mirror of
https://github.com/CTCaer/RetroArch.git
synced 2024-12-14 22:38:34 +00:00
214 lines
6.6 KiB
C
214 lines
6.6 KiB
C
/* RetroArch - A frontend for libretro.
|
|
* Copyright (C) 2010-2013 - Hans-Kristian Arntzen
|
|
*
|
|
* RetroArch is free software: you can redistribute it and/or modify it under the terms
|
|
* of the GNU General Public License as published by the Free Software Found-
|
|
* ation, either version 3 of the License, or (at your option) any later version.
|
|
*
|
|
* RetroArch is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
|
|
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
|
|
* PURPOSE. See the GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with RetroArch.
|
|
* If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "../boolean.h"
|
|
#include "utils.h"
|
|
|
|
#include "../general.h"
|
|
#include "../performance.h"
|
|
|
|
#if defined(__SSE2__)
|
|
#include <emmintrin.h>
|
|
#elif defined(__ALTIVEC__)
|
|
#include <altivec.h>
|
|
#endif
|
|
|
|
void audio_convert_s16_to_float_C(float *out,
|
|
const int16_t *in, size_t samples, float gain)
|
|
{
|
|
gain = gain / 0x8000;
|
|
for (size_t i = 0; i < samples; i++)
|
|
out[i] = (float)in[i] * gain;
|
|
}
|
|
|
|
void audio_convert_float_to_s16_C(int16_t *out,
|
|
const float *in, size_t samples)
|
|
{
|
|
for (size_t i = 0; i < samples; i++)
|
|
{
|
|
int32_t val = (int32_t)(in[i] * 0x8000);
|
|
out[i] = (val > 0x7FFF) ? 0x7FFF : (val < -0x8000 ? -0x8000 : (int16_t)val);
|
|
}
|
|
}
|
|
|
|
#if defined(__SSE2__)
|
|
void audio_convert_s16_to_float_SSE2(float *out,
|
|
const int16_t *in, size_t samples, float gain)
|
|
{
|
|
float fgain = gain / (0x7fff * 0x10000);
|
|
__m128 factor = _mm_set1_ps(fgain);
|
|
size_t i;
|
|
for (i = 0; i + 8 <= samples; i += 8, in += 8, out += 8)
|
|
{
|
|
__m128i input = _mm_loadu_si128((const __m128i *)in);
|
|
__m128i regs[2] = {
|
|
_mm_unpacklo_epi16(_mm_setzero_si128(), input),
|
|
_mm_unpackhi_epi16(_mm_setzero_si128(), input),
|
|
};
|
|
|
|
__m128 output[2] = {
|
|
_mm_mul_ps(_mm_cvtepi32_ps(regs[0]), factor),
|
|
_mm_mul_ps(_mm_cvtepi32_ps(regs[1]), factor),
|
|
};
|
|
|
|
_mm_storeu_ps(out + 0, output[0]);
|
|
_mm_storeu_ps(out + 4, output[1]);
|
|
}
|
|
|
|
audio_convert_s16_to_float_C(out, in, samples - i, gain);
|
|
}
|
|
|
|
void audio_convert_float_to_s16_SSE2(int16_t *out,
|
|
const float *in, size_t samples)
|
|
{
|
|
__m128 factor = _mm_set1_ps((float)0x7fff);
|
|
size_t i;
|
|
for (i = 0; i + 8 <= samples; i += 8, in += 8, out += 8)
|
|
{
|
|
__m128 input[2] = { _mm_loadu_ps(in + 0), _mm_loadu_ps(in + 4) };
|
|
__m128 res[2] = { _mm_mul_ps(input[0], factor), _mm_mul_ps(input[1], factor) };
|
|
|
|
__m128i ints[2] = { _mm_cvtps_epi32(res[0]), _mm_cvtps_epi32(res[1]) };
|
|
__m128i packed = _mm_packs_epi32(ints[0], ints[1]);
|
|
|
|
_mm_storeu_si128((__m128i *)out, packed);
|
|
}
|
|
|
|
audio_convert_float_to_s16_C(out, in, samples - i);
|
|
}
|
|
#elif defined(__ALTIVEC__)
|
|
void audio_convert_s16_to_float_altivec(float *out,
|
|
const int16_t *in, size_t samples, float gain)
|
|
{
|
|
const vector float gain_vec = vec_splats(gain);
|
|
const vector float zero_vec = vec_splats(0.0f);
|
|
// Unaligned loads/store is a bit expensive, so we optimize for the good path (very likely).
|
|
if (((uintptr_t)out & 15) + ((uintptr_t)in & 15) == 0)
|
|
{
|
|
size_t i;
|
|
for (i = 0; i + 8 <= samples; i += 8, in += 8, out += 8)
|
|
{
|
|
vector signed short input = vec_ld(0, in);
|
|
vector signed int hi = vec_unpackh(input);
|
|
vector signed int lo = vec_unpackl(input);
|
|
vector float out_hi = vec_madd(vec_ctf(hi, 15), gain_vec, zero_vec);
|
|
vector float out_lo = vec_madd(vec_ctf(lo, 15), gain_vec, zero_vec);
|
|
|
|
vec_st(out_hi, 0, out);
|
|
vec_st(out_lo, 16, out);
|
|
}
|
|
|
|
audio_convert_s16_to_float_C(out, in, samples - i, gain);
|
|
}
|
|
else
|
|
audio_convert_s16_to_float_C(out, in, samples, gain);
|
|
}
|
|
|
|
void audio_convert_float_to_s16_altivec(int16_t *out,
|
|
const float *in, size_t samples)
|
|
{
|
|
// Unaligned loads/store is a bit expensive, so we optimize for the good path (very likely).
|
|
if (((uintptr_t)out & 15) + ((uintptr_t)in & 15) == 0)
|
|
{
|
|
size_t i;
|
|
for (i = 0; i + 8 <= samples; i += 8, in += 8, out += 8)
|
|
{
|
|
vector float input0 = vec_ld( 0, in);
|
|
vector float input1 = vec_ld(16, in);
|
|
vector signed int result0 = vec_cts(input0, 15);
|
|
vector signed int result1 = vec_cts(input1, 15);
|
|
vec_st(vec_packs(result0, result1), 0, out);
|
|
}
|
|
|
|
audio_convert_float_to_s16_C(out, in, samples - i);
|
|
}
|
|
else
|
|
audio_convert_float_to_s16_C(out, in, samples);
|
|
}
|
|
#elif defined(HAVE_NEON)
|
|
void audio_convert_s16_float_asm(float *out, const int16_t *in, size_t samples);
|
|
static void audio_convert_s16_to_float_neon(float *out, const int16_t *in, size_t samples,
|
|
float gain)
|
|
{
|
|
(void)gain; // gain is ignored for now.
|
|
|
|
size_t aligned_samples = samples & ~7;
|
|
if (aligned_samples)
|
|
audio_convert_s16_float_asm(out, in, aligned_samples);
|
|
|
|
// Could do all conversion in ASM, but keep it simple for now.
|
|
audio_convert_s16_to_float_C(out + aligned_samples, in + aligned_samples,
|
|
samples - aligned_samples, 1.0f);
|
|
}
|
|
|
|
void audio_convert_float_s16_asm(int16_t *out, const float *in, size_t samples);
|
|
static void audio_convert_float_to_s16_neon(int16_t *out, const float *in, size_t samples)
|
|
{
|
|
size_t aligned_samples = samples & ~7;
|
|
if (aligned_samples)
|
|
audio_convert_float_s16_asm(out, in, aligned_samples);
|
|
|
|
audio_convert_float_to_s16_C(out + aligned_samples, in + aligned_samples,
|
|
samples - aligned_samples);
|
|
}
|
|
#endif
|
|
|
|
void audio_convert_init_simd(void)
|
|
{
|
|
#ifdef HAVE_NEON
|
|
struct rarch_cpu_features cpu;
|
|
rarch_get_cpu_features(&cpu);
|
|
audio_convert_s16_to_float_arm = cpu.simd & RARCH_SIMD_NEON ?
|
|
audio_convert_s16_to_float_neon : audio_convert_s16_to_float_C;
|
|
audio_convert_float_to_s16_arm = cpu.simd & RARCH_SIMD_NEON ?
|
|
audio_convert_float_to_s16_neon : audio_convert_float_to_s16_C;
|
|
#endif
|
|
}
|
|
|
|
#ifdef HAVE_RSOUND
|
|
|
|
bool rarch_rsound_start(const char *ip)
|
|
{
|
|
strlcpy(g_settings.audio.driver, "rsound", sizeof(g_settings.audio.driver));
|
|
strlcpy(g_settings.audio.device, ip, sizeof(g_settings.audio.device));
|
|
driver.audio_data = NULL;
|
|
|
|
// If driver already has started, it must be reinited.
|
|
if (driver.audio_data)
|
|
{
|
|
uninit_audio();
|
|
driver.audio_data = NULL;
|
|
init_drivers_pre();
|
|
init_audio();
|
|
}
|
|
return g_extern.audio_active;
|
|
}
|
|
|
|
void rarch_rsound_stop(void)
|
|
{
|
|
strlcpy(g_settings.audio.driver, config_get_default_audio(), sizeof(g_settings.audio.driver));
|
|
|
|
// If driver already has started, it must be reinited.
|
|
if (driver.audio_data)
|
|
{
|
|
uninit_audio();
|
|
driver.audio_data = NULL;
|
|
init_drivers_pre();
|
|
init_audio();
|
|
}
|
|
}
|
|
|
|
#endif
|