RetroArch/deps/pthreads/pthread_rwlock.c
2017-12-26 20:52:03 +01:00

677 lines
17 KiB
C

/*
* pthread_rwlock.c
*
* Description:
* This translation unit implements read/write lock primitives.
*
* --------------------------------------------------------------------------
*
* Pthreads-embedded (PTE) - POSIX Threads Library for embedded systems
* Copyright(C) 2008 Jason Schmidlapp
*
* Contact Email: jschmidlapp@users.sourceforge.net
*
*
* Based upon Pthreads-win32 - POSIX Threads Library for Win32
* Copyright(C) 1998 John E. Bossom
* Copyright(C) 1999,2005 Pthreads-win32 contributors
*
* Contact Email: rpj@callisto.canberra.edu.au
*
* The original list of contributors to the Pthreads-win32 project
* is contained in the file CONTRIBUTORS.ptw32 included with the
* source code distribution. The list can also be seen at the
* following World Wide Web location:
* http://sources.redhat.com/pthreads-win32/contributors.html
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library in the file COPYING.LIB;
* if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*/
#include <stdlib.h>
#include <errno.h>
#include <limits.h>
#include "pthread.h"
#include "implement.h"
int pthread_rwlock_destroy (pthread_rwlock_t * rwlock)
{
pthread_rwlock_t rwl;
int result = 0, result1 = 0, result2 = 0;
if (rwlock == NULL || *rwlock == NULL)
return EINVAL;
if (*rwlock != PTHREAD_RWLOCK_INITIALIZER)
{
rwl = *rwlock;
if (rwl->nMagic != PTE_RWLOCK_MAGIC)
return EINVAL;
if ((result = pthread_mutex_lock (&(rwl->mtxExclusiveAccess))) != 0)
return result;
if ((result =
pthread_mutex_lock (&(rwl->mtxSharedAccessCompleted))) != 0)
{
(void) pthread_mutex_unlock (&(rwl->mtxExclusiveAccess));
return result;
}
/*
* Check whether any threads own/wait for the lock (wait for ex.access);
* report "BUSY" if so.
*/
if (rwl->nExclusiveAccessCount > 0
|| rwl->nSharedAccessCount > rwl->nCompletedSharedAccessCount)
{
result = pthread_mutex_unlock (&(rwl->mtxSharedAccessCompleted));
result1 = pthread_mutex_unlock (&(rwl->mtxExclusiveAccess));
result2 = EBUSY;
}
else
{
rwl->nMagic = 0;
if ((result =
pthread_mutex_unlock (&(rwl->mtxSharedAccessCompleted))) != 0)
{
pthread_mutex_unlock (&rwl->mtxExclusiveAccess);
return result;
}
if ((result =
pthread_mutex_unlock (&(rwl->mtxExclusiveAccess))) != 0)
return result;
*rwlock = NULL; /* Invalidate rwlock before anything else */
result = pthread_cond_destroy (&(rwl->cndSharedAccessCompleted));
result1 = pthread_mutex_destroy (&(rwl->mtxSharedAccessCompleted));
result2 = pthread_mutex_destroy (&(rwl->mtxExclusiveAccess));
(void) free (rwl);
}
}
else
{
/*
* See notes in pte_rwlock_check_need_init() above also.
*/
pte_osMutexLock (pte_rwlock_test_init_lock);
/*
* Check again.
*/
if (*rwlock == PTHREAD_RWLOCK_INITIALIZER)
{
/*
* This is all we need to do to destroy a statically
* initialised rwlock that has not yet been used (initialised).
* If we get to here, another thread
* waiting to initialise this rwlock will get an EINVAL.
*/
*rwlock = NULL;
}
/*
* The rwlock has been initialised while we were waiting
* so assume it's in use.
*/
else
result = EBUSY;
pte_osMutexUnlock(pte_rwlock_test_init_lock);
}
return ((result != 0) ? result : ((result1 != 0) ? result1 : result2));
}
int pthread_rwlock_init (pthread_rwlock_t * rwlock,
const pthread_rwlockattr_t * attr)
{
int result;
pthread_rwlock_t rwl = 0;
if (rwlock == NULL)
return EINVAL;
if (attr != NULL && *attr != NULL)
{
result = EINVAL; /* Not supported */
goto DONE;
}
rwl = (pthread_rwlock_t) calloc (1, sizeof (*rwl));
if (rwl == NULL)
{
result = ENOMEM;
goto DONE;
}
rwl->nSharedAccessCount = 0;
rwl->nExclusiveAccessCount = 0;
rwl->nCompletedSharedAccessCount = 0;
result = pthread_mutex_init (&rwl->mtxExclusiveAccess, NULL);
if (result != 0)
{
goto FAIL0;
}
result = pthread_mutex_init (&rwl->mtxSharedAccessCompleted, NULL);
if (result != 0)
{
goto FAIL1;
}
result = pthread_cond_init (&rwl->cndSharedAccessCompleted, NULL);
if (result != 0)
{
goto FAIL2;
}
rwl->nMagic = PTE_RWLOCK_MAGIC;
result = 0;
goto DONE;
FAIL2:
(void) pthread_mutex_destroy (&(rwl->mtxSharedAccessCompleted));
FAIL1:
(void) pthread_mutex_destroy (&(rwl->mtxExclusiveAccess));
FAIL0:
(void) free (rwl);
rwl = NULL;
DONE:
*rwlock = rwl;
return result;
}
int pthread_rwlock_rdlock (pthread_rwlock_t * rwlock)
{
int result;
pthread_rwlock_t rwl;
if (rwlock == NULL || *rwlock == NULL)
return EINVAL;
/*
* We do a quick check to see if we need to do more work
* to initialise a static rwlock. We check
* again inside the guarded section of pte_rwlock_check_need_init()
* to avoid race conditions.
*/
if (*rwlock == PTHREAD_RWLOCK_INITIALIZER)
{
result = pte_rwlock_check_need_init (rwlock);
if (result != 0 && result != EBUSY)
return result;
}
rwl = *rwlock;
if (rwl->nMagic != PTE_RWLOCK_MAGIC)
return EINVAL;
if ((result = pthread_mutex_lock (&(rwl->mtxExclusiveAccess))) != 0)
return result;
if (++rwl->nSharedAccessCount == INT_MAX)
{
if ((result =
pthread_mutex_lock (&(rwl->mtxSharedAccessCompleted))) != 0)
{
(void) pthread_mutex_unlock (&(rwl->mtxExclusiveAccess));
return result;
}
rwl->nSharedAccessCount -= rwl->nCompletedSharedAccessCount;
rwl->nCompletedSharedAccessCount = 0;
if ((result =
pthread_mutex_unlock (&(rwl->mtxSharedAccessCompleted))) != 0)
{
(void) pthread_mutex_unlock (&(rwl->mtxExclusiveAccess));
return result;
}
}
return (pthread_mutex_unlock (&(rwl->mtxExclusiveAccess)));
}
int pthread_rwlock_timedrdlock (pthread_rwlock_t * rwlock,
const struct timespec *abstime)
{
int result;
pthread_rwlock_t rwl;
if (rwlock == NULL || *rwlock == NULL)
return EINVAL;
/*
* We do a quick check to see if we need to do more work
* to initialise a static rwlock. We check
* again inside the guarded section of pte_rwlock_check_need_init()
* to avoid race conditions.
*/
if (*rwlock == PTHREAD_RWLOCK_INITIALIZER)
{
result = pte_rwlock_check_need_init (rwlock);
if (result != 0 && result != EBUSY)
{
return result;
}
}
rwl = *rwlock;
if (rwl->nMagic != PTE_RWLOCK_MAGIC)
{
return EINVAL;
}
if ((result =
pthread_mutex_timedlock (&(rwl->mtxExclusiveAccess), abstime)) != 0)
{
return result;
}
if (++rwl->nSharedAccessCount == INT_MAX)
{
if ((result =
pthread_mutex_timedlock (&(rwl->mtxSharedAccessCompleted),
abstime)) != 0)
{
if (result == ETIMEDOUT)
{
++rwl->nCompletedSharedAccessCount;
}
(void) pthread_mutex_unlock (&(rwl->mtxExclusiveAccess));
return result;
}
rwl->nSharedAccessCount -= rwl->nCompletedSharedAccessCount;
rwl->nCompletedSharedAccessCount = 0;
if ((result =
pthread_mutex_unlock (&(rwl->mtxSharedAccessCompleted))) != 0)
{
(void) pthread_mutex_unlock (&(rwl->mtxExclusiveAccess));
return result;
}
}
return (pthread_mutex_unlock (&(rwl->mtxExclusiveAccess)));
}
int pthread_rwlock_timedwrlock (pthread_rwlock_t * rwlock,
const struct timespec *abstime)
{
int result;
pthread_rwlock_t rwl;
if (rwlock == NULL || *rwlock == NULL)
return EINVAL;
/*
* We do a quick check to see if we need to do more work
* to initialise a static rwlock. We check
* again inside the guarded section of pte_rwlock_check_need_init()
* to avoid race conditions.
*/
if (*rwlock == PTHREAD_RWLOCK_INITIALIZER)
{
result = pte_rwlock_check_need_init (rwlock);
if (result != 0 && result != EBUSY)
{
return result;
}
}
rwl = *rwlock;
if (rwl->nMagic != PTE_RWLOCK_MAGIC)
{
return EINVAL;
}
if ((result =
pthread_mutex_timedlock (&(rwl->mtxExclusiveAccess), abstime)) != 0)
{
return result;
}
if ((result =
pthread_mutex_timedlock (&(rwl->mtxSharedAccessCompleted),
abstime)) != 0)
{
(void) pthread_mutex_unlock (&(rwl->mtxExclusiveAccess));
return result;
}
if (rwl->nExclusiveAccessCount == 0)
{
if (rwl->nCompletedSharedAccessCount > 0)
{
rwl->nSharedAccessCount -= rwl->nCompletedSharedAccessCount;
rwl->nCompletedSharedAccessCount = 0;
}
if (rwl->nSharedAccessCount > 0)
{
rwl->nCompletedSharedAccessCount = -rwl->nSharedAccessCount;
/*
* This routine may be a cancelation point
* according to POSIX 1003.1j section 18.1.2.
*/
pthread_cleanup_push (pte_rwlock_cancelwrwait, (void *) rwl);
do
{
result =
pthread_cond_timedwait (&(rwl->cndSharedAccessCompleted),
&(rwl->mtxSharedAccessCompleted),
abstime);
}
while (result == 0 && rwl->nCompletedSharedAccessCount < 0);
pthread_cleanup_pop ((result != 0) ? 1 : 0);
if (result == 0)
{
rwl->nSharedAccessCount = 0;
}
}
}
if (result == 0)
rwl->nExclusiveAccessCount++;
return result;
}
int pthread_rwlock_tryrdlock (pthread_rwlock_t * rwlock)
{
int result;
pthread_rwlock_t rwl;
if (rwlock == NULL || *rwlock == NULL)
return EINVAL;
/*
* We do a quick check to see if we need to do more work
* to initialise a static rwlock. We check
* again inside the guarded section of pte_rwlock_check_need_init()
* to avoid race conditions.
*/
if (*rwlock == PTHREAD_RWLOCK_INITIALIZER)
{
result = pte_rwlock_check_need_init (rwlock);
if (result != 0 && result != EBUSY)
{
return result;
}
}
rwl = *rwlock;
if (rwl->nMagic != PTE_RWLOCK_MAGIC)
{
return EINVAL;
}
if ((result = pthread_mutex_trylock (&(rwl->mtxExclusiveAccess))) != 0)
{
return result;
}
if (++rwl->nSharedAccessCount == INT_MAX)
{
if ((result =
pthread_mutex_lock (&(rwl->mtxSharedAccessCompleted))) != 0)
{
(void) pthread_mutex_unlock (&(rwl->mtxExclusiveAccess));
return result;
}
rwl->nSharedAccessCount -= rwl->nCompletedSharedAccessCount;
rwl->nCompletedSharedAccessCount = 0;
if ((result =
pthread_mutex_unlock (&(rwl->mtxSharedAccessCompleted))) != 0)
{
(void) pthread_mutex_unlock (&(rwl->mtxExclusiveAccess));
return result;
}
}
return (pthread_mutex_unlock (&rwl->mtxExclusiveAccess));
}
int pthread_rwlock_trywrlock (pthread_rwlock_t * rwlock)
{
int result, result1;
pthread_rwlock_t rwl;
if (rwlock == NULL || *rwlock == NULL)
return EINVAL;
/*
* We do a quick check to see if we need to do more work
* to initialise a static rwlock. We check
* again inside the guarded section of pte_rwlock_check_need_init()
* to avoid race conditions.
*/
if (*rwlock == PTHREAD_RWLOCK_INITIALIZER)
{
result = pte_rwlock_check_need_init (rwlock);
if (result != 0 && result != EBUSY)
{
return result;
}
}
rwl = *rwlock;
if (rwl->nMagic != PTE_RWLOCK_MAGIC)
{
return EINVAL;
}
if ((result = pthread_mutex_trylock (&(rwl->mtxExclusiveAccess))) != 0)
{
return result;
}
if ((result =
pthread_mutex_trylock (&(rwl->mtxSharedAccessCompleted))) != 0)
{
result1 = pthread_mutex_unlock (&(rwl->mtxExclusiveAccess));
return ((result1 != 0) ? result1 : result);
}
if (rwl->nExclusiveAccessCount == 0)
{
if (rwl->nCompletedSharedAccessCount > 0)
{
rwl->nSharedAccessCount -= rwl->nCompletedSharedAccessCount;
rwl->nCompletedSharedAccessCount = 0;
}
if (rwl->nSharedAccessCount > 0)
{
if ((result =
pthread_mutex_unlock (&(rwl->mtxSharedAccessCompleted))) != 0)
{
(void) pthread_mutex_unlock (&(rwl->mtxExclusiveAccess));
return result;
}
if ((result =
pthread_mutex_unlock (&(rwl->mtxExclusiveAccess))) == 0)
{
result = EBUSY;
}
}
else
{
rwl->nExclusiveAccessCount = 1;
}
}
else
{
result = EBUSY;
}
return result;
}
int pthread_rwlock_unlock (pthread_rwlock_t * rwlock)
{
int result, result1;
pthread_rwlock_t rwl;
if (rwlock == NULL || *rwlock == NULL)
return (EINVAL);
if (*rwlock == PTHREAD_RWLOCK_INITIALIZER)
{
/*
* Assume any race condition here is harmless.
*/
return 0;
}
rwl = *rwlock;
if (rwl->nMagic != PTE_RWLOCK_MAGIC)
{
return EINVAL;
}
if (rwl->nExclusiveAccessCount == 0)
{
if ((result =
pthread_mutex_lock (&(rwl->mtxSharedAccessCompleted))) != 0)
{
return result;
}
if (++rwl->nCompletedSharedAccessCount == 0)
{
result = pthread_cond_signal (&(rwl->cndSharedAccessCompleted));
}
result1 = pthread_mutex_unlock (&(rwl->mtxSharedAccessCompleted));
}
else
{
rwl->nExclusiveAccessCount--;
result = pthread_mutex_unlock (&(rwl->mtxSharedAccessCompleted));
result1 = pthread_mutex_unlock (&(rwl->mtxExclusiveAccess));
}
return ((result != 0) ? result : result1);
}
int pthread_rwlock_wrlock (pthread_rwlock_t * rwlock)
{
int result;
pthread_rwlock_t rwl;
if (rwlock == NULL || *rwlock == NULL)
return EINVAL;
/*
* We do a quick check to see if we need to do more work
* to initialise a static rwlock. We check
* again inside the guarded section of pte_rwlock_check_need_init()
* to avoid race conditions.
*/
if (*rwlock == PTHREAD_RWLOCK_INITIALIZER)
{
result = pte_rwlock_check_need_init (rwlock);
if (result != 0 && result != EBUSY)
return result;
}
rwl = *rwlock;
if (rwl->nMagic != PTE_RWLOCK_MAGIC)
return EINVAL;
if ((result = pthread_mutex_lock (&(rwl->mtxExclusiveAccess))) != 0)
return result;
if ((result = pthread_mutex_lock (&(rwl->mtxSharedAccessCompleted))) != 0)
{
(void) pthread_mutex_unlock (&(rwl->mtxExclusiveAccess));
return result;
}
if (rwl->nExclusiveAccessCount == 0)
{
if (rwl->nCompletedSharedAccessCount > 0)
{
rwl->nSharedAccessCount -= rwl->nCompletedSharedAccessCount;
rwl->nCompletedSharedAccessCount = 0;
}
if (rwl->nSharedAccessCount > 0)
{
rwl->nCompletedSharedAccessCount = -rwl->nSharedAccessCount;
/*
* This routine may be a cancelation point
* according to POSIX 1003.1j section 18.1.2.
*/
pthread_cleanup_push (pte_rwlock_cancelwrwait, (void *) rwl);
do
{
result = pthread_cond_wait (&(rwl->cndSharedAccessCompleted),
&(rwl->mtxSharedAccessCompleted));
}
while (result == 0 && rwl->nCompletedSharedAccessCount < 0);
pthread_cleanup_pop ((result != 0) ? 1 : 0);
if (result == 0)
rwl->nSharedAccessCount = 0;
}
}
if (result == 0)
rwl->nExclusiveAccessCount++;
return result;
}