drivers: add ufs stack

If UFS device is initialized, we could just make it out of
hibernation by UFS_FLAGS_SKIPINIT. And vendor's dirver is always
focus on PHY setting. We could use UFS driver directly if it
exits from hibernation.

There're eight LUNs in UFS device. The UFS driver only provides
the read/write API with LUN. User could define his own read/write
since user may want to access different LUNs.

Signed-off-by: Haojian Zhuang <haojian.zhuang@linaro.org>
This commit is contained in:
Haojian Zhuang 2017-05-31 11:00:15 +08:00
parent 562aef8e2f
commit eb5073f49e
2 changed files with 1288 additions and 0 deletions

759
drivers/ufs/ufs.c Normal file
View File

@ -0,0 +1,759 @@
/*
* Copyright (c) 2017, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <arch_helpers.h>
#include <assert.h>
#include <debug.h>
#include <delay_timer.h>
#include <endian.h>
#include <errno.h>
#include <mmio.h>
#include <platform_def.h>
#include <stdint.h>
#include <string.h>
#include <ufs.h>
#define CDB_ADDR_MASK 127
#define ALIGN_CDB(x) (((x) + CDB_ADDR_MASK) & ~CDB_ADDR_MASK)
#define ALIGN_8(x) (((x) + 7) & ~7)
#define UFS_DESC_SIZE 0x400
#define MAX_UFS_DESC_SIZE 0x8000 /* 32 descriptors */
#define MAX_PRDT_SIZE 0x40000 /* 256KB */
static ufs_params_t ufs_params;
static int nutrs; /* Number of UTP Transfer Request Slots */
int ufshc_send_uic_cmd(uintptr_t base, uic_cmd_t *cmd)
{
unsigned int data;
data = mmio_read_32(base + HCS);
if ((data & HCS_UCRDY) == 0)
return -EBUSY;
mmio_write_32(base + IS, ~0);
mmio_write_32(base + UCMDARG1, cmd->arg1);
mmio_write_32(base + UCMDARG2, cmd->arg2);
mmio_write_32(base + UCMDARG3, cmd->arg3);
mmio_write_32(base + UICCMD, cmd->op);
do {
data = mmio_read_32(base + IS);
} while ((data & UFS_INT_UCCS) == 0);
mmio_write_32(base + IS, UFS_INT_UCCS);
return mmio_read_32(base + UCMDARG2) && CONFIG_RESULT_CODE_MASK;
}
int ufshc_dme_get(unsigned int attr, unsigned int idx, unsigned int *val)
{
uintptr_t base;
unsigned int data;
int retries;
assert((ufs_params.reg_base != 0) && (val != NULL));
base = ufs_params.reg_base;
for (retries = 0; retries < 100; retries++) {
data = mmio_read_32(base + HCS);
if ((data & HCS_UCRDY) != 0)
break;
mdelay(1);
}
if (retries >= 100)
return -EBUSY;
mmio_write_32(base + IS, ~0);
mmio_write_32(base + UCMDARG1, (attr << 16) | GEN_SELECTOR_IDX(idx));
mmio_write_32(base + UCMDARG2, 0);
mmio_write_32(base + UCMDARG3, 0);
mmio_write_32(base + UICCMD, DME_GET);
do {
data = mmio_read_32(base + IS);
if (data & UFS_INT_UE)
return -EINVAL;
} while ((data & UFS_INT_UCCS) == 0);
mmio_write_32(base + IS, UFS_INT_UCCS);
data = mmio_read_32(base + UCMDARG2) && CONFIG_RESULT_CODE_MASK;
assert(data == 0);
*val = mmio_read_32(base + UCMDARG3);
return 0;
}
int ufshc_dme_set(unsigned int attr, unsigned int idx, unsigned int val)
{
uintptr_t base;
unsigned int data;
assert((ufs_params.reg_base != 0));
base = ufs_params.reg_base;
data = mmio_read_32(base + HCS);
if ((data & HCS_UCRDY) == 0)
return -EBUSY;
mmio_write_32(base + IS, ~0);
mmio_write_32(base + UCMDARG1, (attr << 16) | GEN_SELECTOR_IDX(idx));
mmio_write_32(base + UCMDARG2, 0);
mmio_write_32(base + UCMDARG3, val);
mmio_write_32(base + UICCMD, DME_SET);
do {
data = mmio_read_32(base + IS);
if (data & UFS_INT_UE)
return -EINVAL;
} while ((data & UFS_INT_UCCS) == 0);
mmio_write_32(base + IS, UFS_INT_UCCS);
data = mmio_read_32(base + UCMDARG2) && CONFIG_RESULT_CODE_MASK;
assert(data == 0);
return 0;
}
static void ufshc_reset(uintptr_t base)
{
unsigned int data;
/* Enable Host Controller */
mmio_write_32(base + HCE, HCE_ENABLE);
/* Wait until basic initialization sequence completed */
do {
data = mmio_read_32(base + HCE);
} while ((data & HCE_ENABLE) == 0);
/* Enable Interrupts */
data = UFS_INT_UCCS | UFS_INT_ULSS | UFS_INT_UE | UFS_INT_UTPES |
UFS_INT_DFES | UFS_INT_HCFES | UFS_INT_SBFES;
mmio_write_32(base + IE, data);
}
static int ufshc_link_startup(uintptr_t base)
{
uic_cmd_t cmd;
int data, result;
int retries;
for (retries = 10; retries > 0; retries--) {
memset(&cmd, 0, sizeof(cmd));
cmd.op = DME_LINKSTARTUP;
result = ufshc_send_uic_cmd(base, &cmd);
if (result != 0)
continue;
while ((mmio_read_32(base + HCS) & HCS_DP) == 0)
;
data = mmio_read_32(base + IS);
if (data & UFS_INT_ULSS)
mmio_write_32(base + IS, UFS_INT_ULSS);
return 0;
}
return -EIO;
}
/* Check Door Bell register to get an empty slot */
static int get_empty_slot(int *slot)
{
unsigned int data;
int i;
data = mmio_read_32(ufs_params.reg_base + UTRLDBR);
for (i = 0; i < nutrs; i++) {
if ((data & 1) == 0)
break;
data = data >> 1;
}
if (i >= nutrs)
return -EBUSY;
*slot = i;
return 0;
}
static void get_utrd(utp_utrd_t *utrd)
{
uintptr_t base;
int slot = 0, result;
utrd_header_t *hd;
assert(utrd != NULL);
result = get_empty_slot(&slot);
assert(result == 0);
/* clear utrd */
memset((void *)utrd, 0, sizeof(utp_utrd_t));
base = ufs_params.desc_base + (slot * UFS_DESC_SIZE);
/* clear the descriptor */
memset((void *)base, 0, UFS_DESC_SIZE);
utrd->header = base;
utrd->task_tag = slot + 1;
/* CDB address should be aligned with 128 bytes */
utrd->upiu = ALIGN_CDB(utrd->header + sizeof(utrd_header_t));
utrd->resp_upiu = ALIGN_8(utrd->upiu + sizeof(cmd_upiu_t));
utrd->size_upiu = utrd->resp_upiu - utrd->upiu;
utrd->size_resp_upiu = ALIGN_8(sizeof(resp_upiu_t));
utrd->prdt = utrd->resp_upiu + utrd->size_resp_upiu;
hd = (utrd_header_t *)utrd->header;
hd->ucdba = utrd->upiu & UINT32_MAX;
hd->ucdbau = (utrd->upiu >> 32) & UINT32_MAX;
/* Both RUL and RUO is based on DWORD */
hd->rul = utrd->size_resp_upiu >> 2;
hd->ruo = utrd->size_upiu >> 2;
(void)result;
}
/*
* Prepare UTRD, Command UPIU, Response UPIU.
*/
static int ufs_prepare_cmd(utp_utrd_t *utrd, uint8_t op, uint8_t lun,
int lba, uintptr_t buf, size_t length)
{
utrd_header_t *hd;
cmd_upiu_t *upiu;
prdt_t *prdt;
unsigned int ulba;
unsigned int lba_cnt;
int prdt_size;
mmio_write_32(ufs_params.reg_base + UTRLBA,
utrd->header & UINT32_MAX);
mmio_write_32(ufs_params.reg_base + UTRLBAU,
(utrd->upiu >> 32) & UINT32_MAX);
hd = (utrd_header_t *)utrd->header;
upiu = (cmd_upiu_t *)utrd->upiu;
hd->i = 1;
hd->ct = CT_UFS_STORAGE;
hd->ocs = OCS_MASK;
upiu->trans_type = CMD_UPIU;
upiu->task_tag = utrd->task_tag;
upiu->cdb[0] = op;
ulba = (unsigned int)lba;
lba_cnt = (unsigned int)(length >> UFS_BLOCK_SHIFT);
switch (op) {
case CDBCMD_TEST_UNIT_READY:
break;
case CDBCMD_READ_CAPACITY_10:
hd->dd = DD_OUT;
upiu->flags = UPIU_FLAGS_R | UPIU_FLAGS_ATTR_S;
upiu->lun = lun;
break;
case CDBCMD_READ_10:
hd->dd = DD_OUT;
upiu->flags = UPIU_FLAGS_R | UPIU_FLAGS_ATTR_S;
upiu->lun = lun;
upiu->cdb[1] = RW_WITHOUT_CACHE;
/* set logical block address */
upiu->cdb[2] = (ulba >> 24) & 0xff;
upiu->cdb[3] = (ulba >> 16) & 0xff;
upiu->cdb[4] = (ulba >> 8) & 0xff;
upiu->cdb[5] = ulba & 0xff;
/* set transfer length */
upiu->cdb[7] = (lba_cnt >> 8) & 0xff;
upiu->cdb[8] = lba_cnt & 0xff;
break;
case CDBCMD_WRITE_10:
hd->dd = DD_IN;
upiu->flags = UPIU_FLAGS_W | UPIU_FLAGS_ATTR_S;
upiu->lun = lun;
upiu->cdb[1] = RW_WITHOUT_CACHE;
/* set logical block address */
upiu->cdb[2] = (ulba >> 24) & 0xff;
upiu->cdb[3] = (ulba >> 16) & 0xff;
upiu->cdb[4] = (ulba >> 8) & 0xff;
upiu->cdb[5] = ulba & 0xff;
/* set transfer length */
upiu->cdb[7] = (lba_cnt >> 8) & 0xff;
upiu->cdb[8] = lba_cnt & 0xff;
break;
default:
assert(0);
}
if (hd->dd == DD_IN)
flush_dcache_range(buf, length);
else if (hd->dd == DD_OUT)
inv_dcache_range(buf, length);
if (length) {
upiu->exp_data_trans_len = htobe32(length);
assert(lba_cnt <= UINT16_MAX);
prdt = (prdt_t *)utrd->prdt;
prdt_size = 0;
while (length > 0) {
prdt->dba = (unsigned int)(buf & UINT32_MAX);
prdt->dbau = (unsigned int)((buf >> 32) & UINT32_MAX);
/* prdt->dbc counts from 0 */
if (length > MAX_PRDT_SIZE) {
prdt->dbc = MAX_PRDT_SIZE - 1;
length = length - MAX_PRDT_SIZE;
} else {
prdt->dbc = length - 1;
length = 0;
}
buf += MAX_PRDT_SIZE;
prdt++;
prdt_size += sizeof(prdt_t);
}
utrd->size_prdt = ALIGN_8(prdt_size);
hd->prdtl = utrd->size_prdt >> 2;
hd->prdto = (utrd->size_upiu + utrd->size_resp_upiu) >> 2;
}
flush_dcache_range((uintptr_t)utrd, sizeof(utp_utrd_t));
flush_dcache_range((uintptr_t)utrd->header, UFS_DESC_SIZE);
return 0;
}
static int ufs_prepare_query(utp_utrd_t *utrd, uint8_t op, uint8_t idn,
uint8_t index, uint8_t sel,
uintptr_t buf, size_t length)
{
utrd_header_t *hd;
query_upiu_t *query_upiu;
hd = (utrd_header_t *)utrd->header;
query_upiu = (query_upiu_t *)utrd->upiu;
mmio_write_32(ufs_params.reg_base + UTRLBA,
utrd->header & UINT32_MAX);
mmio_write_32(ufs_params.reg_base + UTRLBAU,
(utrd->header >> 32) & UINT32_MAX);
hd->i = 1;
hd->ct = CT_UFS_STORAGE;
hd->ocs = OCS_MASK;
query_upiu->trans_type = QUERY_REQUEST_UPIU;
query_upiu->task_tag = utrd->task_tag;
query_upiu->ts.desc.opcode = op;
query_upiu->ts.desc.idn = idn;
query_upiu->ts.desc.index = index;
query_upiu->ts.desc.selector = sel;
switch (op) {
case QUERY_READ_DESC:
query_upiu->query_func = QUERY_FUNC_STD_READ;
query_upiu->ts.desc.length = htobe16(length);
break;
case QUERY_WRITE_DESC:
query_upiu->query_func = QUERY_FUNC_STD_WRITE;
query_upiu->ts.desc.length = htobe16(length);
memcpy((void *)(utrd->upiu + sizeof(query_upiu_t)),
(void *)buf, length);
break;
case QUERY_READ_ATTR:
case QUERY_READ_FLAG:
query_upiu->query_func = QUERY_FUNC_STD_READ;
break;
case QUERY_CLEAR_FLAG:
case QUERY_SET_FLAG:
query_upiu->query_func = QUERY_FUNC_STD_WRITE;
break;
case QUERY_WRITE_ATTR:
query_upiu->query_func = QUERY_FUNC_STD_WRITE;
memcpy((void *)&query_upiu->ts.attr.value, (void *)buf, length);
break;
default:
assert(0);
}
flush_dcache_range((uintptr_t)utrd, sizeof(utp_utrd_t));
flush_dcache_range((uintptr_t)utrd->header, UFS_DESC_SIZE);
return 0;
}
static void ufs_prepare_nop_out(utp_utrd_t *utrd)
{
utrd_header_t *hd;
nop_out_upiu_t *nop_out;
mmio_write_32(ufs_params.reg_base + UTRLBA,
utrd->header & UINT32_MAX);
mmio_write_32(ufs_params.reg_base + UTRLBAU,
(utrd->header >> 32) & UINT32_MAX);
hd = (utrd_header_t *)utrd->header;
nop_out = (nop_out_upiu_t *)utrd->upiu;
hd->i = 1;
hd->ct = CT_UFS_STORAGE;
hd->ocs = OCS_MASK;
nop_out->trans_type = 0;
nop_out->task_tag = utrd->task_tag;
flush_dcache_range((uintptr_t)utrd, sizeof(utp_utrd_t));
flush_dcache_range((uintptr_t)utrd->header, UFS_DESC_SIZE);
}
static void ufs_send_request(int task_tag)
{
unsigned int data;
int slot;
slot = task_tag - 1;
/* clear all interrupts */
mmio_write_32(ufs_params.reg_base + IS, ~0);
mmio_write_32(ufs_params.reg_base + UTRLRSR, 1);
do {
data = mmio_read_32(ufs_params.reg_base + UTRLRSR);
} while (data == 0);
data = UTRIACR_IAEN | UTRIACR_CTR | UTRIACR_IACTH(0x1F) |
UTRIACR_IATOVAL(0xFF);
mmio_write_32(ufs_params.reg_base + UTRIACR, data);
/* send request */
mmio_setbits_32(ufs_params.reg_base + UTRLDBR, 1 << slot);
}
static int ufs_check_resp(utp_utrd_t *utrd, int trans_type)
{
utrd_header_t *hd;
resp_upiu_t *resp;
unsigned int data;
int slot;
hd = (utrd_header_t *)utrd->header;
resp = (resp_upiu_t *)utrd->resp_upiu;
inv_dcache_range((uintptr_t)hd, UFS_DESC_SIZE);
inv_dcache_range((uintptr_t)utrd, sizeof(utp_utrd_t));
do {
data = mmio_read_32(ufs_params.reg_base + IS);
if ((data & ~(UFS_INT_UCCS | UFS_INT_UTRCS)) != 0)
return -EIO;
} while ((data & UFS_INT_UTRCS) == 0);
slot = utrd->task_tag - 1;
data = mmio_read_32(ufs_params.reg_base + UTRLDBR);
assert((data & (1 << slot)) == 0);
assert(hd->ocs == OCS_SUCCESS);
assert((resp->trans_type & TRANS_TYPE_CODE_MASK) == trans_type);
(void)resp;
(void)slot;
return 0;
}
#ifdef UFS_RESP_DEBUG
static void dump_upiu(utp_utrd_t *utrd)
{
utrd_header_t *hd;
int i;
hd = (utrd_header_t *)utrd->header;
INFO("utrd:0x%x, ruo:0x%x, rul:0x%x, ocs:0x%x, UTRLDBR:0x%x\n",
(unsigned int)(uintptr_t)utrd, hd->ruo, hd->rul, hd->ocs,
mmio_read_32(ufs_params.reg_base + UTRLDBR));
for (i = 0; i < sizeof(utrd_header_t); i += 4) {
INFO("[%lx]:0x%x\n",
(uintptr_t)utrd->header + i,
*(unsigned int *)((uintptr_t)utrd->header + i));
}
for (i = 0; i < sizeof(cmd_upiu_t); i += 4) {
INFO("cmd[%lx]:0x%x\n",
utrd->upiu + i,
*(unsigned int *)(utrd->upiu + i));
}
for (i = 0; i < sizeof(resp_upiu_t); i += 4) {
INFO("resp[%lx]:0x%x\n",
utrd->resp_upiu + i,
*(unsigned int *)(utrd->resp_upiu + i));
}
for (i = 0; i < sizeof(prdt_t); i += 4) {
INFO("prdt[%lx]:0x%x\n",
utrd->prdt + i,
*(unsigned int *)(utrd->prdt + i));
}
}
#endif
static void ufs_verify_init(void)
{
utp_utrd_t utrd;
int result;
get_utrd(&utrd);
ufs_prepare_nop_out(&utrd);
ufs_send_request(utrd.task_tag);
result = ufs_check_resp(&utrd, NOP_IN_UPIU);
assert(result == 0);
(void)result;
}
static void ufs_verify_ready(void)
{
utp_utrd_t utrd;
int result;
get_utrd(&utrd);
ufs_prepare_cmd(&utrd, CDBCMD_TEST_UNIT_READY, 0, 0, 0, 0);
ufs_send_request(utrd.task_tag);
result = ufs_check_resp(&utrd, RESPONSE_UPIU);
assert(result == 0);
(void)result;
}
static void ufs_query(uint8_t op, uint8_t idn, uint8_t index, uint8_t sel,
uintptr_t buf, size_t size)
{
utp_utrd_t utrd;
query_resp_upiu_t *resp;
int result;
switch (op) {
case QUERY_READ_FLAG:
case QUERY_READ_ATTR:
case QUERY_READ_DESC:
case QUERY_WRITE_DESC:
case QUERY_WRITE_ATTR:
assert(((buf & 3) == 0) && (size != 0));
break;
}
get_utrd(&utrd);
ufs_prepare_query(&utrd, op, idn, index, sel, buf, size);
ufs_send_request(utrd.task_tag);
result = ufs_check_resp(&utrd, QUERY_RESPONSE_UPIU);
assert(result == 0);
resp = (query_resp_upiu_t *)utrd.resp_upiu;
#ifdef UFS_RESP_DEBUG
dump_upiu(&utrd);
#endif
assert(resp->query_resp == QUERY_RESP_SUCCESS);
switch (op) {
case QUERY_READ_FLAG:
*(uint32_t *)buf = (uint32_t)resp->ts.flag.value;
break;
case QUERY_READ_ATTR:
case QUERY_READ_DESC:
memcpy((void *)buf,
(void *)(utrd.resp_upiu + sizeof(query_resp_upiu_t)),
size);
break;
}
(void)result;
}
unsigned int ufs_read_attr(int idn)
{
unsigned int value;
ufs_query(QUERY_READ_ATTR, idn, 0, 0,
(uintptr_t)&value, sizeof(value));
return value;
}
void ufs_write_attr(int idn, unsigned int value)
{
ufs_query(QUERY_WRITE_ATTR, idn, 0, 0,
(uintptr_t)&value, sizeof(value));
}
unsigned int ufs_read_flag(int idn)
{
unsigned int value;
ufs_query(QUERY_READ_FLAG, idn, 0, 0,
(uintptr_t)&value, sizeof(value));
return value;
}
void ufs_set_flag(int idn)
{
ufs_query(QUERY_SET_FLAG, idn, 0, 0, 0, 0);
}
void ufs_clear_flag(int idn)
{
ufs_query(QUERY_CLEAR_FLAG, idn, 0, 0, 0, 0);
}
void ufs_read_desc(int idn, int index, uintptr_t buf, size_t size)
{
ufs_query(QUERY_READ_DESC, idn, index, 0, buf, size);
}
void ufs_write_desc(int idn, int index, uintptr_t buf, size_t size)
{
ufs_query(QUERY_WRITE_DESC, idn, index, 0, buf, size);
}
void ufs_read_capacity(int lun, unsigned int *num, unsigned int *size)
{
utp_utrd_t utrd;
resp_upiu_t *resp;
sense_data_t *sense;
unsigned char data[CACHE_WRITEBACK_GRANULE << 1];
uintptr_t buf;
int result;
int retry;
assert((ufs_params.reg_base != 0) &&
(ufs_params.desc_base != 0) &&
(ufs_params.desc_size >= UFS_DESC_SIZE) &&
(num != NULL) && (size != NULL));
/* align buf address */
buf = (uintptr_t)data;
buf = (buf + CACHE_WRITEBACK_GRANULE - 1) &
~(CACHE_WRITEBACK_GRANULE - 1);
memset((void *)buf, 0, CACHE_WRITEBACK_GRANULE);
flush_dcache_range(buf, CACHE_WRITEBACK_GRANULE);
do {
get_utrd(&utrd);
ufs_prepare_cmd(&utrd, CDBCMD_READ_CAPACITY_10, lun, 0,
buf, READ_CAPACITY_LENGTH);
ufs_send_request(utrd.task_tag);
result = ufs_check_resp(&utrd, RESPONSE_UPIU);
assert(result == 0);
#ifdef UFS_RESP_DEBUG
dump_upiu(&utrd);
#endif
resp = (resp_upiu_t *)utrd.resp_upiu;
retry = 0;
sense = &resp->sd.sense;
if (sense->resp_code == SENSE_DATA_VALID) {
if ((sense->sense_key == SENSE_KEY_UNIT_ATTENTION) &&
(sense->asc == 0x29) && (sense->ascq == 0)) {
retry = 1;
}
}
inv_dcache_range(buf, CACHE_WRITEBACK_GRANULE);
/* last logical block address */
*num = be32toh(*(unsigned int *)buf);
if (*num)
*num += 1;
/* logical block length in bytes */
*size = be32toh(*(unsigned int *)(buf + 4));
} while (retry);
(void)result;
}
size_t ufs_read_blocks(int lun, int lba, uintptr_t buf, size_t size)
{
utp_utrd_t utrd;
resp_upiu_t *resp;
int result;
assert((ufs_params.reg_base != 0) &&
(ufs_params.desc_base != 0) &&
(ufs_params.desc_size >= UFS_DESC_SIZE));
memset((void *)buf, 0, size);
get_utrd(&utrd);
ufs_prepare_cmd(&utrd, CDBCMD_READ_10, lun, lba, buf, size);
ufs_send_request(utrd.task_tag);
result = ufs_check_resp(&utrd, RESPONSE_UPIU);
assert(result == 0);
#ifdef UFS_RESP_DEBUG
dump_upiu(&utrd);
#endif
resp = (resp_upiu_t *)utrd.resp_upiu;
(void)result;
return size - resp->res_trans_cnt;
}
size_t ufs_write_blocks(int lun, int lba, const uintptr_t buf, size_t size)
{
utp_utrd_t utrd;
resp_upiu_t *resp;
int result;
assert((ufs_params.reg_base != 0) &&
(ufs_params.desc_base != 0) &&
(ufs_params.desc_size >= UFS_DESC_SIZE));
memset((void *)buf, 0, size);
get_utrd(&utrd);
ufs_prepare_cmd(&utrd, CDBCMD_WRITE_10, lun, lba, buf, size);
ufs_send_request(utrd.task_tag);
result = ufs_check_resp(&utrd, RESPONSE_UPIU);
assert(result == 0);
#ifdef UFS_RESP_DEBUG
dump_upiu(&utrd);
#endif
resp = (resp_upiu_t *)utrd.resp_upiu;
(void)result;
return size - resp->res_trans_cnt;
}
static void ufs_enum(void)
{
unsigned int blk_num, blk_size;
int i;
/* 0 means 1 slot */
nutrs = (mmio_read_32(ufs_params.reg_base + CAP) & CAP_NUTRS_MASK) + 1;
if (nutrs > (ufs_params.desc_size / UFS_DESC_SIZE))
nutrs = ufs_params.desc_size / UFS_DESC_SIZE;
ufs_verify_init();
ufs_verify_ready();
ufs_set_flag(FLAG_DEVICE_INIT);
mdelay(100);
/* dump available LUNs */
for (i = 0; i < UFS_MAX_LUNS; i++) {
ufs_read_capacity(i, &blk_num, &blk_size);
if (blk_num && blk_size) {
INFO("UFS LUN%d contains %d blocks with %d-byte size\n",
i, blk_num, blk_size);
}
}
}
int ufs_init(const ufs_ops_t *ops, ufs_params_t *params)
{
int result;
unsigned int data;
uic_cmd_t cmd;
assert((params != NULL) &&
(params->reg_base != 0) &&
(params->desc_base != 0) &&
(params->desc_size >= UFS_DESC_SIZE));
memcpy(&ufs_params, params, sizeof(ufs_params_t));
if (ufs_params.flags & UFS_FLAGS_SKIPINIT) {
result = ufshc_dme_get(0x1571, 0, &data);
assert(result == 0);
result = ufshc_dme_get(0x41, 0, &data);
assert(result == 0);
if (data == 1) {
/* prepare to exit hibernate mode */
memset(&cmd, 0, sizeof(uic_cmd_t));
cmd.op = DME_HIBERNATE_EXIT;
result = ufshc_send_uic_cmd(ufs_params.reg_base,
&cmd);
assert(result == 0);
data = mmio_read_32(ufs_params.reg_base + UCMDARG2);
assert(data == 0);
do {
data = mmio_read_32(ufs_params.reg_base + IS);
} while ((data & UFS_INT_UHXS) == 0);
mmio_write_32(ufs_params.reg_base + IS, UFS_INT_UHXS);
data = mmio_read_32(ufs_params.reg_base + HCS);
assert((data & HCS_UPMCRS_MASK) == HCS_PWR_LOCAL);
}
result = ufshc_dme_get(0x1568, 0, &data);
assert(result == 0);
assert((data > 0) && (data <= 3));
} else {
assert((ops != NULL) && (ops->phy_init != NULL) &&
(ops->phy_set_pwr_mode != NULL));
ufshc_reset(ufs_params.reg_base);
ops->phy_init(&ufs_params);
result = ufshc_link_startup(ufs_params.reg_base);
assert(result == 0);
ops->phy_set_pwr_mode(&ufs_params);
}
ufs_enum();
(void)result;
return 0;
}

529
include/drivers/ufs.h Normal file
View File

@ -0,0 +1,529 @@
/*
* Copyright (c) 2017, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef __UFS_H__
#define __UFS_H__
/* register map of UFSHCI */
/* Controller Capabilities */
#define CAP 0x00
#define CAP_NUTRS_MASK 0x1F
/* UFS Version */
#define VER 0x08
/* Host Controller Identification - Product ID */
#define HCDDID 0x10
/* Host Controller Identification Descriptor - Manufacturer ID */
#define HCPMID 0x14
/* Auto-Hibernate Idle Timer */
#define AHIT 0x18
/* Interrupt Status */
#define IS 0x20
/* Interrupt Enable */
#define IE 0x24
/* System Bus Fatal Error Status */
#define UFS_INT_SBFES (1 << 17)
/* Host Controller Fatal Error Status */
#define UFS_INT_HCFES (1 << 16)
/* UTP Error Status */
#define UFS_INT_UTPES (1 << 12)
/* Device Fatal Error Status */
#define UFS_INT_DFES (1 << 11)
/* UIC Command Completion Status */
#define UFS_INT_UCCS (1 << 10)
/* UTP Task Management Request Completion Status */
#define UFS_INT_UTMRCS (1 << 9)
/* UIC Link Startup Status */
#define UFS_INT_ULSS (1 << 8)
/* UIC Link Lost Status */
#define UFS_INT_ULLS (1 << 7)
/* UIC Hibernate Enter Status */
#define UFS_INT_UHES (1 << 6)
/* UIC Hibernate Exit Status */
#define UFS_INT_UHXS (1 << 5)
/* UIC Power Mode Status */
#define UFS_INT_UPMS (1 << 4)
/* UIC Test Mode Status */
#define UFS_INT_UTMS (1 << 3)
/* UIC Error */
#define UFS_INT_UE (1 << 2)
/* UIC DME_ENDPOINTRESET Indication */
#define UFS_INT_UDEPRI (1 << 1)
/* UTP Transfer Request Completion Status */
#define UFS_INT_UTRCS (1 << 0)
/* Host Controller Status */
#define HCS 0x30
#define HCS_UPMCRS_MASK (7 << 8)
#define HCS_PWR_LOCAL (1 << 8)
#define HCS_UCRDY (1 << 3)
#define HCS_UTMRLRDY (1 << 2)
#define HCS_UTRLRDY (1 << 1)
#define HCS_DP (1 << 0)
/* Host Controller Enable */
#define HCE 0x34
#define HCE_ENABLE 1
/* Host UIC Error Code PHY Adapter Layer */
#define UECPA 0x38
/* Host UIC Error Code Data Link Layer */
#define UECDL 0x3C
/* Host UIC Error Code Network Layer */
#define UECN 0x40
/* Host UIC Error Code Transport Layer */
#define UECT 0x44
/* Host UIC Error Code */
#define UECDME 0x48
/* UTP Transfer Request Interrupt Aggregation Control Register */
#define UTRIACR 0x4C
#define UTRIACR_IAEN (1 << 31)
#define UTRIACR_IAPWEN (1 << 24)
#define UTRIACR_IASB (1 << 20)
#define UTRIACR_CTR (1 << 16)
#define UTRIACR_IACTH(x) (((x) & 0x1F) << 8)
#define UTRIACR_IATOVAL(x) ((x) & 0xFF)
/* UTP Transfer Request List Base Address */
#define UTRLBA 0x50
/* UTP Transfer Request List Base Address Upper 32-bits */
#define UTRLBAU 0x54
/* UTP Transfer Request List Door Bell Register */
#define UTRLDBR 0x58
/* UTP Transfer Request List Clear Register */
#define UTRLCLR 0x5C
/* UTP Transfer Request List Run Stop Register */
#define UTRLRSR 0x60
#define UTMRLBA 0x70
#define UTMRLBAU 0x74
#define UTMRLDBR 0x78
#define UTMRLCLR 0x7C
#define UTMRLRSR 0x80
/* UIC Command */
#define UICCMD 0x90
/* UIC Command Argument 1 */
#define UCMDARG1 0x94
/* UIC Command Argument 2 */
#define UCMDARG2 0x98
/* UIC Command Argument 3 */
#define UCMDARG3 0x9C
#define UFS_BLOCK_SHIFT 12 /* 4KB */
#define UFS_BLOCK_SIZE (1 << UFS_BLOCK_SHIFT)
#define UFS_BLOCK_MASK (UFS_BLOCK_SIZE - 1)
#define UFS_MAX_LUNS 8
/* UTP Transfer Request Descriptor */
/* Command Type */
#define CT_UFS_STORAGE 1
#define CT_SCSI 0
/* Data Direction */
#define DD_OUT 2 /* Device --> Host */
#define DD_IN 1 /* Host --> Device */
#define DD_NO_DATA_TRANSFER 0
#define UTP_TRD_SIZE 32
/* Transaction Type */
#define TRANS_TYPE_HD (1 << 7) /* E2ECRC */
#define TRANS_TYPE_DD (1 << 6)
#define TRANS_TYPE_CODE_MASK 0x3F
#define QUERY_RESPONSE_UPIU (0x36 << 0)
#define READY_TO_TRANSACTION_UPIU (0x31 << 0)
#define DATA_IN_UPIU (0x22 << 0)
#define RESPONSE_UPIU (0x21 << 0)
#define NOP_IN_UPIU (0x20 << 0)
#define QUERY_REQUEST_UPIU (0x16 << 0)
#define DATA_OUT_UPIU (0x02 << 0)
#define CMD_UPIU (0x01 << 0)
#define NOP_OUT_UPIU (0x00 << 0)
#define OCS_SUCCESS 0x0
#define OCS_INVALID_FUNC_ATTRIBUTE 0x1
#define OCS_MISMATCH_REQUEST_SIZE 0x2
#define OCS_MISMATCH_RESPONSE_SIZE 0x3
#define OCS_PEER_COMMUNICATION_FAILURE 0x4
#define OCS_ABORTED 0x5
#define OCS_FATAL_ERROR 0x6
#define OCS_MASK 0xF
/* UIC Command */
#define DME_GET 0x01
#define DME_SET 0x02
#define DME_PEER_GET 0x03
#define DME_PEER_SET 0x04
#define DME_POWERON 0x10
#define DME_POWEROFF 0x11
#define DME_ENABLE 0x12
#define DME_RESET 0x14
#define DME_ENDPOINTRESET 0x15
#define DME_LINKSTARTUP 0x16
#define DME_HIBERNATE_ENTER 0x17
#define DME_HIBERNATE_EXIT 0x18
#define DME_TEST_MODE 0x1A
#define GEN_SELECTOR_IDX(x) ((x) & 0xFFFF)
#define CONFIG_RESULT_CODE_MASK 0xFF
#define CDBCMD_TEST_UNIT_READY 0x00
#define CDBCMD_READ_6 0x08
#define CDBCMD_WRITE_6 0x0A
#define CDBCMD_START_STOP_UNIT 0x1B
#define CDBCMD_READ_CAPACITY_10 0x25
#define CDBCMD_READ_10 0x28
#define CDBCMD_WRITE_10 0x2A
#define CDBCMD_READ_16 0x88
#define CDBCMD_WRITE_16 0x8A
#define CDBCMD_READ_CAPACITY_16 0x9E
#define CDBCMD_REPORT_LUNS 0xA0
#define UPIU_FLAGS_R (1 << 6)
#define UPIU_FLAGS_W (1 << 5)
#define UPIU_FLAGS_ATTR_MASK (3 << 0)
#define UPIU_FLAGS_ATTR_S (0 << 0) /* Simple */
#define UPIU_FLAGS_ATTR_O (1 << 0) /* Ordered */
#define UPIU_FLAGS_ATTR_HQ (2 << 0) /* Head of Queue */
#define UPIU_FLAGS_ATTR_ACA (3 << 0)
#define UPIU_FLAGS_O (1 << 6)
#define UPIU_FLAGS_U (1 << 5)
#define UPIU_FLAGS_D (1 << 4)
#define QUERY_FUNC_STD_READ 0x01
#define QUERY_FUNC_STD_WRITE 0x81
#define QUERY_NOP 0x00
#define QUERY_READ_DESC 0x01
#define QUERY_WRITE_DESC 0x02
#define QUERY_READ_ATTR 0x03
#define QUERY_WRITE_ATTR 0x04
#define QUERY_READ_FLAG 0x05
#define QUERY_SET_FLAG 0x06
#define QUERY_CLEAR_FLAG 0x07
#define QUERY_TOGGLE_FLAG 0x08
#define RW_WITHOUT_CACHE 0x18
#define DESC_TYPE_DEVICE 0x00
#define DESC_TYPE_CONFIGURATION 0x01
#define DESC_TYPE_UNIT 0x02
#define DESC_TYPE_INTERCONNECT 0x04
#define DESC_TYPE_STRING 0x05
#define ATTR_CUR_PWR_MODE 0x02 /* bCurrentPowerMode */
#define ATTR_ACTIVECC 0x03 /* bActiveICCLevel */
#define DEVICE_DESCRIPTOR_LEN 0x40
#define UNIT_DESCRIPTOR_LEN 0x23
#define QUERY_RESP_SUCCESS 0x00
#define QUERY_RESP_OPCODE 0xFE
#define QUERY_RESP_GENERAL_FAIL 0xFF
#define SENSE_KEY_NO_SENSE 0x00
#define SENSE_KEY_RECOVERED_ERROR 0x01
#define SENSE_KEY_NOT_READY 0x02
#define SENSE_KEY_MEDIUM_ERROR 0x03
#define SENSE_KEY_HARDWARE_ERROR 0x04
#define SENSE_KEY_ILLEGAL_REQUEST 0x05
#define SENSE_KEY_UNIT_ATTENTION 0x06
#define SENSE_KEY_DATA_PROTECT 0x07
#define SENSE_KEY_BLANK_CHECK 0x08
#define SENSE_KEY_VENDOR_SPECIFIC 0x09
#define SENSE_KEY_COPY_ABORTED 0x0A
#define SENSE_KEY_ABORTED_COMMAND 0x0B
#define SENSE_KEY_VOLUME_OVERFLOW 0x0D
#define SENSE_KEY_MISCOMPARE 0x0E
#define SENSE_DATA_VALID 0x70
#define SENSE_DATA_LENGTH 18
#define READ_CAPACITY_LENGTH 8
#define FLAG_DEVICE_INIT 0x01
/* UFS Driver Flags */
#define UFS_FLAGS_SKIPINIT (1 << 0)
typedef struct sense_data {
uint8_t resp_code : 7;
uint8_t valid : 1;
uint8_t reserved0;
uint8_t sense_key : 4;
uint8_t reserved1 : 1;
uint8_t ili : 1;
uint8_t eom : 1;
uint8_t file_mark : 1;
uint8_t info[4];
uint8_t asl;
uint8_t cmd_spec_len[4];
uint8_t asc;
uint8_t ascq;
uint8_t fruc;
uint8_t sense_key_spec0 : 7;
uint8_t sksv : 1;
uint8_t sense_key_spec1;
uint8_t sense_key_spec2;
} sense_data_t;
/* UTP Transfer Request Descriptor */
typedef struct utrd_header {
uint32_t reserved0 : 24;
uint32_t i : 1; /* interrupt */
uint32_t dd : 2; /* data direction */
uint32_t reserved1 : 1;
uint32_t ct : 4; /* command type */
uint32_t reserved2;
uint32_t ocs : 8; /* Overall Command Status */
uint32_t reserved3 : 24;
uint32_t reserved4;
uint32_t ucdba; /* aligned to 128-byte */
uint32_t ucdbau; /* Upper 32-bits */
uint32_t rul : 16; /* Response UPIU Length */
uint32_t ruo : 16; /* Response UPIU Offset */
uint32_t prdtl : 16; /* PRDT Length */
uint32_t prdto : 16; /* PRDT Offset */
} utrd_header_t; /* 8 words with little endian */
/* UTP Task Management Request Descriptor */
typedef struct utp_utmrd {
/* 4 words with little endian */
uint32_t reserved0 : 24;
uint32_t i : 1; /* interrupt */
uint32_t reserved1 : 7;
uint32_t reserved2;
uint32_t ocs : 8; /* Overall Command Status */
uint32_t reserved3 : 24;
uint32_t reserved4;
/* followed by 8 words UPIU with big endian */
/* followed by 8 words Response UPIU with big endian */
} utp_utmrd_t;
/* NOP OUT UPIU */
typedef struct nop_out_upiu {
uint8_t trans_type;
uint8_t flags;
uint8_t reserved0;
uint8_t task_tag;
uint8_t reserved1;
uint8_t reserved2;
uint8_t reserved3;
uint8_t reserved4;
uint8_t total_ehs_len;
uint8_t reserved5;
uint16_t data_segment_len;
uint32_t reserved6;
uint32_t reserved7;
uint32_t reserved8;
uint32_t reserved9;
uint32_t reserved10;
uint32_t e2ecrc;
} nop_out_upiu_t; /* 36 bytes with big endian */
/* NOP IN UPIU */
typedef struct nop_in_upiu {
uint8_t trans_type;
uint8_t flags;
uint8_t reserved0;
uint8_t task_tag;
uint8_t reserved1;
uint8_t reserved2;
uint8_t response;
uint8_t reserved3;
uint8_t total_ehs_len;
uint8_t dev_info;
uint16_t data_segment_len;
uint32_t reserved4;
uint32_t reserved5;
uint32_t reserved6;
uint32_t reserved7;
uint32_t reserved8;
uint32_t e2ecrc;
} nop_in_upiu_t; /* 36 bytes with big endian */
/* Command UPIU */
typedef struct cmd_upiu {
uint8_t trans_type;
uint8_t flags;
uint8_t lun;
uint8_t task_tag;
uint8_t cmd_set_type;
uint8_t reserved0;
uint8_t reserved1;
uint8_t reserved2;
uint8_t total_ehs_len;
uint8_t reserved3;
uint16_t data_segment_len;
uint32_t exp_data_trans_len;
/*
* A CDB has a fixed length of 16bytes or a variable length
* of between 12 and 260 bytes
*/
uint8_t cdb[16]; /* little endian */
} cmd_upiu_t; /* 32 bytes with big endian except for cdb[] */
typedef struct query_desc {
uint8_t opcode;
uint8_t idn;
uint8_t index;
uint8_t selector;
uint8_t reserved0[2];
uint16_t length;
uint32_t reserved2[2];
} query_desc_t; /* 16 bytes with big endian */
typedef struct query_flag {
uint8_t opcode;
uint8_t idn;
uint8_t index;
uint8_t selector;
uint8_t reserved0[7];
uint8_t value;
uint32_t reserved8;
} query_flag_t; /* 16 bytes with big endian */
typedef struct query_attr {
uint8_t opcode;
uint8_t idn;
uint8_t index;
uint8_t selector;
uint8_t reserved0[4];
uint32_t value; /* little endian */
uint32_t reserved4;
} query_attr_t; /* 16 bytes with big endian except for value */
/* Query Request UPIU */
typedef struct query_upiu {
uint8_t trans_type;
uint8_t flags;
uint8_t reserved0;
uint8_t task_tag;
uint8_t reserved1;
uint8_t query_func;
uint8_t reserved2;
uint8_t reserved3;
uint8_t total_ehs_len;
uint8_t reserved4;
uint16_t data_segment_len;
/* Transaction Specific Fields */
union {
query_desc_t desc;
query_flag_t flag;
query_attr_t attr;
} ts;
uint32_t reserved5;
} query_upiu_t; /* 32 bytes with big endian */
/* Query Response UPIU */
typedef struct query_resp_upiu {
uint8_t trans_type;
uint8_t flags;
uint8_t reserved0;
uint8_t task_tag;
uint8_t reserved1;
uint8_t query_func;
uint8_t query_resp;
uint8_t reserved2;
uint8_t total_ehs_len;
uint8_t dev_info;
uint16_t data_segment_len;
union {
query_desc_t desc;
query_flag_t flag;
query_attr_t attr;
} ts;
uint32_t reserved3;
} query_resp_upiu_t; /* 32 bytes with big endian */
/* Response UPIU */
typedef struct resp_upiu {
uint8_t trans_type;
uint8_t flags;
uint8_t lun;
uint8_t task_tag;
uint8_t cmd_set_type;
uint8_t reserved0;
uint8_t reserved1;
uint8_t status;
uint8_t total_ehs_len;
uint8_t dev_info;
uint16_t data_segment_len;
uint32_t res_trans_cnt; /* Residual Transfer Count */
uint32_t reserved2[4];
uint16_t sense_data_len;
union {
uint8_t sense_data[18];
sense_data_t sense;
} sd;
} resp_upiu_t; /* 52 bytes with big endian */
typedef struct cmd_info {
uintptr_t buf;
size_t length;
int lba;
uint8_t op;
uint8_t direction;
uint8_t lun;
} cmd_info_t;
typedef struct utp_utrd {
uintptr_t header; /* utrd_header_t */
uintptr_t upiu;
uintptr_t resp_upiu;
uintptr_t prdt;
size_t size_upiu;
size_t size_resp_upiu;
size_t size_prdt;
int task_tag;
} utp_utrd_t;
/* Physical Region Description Table */
typedef struct prdt {
uint32_t dba; /* Data Base Address */
uint32_t dbau; /* Data Base Address Upper 32-bits */
uint32_t reserved0;
uint32_t dbc : 18; /* Data Byte Count */
uint32_t reserved1 : 14;
} prdt_t;
typedef struct uic_cmd {
uint32_t op;
uint32_t arg1;
uint32_t arg2;
uint32_t arg3;
} uic_cmd_t;
typedef struct ufs_params {
uintptr_t reg_base;
uintptr_t desc_base;
size_t desc_size;
unsigned long flags;
} ufs_params_t;
typedef struct ufs_ops {
int (*phy_init)(ufs_params_t *params);
int (*phy_set_pwr_mode)(ufs_params_t *params);
} ufs_ops_t;
int ufshc_send_uic_cmd(uintptr_t base, uic_cmd_t *cmd);
int ufshc_dme_get(unsigned int attr, unsigned int idx, unsigned int *val);
int ufshc_dme_set(unsigned int attr, unsigned int idx, unsigned int val);
unsigned int ufs_read_attr(int idn);
void ufs_write_attr(int idn, unsigned int value);
unsigned int ufs_read_flag(int idn);
void ufs_set_flag(int idn);
void ufs_clear_flag(int idn);
void ufs_read_desc(int idn, int index, uintptr_t buf, size_t size);
void ufs_write_desc(int idn, int index, uintptr_t buf, size_t size);
size_t ufs_read_blocks(int lun, int lba, uintptr_t buf, size_t size);
size_t ufs_write_blocks(int lun, int lba, const uintptr_t buf, size_t size);
int ufs_init(const ufs_ops_t *ops, ufs_params_t *params);
#endif /* __UFS_H__ */