2012-04-21 23:17:43 +02:00

287 lines
8.0 KiB
C

/* RetroArch - A frontend for libretro.
* Copyright (C) 2010-2012 - Hans-Kristian Arntzen
*
* RetroArch is free software: you can redistribute it and/or modify it under the terms
* of the GNU General Public License as published by the Free Software Found-
* ation, either version 3 of the License, or (at your option) any later version.
*
* RetroArch is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with SSNES.
* If not, see <http://www.gnu.org/licenses/>.
*/
#include "../resampler.h"
#include "../utils.h"
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <complex.h>
#include <string.h>
#include <assert.h>
#include <stdbool.h>
static void gen_signal(float *out, double omega, double bias_samples, size_t samples)
{
for (size_t i = 0; i < samples; i += 2)
{
out[i + 0] = cos(((i >> 1) + bias_samples) * omega);
out[i + 1] = out[i + 0];
}
}
struct snr_result
{
double snr;
double gain;
};
static unsigned bitrange(unsigned len)
{
unsigned ret = 0;
while ((len >>= 1))
ret++;
return ret;
}
static unsigned bitswap(unsigned i, unsigned range)
{
unsigned ret = 0;
for (unsigned shifts = 0; shifts < range; shifts++)
ret |= i & (1 << (range - shifts - 1)) ? (1 << shifts) : 0;
return ret;
}
// When interleaving the butterfly buffer, addressing puts bits in reverse.
// [0, 1, 2, 3, 4, 5, 6, 7] => [0, 4, 2, 6, 1, 5, 3, 7]
static void interleave(complex double *butterfly_buf, size_t samples)
{
unsigned range = bitrange(samples);
for (unsigned i = 0; i < samples; i++)
{
unsigned target = bitswap(i, range);
if (target > i)
{
complex double tmp = butterfly_buf[target];
butterfly_buf[target] = butterfly_buf[i];
butterfly_buf[i] = tmp;
}
}
}
static complex double gen_phase(double index)
{
return cexp(M_PI * I * index);
}
static void butterfly(complex double *a, complex double *b, complex double mod)
{
mod *= *b;
complex double a_ = *a + mod;
complex double b_ = *a - mod;
*a = a_;
*b = b_;
}
static void butterflies(complex double *butterfly_buf, double phase_dir, size_t step_size, size_t samples)
{
for (unsigned i = 0; i < samples; i += 2 * step_size)
for (unsigned j = i; j < i + step_size; j++)
butterfly(&butterfly_buf[j], &butterfly_buf[j + step_size], gen_phase((phase_dir * (j - i)) / step_size));
}
static void calculate_fft(const float *data, complex double *butterfly_buf, size_t samples)
{
// Enforce POT.
assert((samples & (samples - 1)) == 0);
for (unsigned i = 0; i < samples; i++)
butterfly_buf[i] = data[2 * i];
// Interleave buffer to work with FFT.
interleave(butterfly_buf, samples);
// Fly, lovely butterflies! :D
for (unsigned step_size = 1; step_size < samples; step_size *= 2)
butterflies(butterfly_buf, -1.0, step_size, samples);
}
static void calculate_fft_adjust(complex double *butterfly_buf, double gain, bool merge_high, size_t samples)
{
if (merge_high)
{
for (unsigned i = 1; i < samples / 2; i++)
butterfly_buf[i] += conj(butterfly_buf[samples - i]);
}
// Normalize amplitudes.
for (unsigned i = 0; i < samples; i++)
butterfly_buf[i] *= gain;
}
static void calculate_ifft(complex double *butterfly_buf, size_t samples, bool normalize)
{
// Enforce POT.
assert((samples & (samples - 1)) == 0);
interleave(butterfly_buf, samples);
// Fly, lovely butterflies! In opposite direction! :D
for (unsigned step_size = 1; step_size < samples; step_size *= 2)
butterflies(butterfly_buf, 1.0, step_size, samples);
if (normalize)
calculate_fft_adjust(butterfly_buf, 1.0 / samples, false, samples);
}
static void test_fft(void)
{
fprintf(stderr, "Sanity checking FFT ...\n");
float signal[32];
complex double butterfly_buf[16];
complex double buf_tmp[16];
const float cos_freqs[] = {
1.0, 4.0, 6.0,
};
const float sin_freqs[] = {
-2.0, 5.0, 7.0,
};
for (unsigned i = 0; i < 16; i++)
{
signal[2 * i] = 0.0;
for (unsigned j = 0; j < sizeof(cos_freqs) / sizeof(cos_freqs[0]); j++)
signal[2 * i] += cos(2.0 * M_PI * i * cos_freqs[j] / 16.0);
for (unsigned j = 0; j < sizeof(sin_freqs) / sizeof(sin_freqs[0]); j++)
signal[2 * i] += sin(2.0 * M_PI * i * sin_freqs[j] / 16.0);
}
calculate_fft(signal, butterfly_buf, 16);
memcpy(buf_tmp, butterfly_buf, sizeof(buf_tmp));
calculate_fft_adjust(buf_tmp, 1.0 / 16, true, 16);
printf("FFT: { ");
for (unsigned i = 0; i < 7; i++)
printf("(%4.2lf, %4.2lf), ", creal(buf_tmp[i]), cimag(buf_tmp[i]));
printf("(%4.2lf, %4.2lf) }\n", creal(buf_tmp[7]), cimag(buf_tmp[7]));
calculate_ifft(butterfly_buf, 16, true);
printf("Original: { ");
for (unsigned i = 0; i < 15; i++)
printf("%5.2f, ", signal[2 * i]);
printf("%5.2f }\n", signal[2 * 15]);
printf("FFT => IFFT: { ");
for (unsigned i = 0; i < 15; i++)
printf("%5.2lf, ", creal(butterfly_buf[i]));
printf("%5.2lf }\n", creal(butterfly_buf[15]));
}
// This doesn't yet take account for slight phase distortions,
// so reported SNR is lower than reality.
static void calculate_snr(struct snr_result *res,
unsigned in_rate,
const float *resamp, complex double *butterfly_buf, size_t samples)
{
samples >>= 1;
calculate_fft(resamp, butterfly_buf, samples);
calculate_fft_adjust(butterfly_buf, 1.0 / samples, true, samples);
double signal = cabs(butterfly_buf[in_rate] * butterfly_buf[in_rate]);
butterfly_buf[in_rate] = 0.0;
double noise = 0.0;
for (unsigned i = 0; i < samples / 2; i++)
noise += cabs(butterfly_buf[i] * butterfly_buf[i]);
res->snr = 10.0 * log10(signal / noise);
res->gain = 10.0 * log10(signal);
}
int main(int argc, char *argv[])
{
if (argc != 2)
{
fprintf(stderr, "Usage: %s <ratio> (out-rate is fixed for FFT).\n", argv[0]);
return 1;
}
double ratio = strtod(argv[1], NULL);
const unsigned fft_samples = 1024 * 128;
unsigned out_rate = fft_samples;
unsigned in_rate = out_rate / ratio;
ratio = (double)out_rate / in_rate;
if (ratio <= 1.0)
{
fprintf(stderr, "Ratio too low ...\n");
return 1;
}
static const float freq_list[] = {
0.001, 0.002, 0.003, 0.004, 0.005, 0.008,
0.010, 0.015, 0.020, 0.025, 0.030, 0.035, 0.040, 0.045, 0.050,
0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45,
0.46, 0.47, 0.48, 0.49, 0.495,
};
unsigned samples = in_rate * 2;
float *input = calloc(sizeof(float), samples);
float *output = calloc(sizeof(float), (fft_samples + 1) * 2);
complex double *butterfly_buf = calloc(sizeof(complex double), fft_samples);
bool warned = false;
assert(input);
assert(output);
ssnes_resampler_t *re = resampler_new();
assert(re);
test_fft();
for (unsigned i = 0; i < sizeof(freq_list) / sizeof(freq_list[0]); i++)
{
unsigned freq = freq_list[i] * in_rate;
double omega = 2.0 * M_PI * freq / in_rate;
double sample_offset;
resampler_preinit(re, omega, &sample_offset);
gen_signal(input, omega, sample_offset, samples);
struct resampler_data data = {
.data_in = input,
.data_out = output,
.input_frames = in_rate,
.ratio = ratio,
};
resampler_process(re, &data);
unsigned out_samples = data.output_frames * 2;
if (out_samples != fft_samples * 2 && !warned)
{
fprintf(stderr, "Out samples != fft_samples ... %u / %u\n", out_samples, fft_samples * 2);
warned = true;
}
struct snr_result res;
calculate_snr(&res, freq, output, butterfly_buf, fft_samples * 2);
printf("SNR @ w = %5.3f : %6.2lf dB, Gain: %6.1lf dB\n",
freq_list[i], res.snr, res.gain);
}
resampler_free(re);
free(input);
free(output);
free(butterfly_buf);
}