Add compile time `__warn_deprecated` flag to public api's in CCI-400
specific driver so that user is aware of the driver being deprecated.
Similarly, it also adds an error message when `ERROR_DEPRECATED` is set
to prevent succesful compilation if CCI-400 specific driver is used.
Change-Id: Id7e61a560262abc01cbbd432ca85b9bf448a194d
This patch fixes several issues with the SP804 delay timer on FVP:
* By default, the SP804 dual timer on FVP runs at 32 KHz. In order
to run the timer at 35 MHz (as specified in the FVP user manual)
the Overwrite bit in the SP810 control register must be set.
* The CLKMULT and CLKDIV definitions are mixed up:
delta(us) = delta(ticks) * T(us) = delta(ticks) / f(MHz)
From the delay function:
delta_us = (delta * ops->clk_mult) / ops->clk_div;
Matching both expressions:
1 / f(MHz) = ops->clk_mult / ops->clk_div
And consequently:
f(MHz) = ops->clk_div / ops->clk_mult
Which, for a 35 MHz timer, translates to:
ops->clk_div = 35
ops->clk_mult = 1
* The comment in the delay timer header file has been corrected:
The ratio of the multiplier and the divider is the clock period
in microseconds, not the frequency.
Change-Id: Iffd5ce0a5a28fa47c0720c0336d81b678ff8fdf1
This patch adds watchdog support on ARM platforms (FVP and Juno).
A secure instance of SP805 is used as Trusted Watchdog. It is
entirely managed in BL1, being enabled in the early platform setup
hook and disabled in the exit hook. By default, the watchdog is
enabled in every build (even when TBB is disabled).
A new ARM platform specific build option `ARM_DISABLE_TRUSTED_WDOG`
has been introduced to allow the user to disable the watchdog at
build time. This feature may be used for testing or debugging
purposes.
Specific error handlers for Juno and FVP are also provided in this
patch. These handlers will be called after an image load or
authentication error. On FVP, the Table of Contents (ToC) in the FIP
is erased. On Juno, the corresponding error code is stored in the
V2M Non-Volatile flags register. In both cases, the CPU spins until
a watchdog reset is generated after 256 seconds (as specified in
the TBBR document).
Change-Id: I9ca11dcb0fe15af5dbc5407ab3cf05add962f4b4
This patch adds ARM specific OIDs which will be used to extract
the extension data from the certificates. These OIDs are arranged
as a subtree whose root node has been specifically allocated for
ARM Ltd.
{ iso(1) identified-organization(3) dod(6) internet(1)
private(4) enterprise(1) 4128 }
Change-Id: Ice20b3c8a31ddefe9102f3bd42f7429986f3ac34
The TZC-400 driver implementation incorrectly uses the component
ID registers to detect the TZC-400 peripheral. As all ARM
peripherals share the same component ID, it doesn't allow to
uniquely identify the TZC-400 peripheral. This patch fixes the
TZC-400 driver by relying on the `part_number_0` and
`part_number_1` fields in the `PID` registers instead.
The `tzc_read_component_id` function has been replaced by
`tzc_read_peripheral_id`, which reads the 'part_number' values
and compares them with the TZC-400 peripheral ID.
Also, it adds a debug assertion to detect when the TZC driver
initialisation function is called multiple times.
Change-Id: I35949f6501a51c0a794144cd1c3a6db62440dce6
Based on SP805 Programmer's model (ARM DDI 0270B). This driver
provides three public APIs:
void sp805_start(uintptr_t base, unsigned long ticks);
void sp805_stop(uintptr_t base);
void sp805_refresh(uintptr_t base, unsigned long ticks);
Upon start, the watchdog starts counting down from the number of
ticks specified. When the count reaches 0 an interrupt is triggered.
The watchdog restarts counting down from the number of ticks
specified. If the count reaches 0 again, the system is reset. A
mechanism to handle the interrupt has not been implemented. Instead,
the API to refresh the watchdog should be used instead to prevent a
system reset.
Change-Id: I799d53f8d1213b10b341a4a67fde6486e89a3dab
FVP and Juno platforms include a NOR flash memory to store and
load the FIP, the kernel or a ramdisk. This NOR flash is arranged
as 2 x 16 bit flash devices and can be programmed using CFI
standard commands.
This patch provides a basic API to write single 32 bit words of
data into the NOR flash. Functions to lock/unlock blocks against
erase or write operations are also provided.
Change-Id: I1da7ad3105b1ea409c976adc863954787cbd90d2
This patch adds support for booting EL3 payloads on CSS platforms,
for example Juno. In this scenario, the Trusted Firmware follows
its normal boot flow up to the point where it would normally pass
control to the BL31 image. At this point, it jumps to the EL3
payload entry point address instead.
Before handing over to the EL3 payload, the data SCP writes for AP
at the beginning of the Trusted SRAM is restored, i.e. we zero the
first 128 bytes and restore the SCP Boot configuration. The latter
is saved before transferring the BL30 image to SCP and is restored
just after the transfer (in BL2). The goal is to make it appear that
the EL3 payload is the first piece of software to run on the target.
The BL31 entrypoint info structure is updated to make the primary
CPU jump to the EL3 payload instead of the BL31 image.
The mailbox is populated with the EL3 payload entrypoint address,
which releases the secondary CPUs out of their holding pen (if the
SCP has powered them on). The arm_program_trusted_mailbox() function
has been exported for this purpose.
The TZC-400 configuration in BL2 is simplified: it grants secure
access only to the whole DRAM. Other security initialization is
unchanged.
This alternative boot flow is disabled by default. A new build option
EL3_PAYLOAD_BASE has been introduced to enable it and provide the EL3
payload's entry point address. The build system has been modified
such that BL31 and BL33 are not compiled and/or not put in the FIP in
this case, as those images are not used in this boot flow.
Change-Id: Id2e26fa57988bbc32323a0effd022ab42f5b5077
This patch deprecates the legacy ARM GIC driver and related header files
(arm_gic.h, gic_v2.h, gic_v3.h). For GICv2 systems, platform ports should
use the GICv2 driver in include/drivers/arm/gicv2.h and for GICv3 systems,
platform ports should use the GICv3 driver in include/drivers/arm/gicv3.h
NOTE: The ARM Legacy GIC drivers have been deprecated with this patch.
Platform ports are encouraged to migrate to the new GIC drivers.
Change-Id: Ic0460ef0427b54a6aac476279a7f29b81943e942
This patch adds a driver for ARM GICv2 systems, example GIC-400. Unlike
the existing GIC driver in `include/drivers/arm/arm_gic.h`, this driver
is optimised for GICv2 and does not support GICv3 systems in GICv2
compatibility mode. The driver interface has been implemented in
`drivers/arm/gic/v2/gicv2_main.c`. The corresponding header is in
`include/drivers/arm/gicv2.h`. Helper functions are implemented in
`drivers/arm/gic/v2/gicv2_helpers.c` and are accessible through the
`drivers/arm/gic/v2/gicv2_private.h` header.
Change-Id: I09fffa4e621fb99ba3c01204839894816cd89a2a
This patch adds a driver for ARM GICv3 systems that need to run software
stacks where affinity routing is enabled across all privileged exception
levels for both security states. This driver is a partial implementation
of the ARM Generic Interrupt Controller Architecture Specification, GIC
architecture version 3.0 and version 4.0 (ARM IHI 0069A). The driver does
not cater for legacy support of interrupts and asymmetric configurations.
The existing GIC driver has been preserved unchanged. The common code for
GICv2 and GICv3 systems has been refactored into a new file,
`drivers/arm/gic/common/gic_common.c`. The corresponding header is in
`include/drivers/arm/gic_common.h`.
The driver interface is implemented in `drivers/arm/gic/v3/gicv3_main.c`.
The corresponding header is in `include/drivers/arm/gicv3.h`. Helper
functions are implemented in `drivers/arm/gic/v3/arm_gicv3_helpers.c`
and are accessible through the `drivers/arm/gic/v3/gicv3_private.h`
header.
Change-Id: I8c3c834a1d049d05b776b4dcb76b18ccb927444a
This patch changes the build time behaviour when using deprecated API within
Trusted Firmware. Previously the use of deprecated APIs would only trigger a
build warning (which was always treated as a build error), when
WARN_DEPRECATED = 1. Now, the use of deprecated C declarations will always
trigger a build time warning. Whether this warning is treated as error or not
is determined by the build flag ERROR_DEPRECATED which is disabled by default.
When the build flag ERROR_DEPRECATED=1, the invocation of deprecated API or
inclusion of deprecated headers will result in a build error.
Also the deprecated context management helpers in context_mgmt.c are now
conditionally compiled depending on the value of ERROR_DEPRECATED flag
so that the APIs themselves do not result in a build error when the
ERROR_DEPRECATED flag is set.
NOTE: Build systems that use the macro WARN_DEPRECATED must migrate to
using ERROR_DEPRECATED, otherwise deprecated API usage will no longer
trigger a build error.
Change-Id: I843bceef6bde979af7e9b51dddf861035ec7965a
The default reset values for the L2 Data & Tag RAM latencies on the
Cortex-A72 on Juno R2 are not suitable. This patch modifies
the Juno platform reset handler to configure the right settings
on Juno R2.
Change-Id: I20953de7ba0619324a389e0b7bbf951b64057db8
As per Section D7.2.81 in the ARMv8-A Reference Manual (DDI0487A Issue A.h),
bits[29:28], bits[23:22], bit[20] and bit[11] in the SCTLR_EL1 are RES1. This
patch adds the missing bit[20] to the SCTLR_EL1_RES1 macro.
Change-Id: I827982fa2856d04def6b22d8200a79fe6922a28e
Patch 7e26fe1f deprecates IO specific return definitions in favour
of standard errno codes. This patch removes those definitions
and its usage from the IO framework, IO drivers and IO platform
layer. Following this patch, standard errno codes must be used
when checking the return value of an IO function.
Change-Id: Id6e0e9d0a7daf15a81ec598cf74de83d5768650f
This patch introduces a new function called 'print_entry_point_info'
that prints an entry_point_t structure for debugging purposes.
As such, it can be used to display the entry point address, SPSR and
arguments passed from a firmware image to the next one.
This function is now called in the following images transitions:
- BL1 to BL2
- BL1 to BL31
- BL31 to the next image (typically BL32 or BL33)
The following changes have been introduced:
- Fix the output format of the SPSR value : SPSR is a 32-bit value,
not a 64-bit one.
- Print all arguments values.
The entry_point_info_t structure allows to pass up to 8 arguments.
In most cases, only the first 2 arguments were printed.
print_entry_point_info() now prints all of them as 'VERBOSE'
traces.
Change-Id: Ieb384bffaa7849e6cb95a01a47c0b7fc2308653a
This patch fixes a compilation issue for platforms that are aligned to ARM
Standard platforms and include the `plat_arm.h` header in their platform port.
The compilation would fail for such a platform because `xlat_tables.h` which
has the definition for `mmap_region_t` is not included in `plat_arm.h`. This
patch fixes this by including `xlat_tables.h` in `plat_arm.h` header.
FixesARM-Software/tf-issues#318
Change-Id: I75f990cfb4078b3996fc353c8cd37c9de61d555e
This patch adds the capability to power down at system power domain level
on Juno via the PSCI SYSTEM SUSPEND API. The CSS power management helpers
are modified to add support for power management operations at system
power domain level. A new helper for populating `get_sys_suspend_power_state`
handler in plat_psci_ops is defined. On entering the system suspend state,
the SCP powers down the SYSTOP power domain on the SoC and puts the memory
into retention mode. On wakeup from the power down, the system components
on the CSS will be reinitialized by the platform layer and the PSCI client
is responsible for restoring the context of these system components.
According to PSCI Specification, interrupts targeted to cores in PSCI CPU
SUSPEND should be able to resume it. On Juno, when the system power domain
is suspended, the GIC is also powered down. The SCP resumes the final core
to be suspend when an external wake-up event is received. But the other
cores cannot be woken up by a targeted interrupt, because GIC doesn't
forward these interrupts to the SCP. Due to this hardware limitation,
we down-grade PSCI CPU SUSPEND requests targeted to the system power domain
level to cluster power domain level in `juno_validate_power_state()`
and the CSS default `plat_arm_psci_ops` is overridden in juno_pm.c.
A system power domain resume helper `arm_system_pwr_domain_resume()` is
defined for ARM standard platforms which resumes/re-initializes the
system components on wakeup from system suspend. The security setup also
needs to be done on resume from system suspend, which means
`plat_arm_security_setup()` must now be included in the BL3-1 image in
addition to previous BL images if system suspend need to be supported.
Change-Id: Ie293f75f09bad24223af47ab6c6e1268f77bcc47
This patch implements the necessary topology changes for supporting
system power domain on CSS platforms. The definition of PLAT_MAX_PWR_LVL and
PLAT_NUM_PWR_DOMAINS macros are removed from arm_def.h and are made platform
specific. In addition, the `arm_power_domain_tree_desc[]` and
`arm_pm_idle_states[]` are modified to support the system power domain
at level 2. With this patch, even though the power management operations
involving the system power domain will not return any error, the platform
layer will silently ignore any operations to the power domain. The actual
power management support for the system power domain will be added later.
Change-Id: I791867eded5156754fe898f9cdc6bba361e5a379
This patch adds an optional API to the platform port:
void plat_error_handler(int err) __dead2;
The platform error handler is called when there is a specific error
condition after which Trusted Firmware cannot continue. While panic()
simply prints the crash report (if enabled) and spins, the platform
error handler can be used to hand control over to the platform port
so it can perform specific bookeeping or post-error actions (for
example, reset the system). This function must not return.
The parameter indicates the type of error using standard codes from
errno.h. Possible errors reported by the generic code are:
-EAUTH : a certificate or image could not be authenticated
(when Trusted Board Boot is enabled)
-ENOENT : the requested image or certificate could not be found
or an IO error was detected
-ENOMEM : resources exhausted. Trusted Firmware does not use
dynamic memory, so this error is usually an indication
of an incorrect array size
A default weak implementation of this function has been provided.
It simply implements an infinite loop.
Change-Id: Iffaf9eee82d037da6caa43b3aed51df555e597a3
This patch replaces custom definitions used as return values for
the load_auth_image() function with standard error codes defined
in errno.h. The custom definitions have been removed.
It also replaces the usage of IO framework error custom definitions,
which have been deprecated. Standard errno definitions are used
instead.
Change-Id: I1228477346d3876151c05b470d9669c37fd231be
This patch redefines the values of IO_FAIL, IO_NOT_SUPPORTED and
IO_RESOURCES_EXHAUSTED to match the corresponding definitions in
errno.h:
#define IO_FAIL (-ENOENT)
#define IO_NOT_SUPPORTED (-ENODEV)
#define IO_RESOURCES_EXHAUSTED (-ENOMEM)
NOTE: please note that the IO_FAIL, IO_NOT_SUPPORTED and
IO_RESOURCES_EXHAUSTED definitions are considered deprecated
and their usage should be avoided. Callers should rely on errno.h
definitions when checking the return values of IO functions.
Change-Id: Ic8491aa43384b6ee44951ebfc053a3ded16a80be
This patch does the following reorganization to psci power management (PM)
handler setup for ARM standard platform ports :
1. The mailbox programming required during `plat_setup_psci_ops()` is identical
for all ARM platforms. Hence the implementation of this API is now moved
to the common `arm_pm.c` file. Each ARM platform now must define the
PLAT_ARM_TRUSTED_MAILBOX_BASE macro, which in current platforms is the same
as ARM_SHARED_RAM_BASE.
2. The PSCI PM handler callback structure, `plat_psci_ops`, must now be
exported via `plat_arm_psci_pm_ops`. This allows the common implementation
of `plat_setup_psci_ops()` to return a platform specific `plat_psci_ops`.
In the case of CSS platforms, a default weak implementation of the same is
provided in `css_pm.c` which can be overridden by each CSS platform.
3. For CSS platforms, the PSCI PM handlers defined in `css_pm.c` are now
made library functions and a new header file `css_pm.h` is added to export
these generic PM handlers. This allows the platform to reuse the
adequate CSS PM handlers and redefine others which need to be customized
when overriding the default `plat_arm_psci_pm_ops` in `css_pm.c`.
Change-Id: I277910f609e023ee5d5ff0129a80ecfce4356ede
The CASSERT() macro introduces a typedef for the sole purpose of
triggering a compilation error if the condition to check is false.
This typedef is not used afterwards. As a consequence, when the
CASSERT() macro is called from withing a function block, the compiler
complains and outputs the following error message:
error: typedef 'msg' locally defined but not used [-Werror=unused-local-typedefs]
This patch adds the "unused" attribute for the aforementioned
typedef. This silences the compiler warning and thus makes the
CASSERT() macro callable from within function blocks as well.
Change-Id: Ie36b58fcddae01a21584c48bb6ef43ec85590479
This patch adds PM handlers to TLKD for the system suspend/resume and
system poweroff/reset cases. TLK expects all SMCs through a single
handler, which then fork out into multiple handlers depending on the
SMC. We tap into the same single entrypoint by restoring the S-EL1
context before passing the PM event via register 'x0'. On completion
of the PM event, TLK sends a completion SMC and TLKD then moves on
with the PM process.
Signed-off-by: Varun Wadekar <vwadekar@nvidia.com>
The generic delay timer driver expects a pointer to a timer_ops_t
structure containing the specific timer driver information. It
doesn't make a copy of the structure, instead it just keeps the
pointer. Therefore, this pointer must remain valid over time.
The SP804 driver doesn't satisfy this requirement. The
sp804_timer_init() macro creates a temporary instanciation of the
timer_ops_t structure on the fly and passes it to the generic
delay timer. When this temporary instanciation gets deallocated,
the generic delay timer is left with a pointer to invalid data.
This patch fixes this bug by statically allocating the SP804
timer_ops_t structure.
Change-Id: I8fbf75907583aef06701e3fd9fabe0b2c9bc95bf
This patch adds a device driver which can be used to program the following
aspects of ARM CCN IP:
1. Specify the mapping between ACE/ACELite/ACELite+DVM/CHI master interfaces and
Request nodes.
2. Add and remove master interfaces from the snoop and dvm
domains.
3. Place the L3 cache in a given power state.
4. Configuring system adress map and enabling 3 SN striping mode of memory
controller operation.
Change-Id: I0f665c6a306938e5b66f6a92f8549b529aa8f325
On the ARMv8 architecture, cache maintenance operations by set/way on the last
level of integrated cache do not affect the system cache. This means that such a
flush or clean operation could result in the data being pushed out to the system
cache rather than main memory. Another CPU could access this data before it
enables its data cache or MMU. Such accesses could be serviced from the main
memory instead of the system cache. If the data in the sysem cache has not yet
been flushed or evicted to main memory then there could be a loss of
coherency. The only mechanism to guarantee that the main memory will be updated
is to use cache maintenance operations to the PoC by MVA(See section D3.4.11
(System level caches) of ARMv8-A Reference Manual (Issue A.g/ARM DDI0487A.G).
This patch removes the reliance of Trusted Firmware on the flush by set/way
operation to ensure visibility of data in the main memory. Cache maintenance
operations by MVA are now used instead. The following are the broad category of
changes:
1. The RW areas of BL2/BL31/BL32 are invalidated by MVA before the C runtime is
initialised. This ensures that any stale cache lines at any level of cache
are removed.
2. Updates to global data in runtime firmware (BL31) by the primary CPU are made
visible to secondary CPUs using a cache clean operation by MVA.
3. Cache maintenance by set/way operations are only used prior to power down.
NOTE: NON-UPSTREAM TRUSTED FIRMWARE CODE SHOULD MAKE EQUIVALENT CHANGES IN
ORDER TO FUNCTION CORRECTLY ON PLATFORMS WITH SUPPORT FOR SYSTEM CACHES.
FixesARM-software/tf-issues#205
Change-Id: I64f1b398de0432813a0e0881d70f8337681f6e9a
This patch updates ARM platform ports to use the new unified bakery locks
API. The caller does not have to use a different bakery lock API depending upon
the value of the USE_COHERENT_MEM build option.
NOTE: THIS PATCH CAN BE USED AS A REFERENCE TO UPDATE OTHER PLATFORM PORTS.
Change-Id: I1b26afc7c9a9808a6040eb22f603d30192251da7
This patch unifies the bakery lock api's across coherent and normal
memory implementation of locks by using same data type `bakery_lock_t`
and similar arguments to functions.
A separate section `bakery_lock` has been created and used to allocate
memory for bakery locks using `DEFINE_BAKERY_LOCK`. When locks are
allocated in normal memory, each lock for a core has to spread
across multiple cache lines. By using the total size allocated in a
separate cache line for a single core at compile time, the memory for
other core locks is allocated at link time by multiplying the single
core locks size with (PLATFORM_CORE_COUNT - 1). The normal memory lock
algorithm now uses lock address instead of the `id` in the per_cpu_data.
For locks allocated in coherent memory, it moves locks from
tzfw_coherent_memory to bakery_lock section.
The bakery locks are allocated as part of bss or in coherent memory
depending on usage of coherent memory. Both these regions are
initialised to zero as part of run_time_init before locks are used.
Hence, bakery_lock_init() is made an empty function as the lock memory
is already initialised to zero.
The above design lead to the removal of psci bakery locks from
non_cpu_power_pd_node to psci_locks.
NOTE: THE BAKERY LOCK API WHEN USE_COHERENT_MEM IS NOT SET HAS CHANGED.
THIS IS A BREAKING CHANGE FOR ALL PLATFORM PORTS THAT ALLOCATE BAKERY
LOCKS IN NORMAL MEMORY.
Change-Id: Ic3751c0066b8032dcbf9d88f1d4dc73d15f61d8b
Currently, on ARM platforms(ex. Juno) non-secure access to specific
peripheral regions, config registers which are inside and outside CSS
is done in the soc_css_security_setup(). This patch separates the CSS
security setup from the SOC security setup in the css_security_setup().
The CSS security setup involves programming of the internal NIC to
provide access to regions inside the CSS. This is needed only in
Juno, hence Juno implements it in its board files as css_init_nic400().
Change-Id: I95a1fb9f13f9b18fa8e915eb4ae2f15264f1b060
On Juno and FVP platforms, the Non-Secure System timer corresponds
to frame 1. However, this is a platform-specific decision and it
shouldn't be hard-coded. Hence, this patch introduces
PLAT_ARM_NSTIMER_FRAME_ID which should be used by all ARM platforms
to specify the correct non-secure timer frame.
Change-Id: I6c3a905d7d89200a2f58c20ce5d1e1d166832bba
This patch replaces the `ARM_TZC_BASE` constant with `PLAT_ARM_TZC_BASE` to
support different TrustZone Controller base addresses across ARM platforms.
Change-Id: Ie4e1c7600fd7a5875323c7cc35e067de0c6ef6dd
In certain Trusted OS implementations it is a requirement to pass them the
highest power level which will enter a power down state during a PSCI
CPU_SUSPEND or SYSTEM_SUSPEND API invocation. This patch passes this power level
to the SPD in the "max_off_pwrlvl" parameter of the svc_suspend() hook.
Currently, the highest power level which was requested to be placed in a low
power state (retention or power down) is passed to the SPD svc_suspend_finish()
hook. This hook is called after emerging from the low power state. It is more
useful to pass the highest power level which was powered down instead. This
patch does this by changing the semantics of the parameter passed to an SPD's
svc_suspend_finish() hook. The name of the parameter has been changed from
"suspend_level" to "max_off_pwrlvl" as well. Same changes have been made to the
parameter passed to the tsp_cpu_resume_main() function.
NOTE: THIS PATCH CHANGES THE SEMANTICS OF THE EXISTING "svc_suspend_finish()"
API BETWEEN THE PSCI AND SPD/SP IMPLEMENTATIONS. THE LATTER MIGHT NEED
UPDATES TO ENSURE CORRECT BEHAVIOUR.
Change-Id: If3a9d39b13119bbb6281f508a91f78a2f46a8b90
BL2 loads secure runtime code(BL3-1, BL3-2) and hence it has to
run in secure world otherwise BL3-1/BL3-2 have to execute from
non-secure memory. Hence, This patch removes the change_security_state()
call in bl1_run_bl2() and replaces it with an assert to confirm
the BL2 as secure.
FixesARM-software/tf-issues#314
Change-Id: I611b83f5c4090e58a76a2e950b0d797b46df3c29
ARM TF configures all interrupts as non-secure except those which
are present in irq_sec_array. This patch updates the irq_sec_array
with the missing secure interrupts for ARM platforms.
It also updates the documentation to be inline with the latest
implementation.
FixesARM-software/tf-issues#312
Change-Id: I39956c56a319086e3929d1fa89030b4ec4b01fcc