mirror of
https://github.com/CTCaer/RetroArch.git
synced 2025-01-06 18:30:39 +00:00
365 lines
9.5 KiB
C
365 lines
9.5 KiB
C
/* RetroArch - A frontend for libretro.
|
|
* Copyright (C) 2010-2014 - Hans-Kristian Arntzen
|
|
*
|
|
* RetroArch is free software: you can redistribute it and/or modify it under the terms
|
|
* of the GNU General Public License as published by the Free Software Found-
|
|
* ation, either version 3 of the License, or (at your option) any later version.
|
|
*
|
|
* RetroArch is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
|
|
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
|
|
* PURPOSE. See the GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with RetroArch.
|
|
* If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "dspfilter.h"
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
|
|
#include "fft/fft.c"
|
|
|
|
#ifndef M_PI
|
|
#define M_PI 3.1415926535897932384626433832795
|
|
#endif
|
|
|
|
#ifndef min
|
|
#define min(a, b) ((a) < (b) ? (a) : (b))
|
|
#endif
|
|
|
|
struct eq_data
|
|
{
|
|
fft_t *fft;
|
|
float buffer[8 * 1024];
|
|
|
|
float *save;
|
|
float *block;
|
|
fft_complex_t *filter;
|
|
fft_complex_t *fftblock;
|
|
unsigned block_size;
|
|
unsigned block_ptr;
|
|
};
|
|
|
|
struct eq_gain
|
|
{
|
|
float freq;
|
|
float gain; // Linear.
|
|
};
|
|
|
|
static void eq_free(void *data)
|
|
{
|
|
struct eq_data *eq = (struct eq_data*)data;
|
|
if (!eq)
|
|
return;
|
|
|
|
fft_free(eq->fft);
|
|
free(eq->save);
|
|
free(eq->block);
|
|
free(eq->fftblock);
|
|
free(eq->filter);
|
|
free(eq);
|
|
}
|
|
|
|
static void eq_process(void *data, struct dspfilter_output *output,
|
|
const struct dspfilter_input *input)
|
|
{
|
|
struct eq_data *eq = (struct eq_data*)data;
|
|
|
|
output->samples = eq->buffer;
|
|
output->frames = 0;
|
|
|
|
float *out = eq->buffer;
|
|
const float *in = input->samples;
|
|
unsigned input_frames = input->frames;
|
|
|
|
while (input_frames)
|
|
{
|
|
unsigned write_avail = eq->block_size - eq->block_ptr;
|
|
if (input_frames < write_avail)
|
|
write_avail = input_frames;
|
|
|
|
memcpy(eq->block + eq->block_ptr * 2, in, write_avail * 2 * sizeof(float));
|
|
|
|
in += write_avail * 2;
|
|
input_frames -= write_avail;
|
|
eq->block_ptr += write_avail;
|
|
|
|
// Convolve a new block.
|
|
if (eq->block_ptr == eq->block_size)
|
|
{
|
|
unsigned i, c;
|
|
|
|
for (c = 0; c < 2; c++)
|
|
{
|
|
fft_process_forward(eq->fft, eq->fftblock, eq->block + c, 2);
|
|
for (i = 0; i < 2 * eq->block_size; i++)
|
|
eq->fftblock[i] = fft_complex_mul(eq->fftblock[i], eq->filter[i]);
|
|
fft_process_inverse(eq->fft, out + c, eq->fftblock, 2);
|
|
}
|
|
|
|
// Overlap add method, so add in saved block now.
|
|
for (i = 0; i < 2 * eq->block_size; i++)
|
|
out[i] += eq->save[i];
|
|
|
|
// Save block for later.
|
|
memcpy(eq->save, out + 2 * eq->block_size, 2 * eq->block_size * sizeof(float));
|
|
|
|
out += eq->block_size * 2;
|
|
output->frames += eq->block_size;
|
|
eq->block_ptr = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int gains_cmp(const void *a_, const void *b_)
|
|
{
|
|
const struct eq_gain *a = (const struct eq_gain*)a_;
|
|
const struct eq_gain *b = (const struct eq_gain*)b_;
|
|
if (a->freq < b->freq)
|
|
return -1;
|
|
else if (a->freq > b->freq)
|
|
return 1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
static void generate_response(fft_complex_t *response,
|
|
const struct eq_gain *gains, unsigned num_gains, unsigned samples)
|
|
{
|
|
unsigned i;
|
|
|
|
float start_freq = 0.0f;
|
|
float start_gain = 1.0f;
|
|
|
|
float end_freq = 1.0f;
|
|
float end_gain = 1.0f;
|
|
|
|
if (num_gains)
|
|
{
|
|
end_freq = gains->freq;
|
|
end_gain = gains->gain;
|
|
num_gains--;
|
|
gains++;
|
|
}
|
|
|
|
// Create a response by linear interpolation between known frequency sample points.
|
|
for (i = 0; i <= samples; i++)
|
|
{
|
|
float freq = (float)i / samples;
|
|
|
|
while (freq >= end_freq)
|
|
{
|
|
if (num_gains)
|
|
{
|
|
start_freq = end_freq;
|
|
start_gain = end_gain;
|
|
end_freq = gains->freq;
|
|
end_gain = gains->gain;
|
|
|
|
gains++;
|
|
num_gains--;
|
|
}
|
|
else
|
|
{
|
|
start_freq = end_freq;
|
|
start_gain = end_gain;
|
|
end_freq = 1.0f;
|
|
end_gain = 1.0f;
|
|
break;
|
|
}
|
|
}
|
|
|
|
float lerp = 0.5f;
|
|
// Edge case where i == samples.
|
|
if (end_freq > start_freq)
|
|
lerp = (freq - start_freq) / (end_freq - start_freq);
|
|
float gain = (1.0f - lerp) * start_gain + lerp * end_gain;
|
|
|
|
response[i].real = gain;
|
|
response[i].imag = 0.0f;
|
|
response[2 * samples - i].real = gain;
|
|
response[2 * samples - i].imag = 0.0f;
|
|
}
|
|
}
|
|
|
|
// Modified Bessel function of first order.
|
|
// Check Wiki for mathematical definition ...
|
|
static inline double kaiser_besseli0(double x)
|
|
{
|
|
unsigned i;
|
|
double sum = 0.0;
|
|
|
|
double factorial = 1.0;
|
|
double factorial_mult = 0.0;
|
|
double x_pow = 1.0;
|
|
double two_div_pow = 1.0;
|
|
double x_sqr = x * x;
|
|
|
|
// Approximate. This is an infinite sum.
|
|
// Luckily, it converges rather fast.
|
|
for (i = 0; i < 18; i++)
|
|
{
|
|
sum += x_pow * two_div_pow / (factorial * factorial);
|
|
|
|
factorial_mult += 1.0;
|
|
x_pow *= x_sqr;
|
|
two_div_pow *= 0.25;
|
|
factorial *= factorial_mult;
|
|
}
|
|
|
|
return sum;
|
|
}
|
|
|
|
static inline double kaiser_window(double index, double beta)
|
|
{
|
|
return kaiser_besseli0(beta * sqrt(1 - index * index));
|
|
}
|
|
|
|
static void create_filter(struct eq_data *eq, unsigned size_log2,
|
|
struct eq_gain *gains, unsigned num_gains, double beta)
|
|
{
|
|
int i;
|
|
int half_block_size = eq->block_size >> 1;
|
|
double window_mod = 1.0 / kaiser_window(0.0, beta);
|
|
|
|
fft_t *fft = fft_new(size_log2);
|
|
float *time_filter = (float*)calloc(eq->block_size * 2 + 1, sizeof(*time_filter));
|
|
if (!fft || !time_filter)
|
|
goto end;
|
|
|
|
// Make sure bands are in correct order.
|
|
qsort(gains, num_gains, sizeof(*gains), gains_cmp);
|
|
|
|
// Compute desired filter response.
|
|
generate_response(eq->filter, gains, num_gains, half_block_size);
|
|
|
|
// Get equivalent time-domain filter.
|
|
fft_process_inverse(fft, time_filter, eq->filter, 1);
|
|
|
|
// ifftshift() to create the correct linear phase filter.
|
|
// The filter response was designed with zero phase, which won't work unless we compensate
|
|
// for the repeating property of the FFT here by flipping left and right blocks.
|
|
for (i = 0; i < half_block_size; i++)
|
|
{
|
|
float tmp = time_filter[i + half_block_size];
|
|
time_filter[i + half_block_size] = time_filter[i];
|
|
time_filter[i] = tmp;
|
|
}
|
|
|
|
// Apply a window to smooth out the frequency repsonse.
|
|
for (i = 0; i < (int)eq->block_size; i++)
|
|
{
|
|
// Kaiser window.
|
|
double phase = (double)i / eq->block_size;
|
|
phase = 2.0 * (phase - 0.5);
|
|
time_filter[i] *= window_mod * kaiser_window(phase, beta);
|
|
}
|
|
|
|
// Debugging.
|
|
#if 0
|
|
FILE *file = fopen("/tmp/test.txt", "w");
|
|
if (file)
|
|
{
|
|
for (i = 0; i < (int)eq->block_size - 1; i++)
|
|
fprintf(file, "%.6f\n", time_filter[i + 1]);
|
|
fclose(file);
|
|
}
|
|
#endif
|
|
|
|
// Padded FFT to create our FFT filter.
|
|
// Make our even-length filter odd by discarding the first coefficient.
|
|
// For some interesting reason, this allows us to design an odd-length linear phase filter.
|
|
fft_process_forward(eq->fft, eq->filter, time_filter + 1, 1);
|
|
|
|
end:
|
|
fft_free(fft);
|
|
free(time_filter);
|
|
}
|
|
|
|
static void *eq_init(const struct dspfilter_info *info,
|
|
const struct dspfilter_config *config, void *userdata)
|
|
{
|
|
unsigned i;
|
|
struct eq_data *eq = (struct eq_data*)calloc(1, sizeof(*eq));
|
|
if (!eq)
|
|
return NULL;
|
|
|
|
const float default_freq[] = { 0.0f, info->input_rate };
|
|
const float default_gain[] = { 0.0f, 0.0f };
|
|
|
|
float beta;
|
|
config->get_float(userdata, "window_beta", &beta, 4.0f);
|
|
|
|
int size_log2;
|
|
config->get_int(userdata, "block_size_log2", &size_log2, 8);
|
|
unsigned size = 1 << size_log2;
|
|
|
|
struct eq_gain *gains = NULL;
|
|
float *frequencies, *gain;
|
|
unsigned num_freq, num_gain;
|
|
config->get_float_array(userdata, "frequencies", &frequencies, &num_freq, default_freq, 2);
|
|
config->get_float_array(userdata, "gains", &gain, &num_gain, default_gain, 2);
|
|
|
|
num_gain = num_freq = min(num_gain, num_freq);
|
|
|
|
gains = (struct eq_gain*)calloc(num_gain, sizeof(*gains));
|
|
if (!gains)
|
|
goto error;
|
|
|
|
for (i = 0; i < num_gain; i++)
|
|
{
|
|
gains[i].freq = frequencies[i] / (0.5f * info->input_rate);
|
|
gains[i].gain = pow(10.0, gain[i] / 20.0);
|
|
}
|
|
config->free(frequencies);
|
|
config->free(gain);
|
|
|
|
eq->block_size = size;
|
|
|
|
eq->save = (float*)calloc( size, 2 * sizeof(*eq->save));
|
|
eq->block = (float*)calloc(2 * size, 2 * sizeof(*eq->block));
|
|
eq->fftblock = (fft_complex_t*)calloc(2 * size, sizeof(*eq->fftblock));
|
|
eq->filter = (fft_complex_t*)calloc(2 * size, sizeof(*eq->filter));
|
|
|
|
// Use an FFT which is twice the block size with zero-padding
|
|
// to make circular convolution => proper convolution.
|
|
eq->fft = fft_new(size_log2 + 1);
|
|
|
|
if (!eq->fft || !eq->fftblock || !eq->save || !eq->block || !eq->filter)
|
|
goto error;
|
|
|
|
create_filter(eq, size_log2, gains, num_gain, beta);
|
|
|
|
free(gains);
|
|
return eq;
|
|
|
|
error:
|
|
free(gains);
|
|
eq_free(eq);
|
|
return NULL;
|
|
}
|
|
|
|
static const struct dspfilter_implementation eq_plug = {
|
|
eq_init,
|
|
eq_process,
|
|
eq_free,
|
|
|
|
DSPFILTER_API_VERSION,
|
|
"Linear-Phase FFT Equalizer",
|
|
"eq",
|
|
};
|
|
|
|
#ifdef HAVE_FILTERS_BUILTIN
|
|
#define dspfilter_get_implementation eq_dspfilter_get_implementation
|
|
#endif
|
|
|
|
const struct dspfilter_implementation *dspfilter_get_implementation(dspfilter_simd_mask_t mask)
|
|
{
|
|
(void)mask;
|
|
return &eq_plug;
|
|
}
|
|
|
|
#undef dspfilter_get_implementation
|
|
|