mirror of
https://github.com/CTCaer/RetroArch.git
synced 2025-01-09 04:21:33 +00:00
74 lines
2.4 KiB
C
74 lines
2.4 KiB
C
/* Copyright (C) 2010-2015 The RetroArch team
|
|
*
|
|
* ---------------------------------------------------------------------------------------
|
|
* The following license statement only applies to this file (filters.h).
|
|
* ---------------------------------------------------------------------------------------
|
|
*
|
|
* Permission is hereby granted, free of charge,
|
|
* to any person obtaining a copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation the rights to
|
|
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
|
|
* and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
|
|
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
|
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
|
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
#ifndef _LIBRETRO_SDK_FILTERS_H
|
|
#define _LIBRETRO_SDK_FILTERS_H
|
|
|
|
#include <math.h>
|
|
#include <retro_inline.h>
|
|
|
|
static INLINE double sinc(double val)
|
|
{
|
|
if (fabs(val) < 0.00001)
|
|
return 1.0;
|
|
return sin(val) / val;
|
|
}
|
|
|
|
/* Modified Bessel function of first order.
|
|
* Check Wiki for mathematical definition ... */
|
|
static INLINE double besseli0(double x)
|
|
{
|
|
unsigned i;
|
|
double sum = 0.0;
|
|
double factorial = 1.0;
|
|
double factorial_mult = 0.0;
|
|
double x_pow = 1.0;
|
|
double two_div_pow = 1.0;
|
|
double x_sqr = x * x;
|
|
|
|
/* Approximate. This is an infinite sum.
|
|
* Luckily, it converges rather fast. */
|
|
for (i = 0; i < 18; i++)
|
|
{
|
|
sum += x_pow * two_div_pow / (factorial * factorial);
|
|
|
|
factorial_mult += 1.0;
|
|
x_pow *= x_sqr;
|
|
two_div_pow *= 0.25;
|
|
factorial *= factorial_mult;
|
|
}
|
|
|
|
return sum;
|
|
}
|
|
|
|
static INLINE double kaiser_window_function(double index, double beta)
|
|
{
|
|
return besseli0(beta * sqrtf(1 - index * index));
|
|
}
|
|
|
|
static INLINE double lanzcos_window_function(double index)
|
|
{
|
|
return sinc(M_PI * index);
|
|
}
|
|
|
|
#endif
|