Support asynchronous method for BL3-2 initialization

This patch adds support for BL3-2 initialization by asynchronous
method where BL3-1 transfers control to BL3-2 using world switch.
After BL3-2 initialization, it transfers control to BL3-3 via SPD
service handler. The SPD service handler initializes the CPU context
to BL3-3 entrypoint depending on the return function indentifier from
TSP initialization.

Fixes ARM-software/TF-issues#184

Change-Id: I7b135c2ceeb356d3bb5b6a287932e96ac67c7a34
This commit is contained in:
Vikram Kanigiri 2014-07-15 16:49:22 +01:00
parent 50e27dadbc
commit faaa2e7644
5 changed files with 74 additions and 35 deletions

View File

@ -51,7 +51,7 @@ static int32_t (*bl32_init)(void);
* Variable to indicate whether next image to execute after BL31 is BL33
* (non-secure & default) or BL32 (secure).
******************************************************************************/
static uint32_t next_image_type;
static uint32_t next_image_type = NON_SECURE;
/*******************************************************************************
* Simple function to initialise all BL31 helper libraries.
@ -89,9 +89,6 @@ void bl31_main(void)
/* Clean caches before re-entering normal world */
dcsw_op_all(DCCSW);
/* By default run the non-secure BL3-3 image next */
next_image_type = NON_SECURE;
/*
* All the cold boot actions on the primary cpu are done. We now need to
* decide which is the next image (BL32 or BL33) and how to execute it.

View File

@ -39,6 +39,14 @@ BL32_SOURCES += bl32/tsp/tsp_main.c \
BL32_LINKERFILE := bl32/tsp/tsp.ld.S
# This flag determines if the TSPD initializes BL3-2 in tspd_init() (synchronous
# method) or configures BL3-1 to pass control to BL3-2 instead of BL3-3
# (asynchronous method).
TSP_INIT_ASYNC := 0
$(eval $(call assert_boolean,TSP_INIT_ASYNC))
$(eval $(call add_define,TSP_INIT_ASYNC))
# Include the platform-specific TSP Makefile
# If no platform-specific TSP Makefile exists, it means TSP is not supported
# on this platform.

View File

@ -811,10 +811,10 @@ and is registered using the `bl31_register_bl32_init()` function.
Trusted Firmware supports two approaches for the SPD to pass control to BL3-2
before returning through EL3 and running the non-trusted firmware (BL3-3):
1. In the BL3-2 initialization function, set up a secure context (see below
for more details of CPU context support) for this CPU and use
`bl31_set_next_image_type()` to request that the exit from `bl31_main()` is
to the BL3-2 entrypoint in Secure-EL1.
1. In the BL3-2 setup function, use `bl31_set_next_image_type()` to
request that the exit from `bl31_main()` is to the BL3-2 entrypoint in
Secure-EL1. BL3-1 will exit to BL3-2 using the asynchronous method by
calling bl31_prepare_next_image_entry() and el3_exit().
When the BL3-2 has completed initialization at Secure-EL1, it returns to
BL3-1 by issuing an SMC, using a Function ID allocated to the SPD. On
@ -824,7 +824,8 @@ before returning through EL3 and running the non-trusted firmware (BL3-3):
the normal world firmware BL3-3. On return from the handler the framework
will exit to EL2 and run BL3-3.
2. In the BL3-2 initialization function, use an SPD-defined mechanism to
2. The BL3-2 setup function registers a initialization function using
`bl31_register_bl32_init()` which provides a SPD-defined mechanism to
invoke a 'world-switch synchronous call' to Secure-EL1 to run the BL3-2
entrypoint.
NOTE: The Test SPD service included with the Trusted Firmware provides one

View File

@ -186,6 +186,13 @@ performed.
value of `DEBUG` - i.e. by default this is only enabled for a debug
build of the firmware.
* `TSP_INIT_ASYNC`: Choose BL3-2 initialization method as asynchronous or
synchronous, e.g. "(see "Initializing a BL3-2 Image" section in [Firmware
Design])". It can take the value 0 (BL3-2 is initialized using
synchronous method) or 1 (BL3-2 is initialized using asynchronous method).
Default is 0.
### Creating a Firmware Image Package
FIPs are automatically created as part of the build instructions described in

View File

@ -181,12 +181,15 @@ int32_t tspd_setup(void)
tsp_ep_info->pc,
&tspd_sp_context[linear_id]);
#if TSP_INIT_ASYNC
bl31_set_next_image_type(SECURE);
#else
/*
* All TSPD initialization done. Now register our init function with
* BL31 for deferred invocation
*/
bl31_register_bl32_init(&tspd_init);
#endif
return 0;
}
@ -202,10 +205,10 @@ int32_t tspd_setup(void)
int32_t tspd_init(void)
{
uint64_t mpidr = read_mpidr();
uint32_t linear_id = platform_get_core_pos(mpidr), flags;
uint64_t rc;
uint32_t linear_id = platform_get_core_pos(mpidr);
tsp_context_t *tsp_ctx = &tspd_sp_context[linear_id];
entry_point_info_t *tsp_entry_point;
uint64_t rc;
/*
* Get information about the Secure Payload (BL32) image. Its
@ -217,32 +220,11 @@ int32_t tspd_init(void)
cm_init_context(mpidr, tsp_entry_point);
/*
* Arrange for an entry into the test secure payload. We expect an array
* of vectors in return
* Arrange for an entry into the test secure payload. It will be
* returned via TSP_ENTRY_DONE case
*/
rc = tspd_synchronous_sp_entry(tsp_ctx);
assert(rc != 0);
if (rc) {
set_tsp_pstate(tsp_ctx->state, TSP_PSTATE_ON);
/*
* TSP has been successfully initialized. Register power
* managemnt hooks with PSCI
*/
psci_register_spd_pm_hook(&tspd_pm);
}
/*
* Register an interrupt handler for S-EL1 interrupts when generated
* during code executing in the non-secure state.
*/
flags = 0;
set_interrupt_rm_flag(flags, NON_SECURE);
rc = register_interrupt_type_handler(INTR_TYPE_S_EL1,
tspd_sel1_interrupt_handler,
flags);
if (rc)
panic();
return rc;
}
@ -269,6 +251,10 @@ uint64_t tspd_smc_handler(uint32_t smc_fid,
unsigned long mpidr = read_mpidr();
uint32_t linear_id = platform_get_core_pos(mpidr), ns;
tsp_context_t *tsp_ctx = &tspd_sp_context[linear_id];
uint64_t rc;
#if TSP_INIT_ASYNC
entry_point_info_t *next_image_info;
#endif
/* Determine which security state this SMC originated from */
ns = is_caller_non_secure(flags);
@ -382,6 +368,45 @@ uint64_t tspd_smc_handler(uint32_t smc_fid,
assert(tsp_vectors == NULL);
tsp_vectors = (tsp_vectors_t *) x1;
if (tsp_vectors) {
set_tsp_pstate(tsp_ctx->state, TSP_PSTATE_ON);
/*
* TSP has been successfully initialized. Register power
* managemnt hooks with PSCI
*/
psci_register_spd_pm_hook(&tspd_pm);
/*
* Register an interrupt handler for S-EL1 interrupts
* when generated during code executing in the
* non-secure state.
*/
flags = 0;
set_interrupt_rm_flag(flags, NON_SECURE);
rc = register_interrupt_type_handler(INTR_TYPE_S_EL1,
tspd_sel1_interrupt_handler,
flags);
if (rc)
panic();
}
#if TSP_INIT_ASYNC
/* Save the Secure EL1 system register context */
assert(cm_get_context(SECURE) == &tsp_ctx->cpu_ctx);
cm_el1_sysregs_context_save(SECURE);
/* Program EL3 registers to enable entry into the next EL */
next_image_info = bl31_plat_get_next_image_ep_info(NON_SECURE);
assert(next_image_info);
assert(NON_SECURE ==
GET_SECURITY_STATE(next_image_info->h.attr));
cm_init_context(read_mpidr_el1(), next_image_info);
cm_prepare_el3_exit(NON_SECURE);
SMC_RET0(cm_get_context(NON_SECURE));
#else
/*
* SP reports completion. The SPD must have initiated
* the original request through a synchronous entry
@ -389,6 +414,7 @@ uint64_t tspd_smc_handler(uint32_t smc_fid,
* context.
*/
tspd_synchronous_sp_exit(tsp_ctx, x1);
#endif
/*
* These function IDs is used only by the SP to indicate it has