process_sinc_func)(rarch_sinc_resampler_t *resamp, float *out_buffer); // Assumes that taps >= 8, and that taps is a multiple of 8. void process_sinc_neon_asm(float *out, const float *left, const float *right, const float *coeff, unsigned taps); static void process_sinc_neon(rarch_sinc_resampler_t *resamp, float *out_buffer) { const float *buffer_l = resamp->buffer_l + resamp->ptr; const float *buffer_r = resamp->buffer_r + resamp->ptr; unsigned phase = resamp->time >> SUBPHASE_BITS; unsigned taps = resamp->taps; const float *phase_table = resamp->phase_table + phase * taps; process_sinc_neon_asm(out_buffer, buffer_l, buffer_r, phase_table, taps); } #else // Plain ol' C99 #define process_sinc_func process_sinc_C #endif static void resampler_sinc_process(void *re_, struct resampler_data *data) { rarch_sinc_resampler_t *re = (rarch_sinc_resampler_t*)re_; uint32_t ratio = PHASES / data->ratio; const sample_t *input = data->data_in; sample_t *output = data->data_out; size_t frames = data->input_frames; size_t out_frames = 0; while (frames) { while (frames && re->time >= PHASES) { // Push in reverse to make filter more obvious. if (!re->ptr) re->ptr = re->taps; re->ptr--; re->buffer_l[re->ptr + re->taps] = re->buffer_l[re->ptr] = *input++; re->buffer_r[re->ptr + re->taps] = re->buffer_r[re->ptr] = *input++; re->time -= PHASES; frames--; } while (re->time < PHASES) { process_sinc_func(re, output); output += 2; out_frames++; re->time += ratio; } } data->output_frames = out_frames; } static void resampler_sinc_free(void *re) { rarch_sinc_resampler_t *resampler = (rarch_sinc_resampler_t*)re; if (resampler) aligned_free__(resampler->main_buffer); free(resampler); } static void *resampler_sinc_new(double bandwidth_mod) { rarch_sinc_resampler_t *re = (rarch_sinc_resampler_t*)calloc(1, sizeof(*re)); if (!re) return NULL; memset(re, 0, sizeof(*re)); re->taps = TAPS; double cutoff = CUTOFF; // Downsampling, must lower cutoff, and extend number of taps accordingly to keep same stopband attenuation. if (bandwidth_mod < 1.0) { cutoff *= bandwidth_mod; re->taps = (unsigned)ceil(re->taps / bandwidth_mod); } // Be SIMD-friendly. #if (defined(__AVX__) && ENABLE_AVX) || defined(HAVE_NEON) re->taps = (re->taps + 7) & ~7; #else re->taps = (re->taps + 3) & ~3; #endif size_t phase_elems = (1 << PHASE_BITS) * re->taps; #if SINC_COEFF_LERP phase_elems *= 2; #endif size_t elems = phase_elems + 4 * re->taps; re->main_buffer = (sample_t*)aligned_alloc__(128, sizeof(sample_t) * elems); if (!re->main_buffer) goto error; re->phase_table = re->main_buffer; re->buffer_l = re->main_buffer + phase_elems; re->buffer_r = re->buffer_l + 2 * re->taps; init_sinc_table(re, cutoff, re->phase_table, 1 << PHASE_BITS, re->taps, SINC_COEFF_LERP); #if defined(__AVX__) && ENABLE_AVX RARCH_LOG("Sinc resampler [AVX]\n"); #elif defined(__SSE__) RARCH_LOG("Sinc resampler [SSE]\n"); #elif defined(HAVE_NEON) struct rarch_cpu_features cpu; rarch_get_cpu_features(&cpu); process_sinc_func = cpu.simd & RARCH_SIMD_NEON ? process_sinc_neon : process_sinc_C; RARCH_LOG("Sinc resampler [%s]\n", cpu.simd & RARCH_SIMD_NEON ? "NEON" : "C"); #else RARCH_LOG("Sinc resampler [C]\n"); #endif RARCH_LOG("SINC params (%u phase bits, %u taps).\n", PHASE_BITS, re->taps); return re; error: resampler_sinc_free(re); return NULL; } const rarch_resampler_t sinc_resampler = { resampler_sinc_new, resampler_sinc_process, resampler_sinc_free, "sinc", };