Updated the user guide to clarify building FIP for AArch32.
The instructions were previously specific to building a FIP for AArch64.
Change-Id: I7bd1a6b8e810cfda411f707e04f479006817858e
Signed-off-by: David Cunado <david.cunado@arm.com>
The user guide incorrectly claimed that it is possible to load a
bootwrapped kernel over JTAG on Juno in the same manner as an EL3
payload. In the EL3 payload boot flow, some of the platform
initialisations in BL2 are modified. In particular, the TZC settings
are modified to allow unrestricted access to DRAM. This in turn allows
the debugger to access the DRAM and therefore to load the image there.
In the BL33-preloaded boot flow though, BL2 uses the default TZC
programming, which prevent access to most of the DRAM from secure state.
When execution reaches the SPIN_ON_BL1_EXIT loop, the MMU is disabled
and thus DS-5 presumably issues secure access transactions while trying
to load the image, which fails.
One way around it is to stop execution at the end of BL2 instead. At
this point, the MMU is still enabled and the DRAM is mapped as
non-secure memory. Therefore, the debugger is allowed to access this
memory in this context and to sucessfully load the bootwrapped kernel in
DRAM. The user guide is updated to suggest this alternative method.
Co-Authored-By: Sandrine Bailleux <sandrine.bailleux@arm.com>
Signed-off-by: Dan Handley <dan.handley@arm.com>
Change-Id: I537ea1c6d2f96edc06bc3f512e770c748bcabe94
This patch adds necessary updates for building and running Trusted
Firmware for AArch32 to user-guide.md. The instructions for running
on both `FVP_Base_AEMv8A-AEMv8A` in AArch32 mode and
`FVP_Base_Cortex-A32x4` models are added. The device tree files for
AArch32 Linux kernel are also added in the `fdts` folder.
Change-Id: I0023b6b03e05f32637cb5765fdeda8c8df2d0d3e
This patch adds the PSCI library integration guide for AArch32 ARMv8-A
systems `psci-lib-integration-guide.md` to the documentation. The
patch also adds appropriate reference to the new document in
the `firmware-design.md` document.
Change-Id: I2d5b5c6b612452371713399702e318e3c73a8ee0
This patch updates the User Guide to recommend the latest version
of some of the software dependencies of ARM Trusted Firmware.
- Upgrade Linaro release: 16.02 -> 16.06
- Upgrade FVPs
- Foundation v8 FVP: 9.5 -> 10.1
- Base FVPs: 7.6 -> 7.7
- Upgrade mbed TLS library: 2.2.0 -> 2.2.1
Note that the latest release of mbed TLS as of today is 2.3.0 but it has
compilations issues with the set of library configuration options that
Trusted Firmware uses. 2.2.1 is the next most recent release known to
build with TF.
This patch also fixes the markdown formatting of a link in the
User Guide.
Change-Id: Ieb7dd336f4d3110fba060afec4ad580ae707a8f1
This patch adds common changes to support AArch32 state in
BL1 and BL2. Following are the changes:
* Added functions for disabling MMU from Secure state.
* Added AArch32 specific SMC function.
* Added semihosting support.
* Added reporting of unhandled exceptions.
* Added uniprocessor stack support.
* Added `el3_entrypoint_common` macro that can be
shared by BL1 and BL32 (SP_MIN) BL stages. The
`el3_entrypoint_common` is similar to the AArch64
counterpart with the main difference in the assembly
instructions and the registers that are relevant to
AArch32 execution state.
* Enabled `LOAD_IMAGE_V2` flag in Makefile for
`ARCH=aarch32` and added check to make sure that
platform has not overridden to disable it.
Change-Id: I33c6d8dfefb2e5d142fdfd06a0f4a7332962e1a3
This patch adds capability to load BL images based on image
descriptors instead of hard coded way of loading BL images.
This framework is designed such that it can be readily adapted
by any BL stage that needs to load images.
In order to provide the above capability the following new
platform functions are introduced:
bl_load_info_t *plat_get_bl_image_load_info(void);
This function returns pointer to the list of images that the
platform has populated to load.
bl_params_t *plat_get_next_bl_params(void);
This function returns a pointer to the shared memory that the
platform has kept aside to pass trusted firmware related
information that next BL image needs.
void plat_flush_next_bl_params(void);
This function flushes to main memory all the params that
are passed to next image.
int bl2_plat_handle_post_image_load(unsigned int image_id)
This function can be used by the platforms to update/use
image information for given `image_id`.
`desc_image_load.c` contains utility functions which can be used
by the platforms to generate, load and executable, image list
based on the registered image descriptors.
This patch also adds new version of `load_image/load_auth_image`
functions in-order to achieve the above capability.
Following are the changes for the new version as compared to old:
- Refactor the signature and only keep image_id and image_info_t
arguments. Removed image_base argument as it is already passed
through image_info_t. Given that the BL image base addresses and
limit/size are already provided by the platforms, the meminfo_t
and entry_point_info arguments are not needed to provide/reserve
the extent of free memory for the given BL image.
- Added check for the image size against the defined max size.
This is needed because the image size could come from an
unauthenticated source (e.g. the FIP header).
To make this check, new member is added to the image_info_t
struct for identifying the image maximum size.
New flag `LOAD_IMAGE_V2` is added in the Makefile.
Default value is 0.
NOTE: `TRUSTED_BOARD_BOOT` is currently not supported when
`LOAD_IMAGE_V2` is enabled.
Change-Id: Ia7b643f4817a170d5a2fbf479b9bc12e63112e79
Partition driver requires the "PLAT_PARTITION_MAX_ENTRIES" definition.
By default, it's defined to 128 in partition driver. But it costs a lot
of memory, and only a few partition entries are really used in platform
partition table. If user wants use memory efficiently, user should
define the build flag in platform.mk instead.
Signed-off-by: Haojian Zhuang <haojian.zhuang@linaro.org>
This patch adds support for NODE_HW_STATE PSCI API by introducing a new
PSCI platform hook (get_node_hw_state). The implementation validates
supplied arguments, and then invokes this platform-defined hook and
returns its result to the caller. PSCI capabilities are updated
accordingly.
Also updates porting and firmware design guides.
Change-Id: I808e55bdf0c157002a7c104b875779fe50a68a30
This feature allows one to quickly verify that the expected
image is contained in the FIP without extracting the image and
running sha256sum(1) on it.
The sha256 digest is only shown when the verbose flag is used.
This change requires libssl-dev to be installed in order to build
Trusted Firmware. Previously, libssl-dev was optionally needed only
to support Trusted Board Boot configurations.
FixesARM-Software/tf-issues#124
Change-Id: Ifb1408d17f483d482bb270a589ee74add25ec5a6
This patch enables the AArch32 build including SP_MIN in the
top level Makefile. The build flag `ARCH` now can specify either
`aarch64`(default) or `aarch32`. Currently only FVP AEM model is
supported for AArch32 build. Another new build flag `AARCH32_SP`
is introduced to specify the AArch32 secure payload to be built.
Change-Id: Ie1198cb9e52d7da1b79b93243338fc3868b08faa
fiptool provides a more consistent and intuitive interface compared to
the fip_create program. It serves as a better base to build on more
features in the future.
fiptool supports various subcommands. Below are the currently
supported subcommands:
1) info - List the images contained in a FIP file.
2) create - Create a new FIP file with the given images.
3) update - Update an existing FIP with the given images.
4) unpack - Extract a selected set or all the images from a FIP file.
5) remove - Remove images from a FIP file. This is a new command that
was not present in fip_create.
To create a new FIP file, replace "fip_create" with "fiptool create".
To update a FIP file, replace "fip_create" with "fiptool update".
To dump the contents of a FIP file, replace "fip_create --dump" with
"fiptool info".
A compatibility script that emulates the basic functionality of
fip_create is provided. Existing scripts might or might not work with
the compatibility script. Users are strongly encouraged to migrate to
fiptool.
FixesARM-Software/tf-issues#87FixesARM-Software/tf-issues#108FixesARM-Software/tf-issues#361
Change-Id: I7ee4da7ac60179cc83cf46af890fd8bc61a53330
Compile option `ARM_BOARD_OPTIMISE_MMAP` has been renamed to
`ARM_BOARD_OPTIMISE_MEM` because it now applies not only to defines
related to the translation tables but to the image size as well.
The defines `PLAT_ARM_MAX_BL1_RW_SIZE`, `PLAT_ARM_MAX_BL2_SIZE` and
`PLAT_ARM_MAX_BL31_SIZE` have been moved to the file board_arm_def.h.
This way, ARM platforms no longer have to set their own values if
`ARM_BOARD_OPTIMISE_MEM=0` and they can specify optimized values
otherwise. The common sizes have been set to the highest values used
for any of the current build configurations.
This is needed because in some build configurations some images are
running out of space. This way there is a common set of values known
to work for all of them and it can be optimized for each particular
platform if needed.
The space reserved for BL2 when `TRUSTED_BOARD_BOOT=0` has been
increased. This is needed because when memory optimisations are
disabled the values for Juno of `PLAT_ARM_MMAP_ENTRIES` and
`MAX_XLAT_TABLES` are higher. If in this situation the code is
compiled in debug mode and with "-O0", the code won't fit.
Change-Id: I70a3d8d3a0b0cad1d6b602c01a7ea334776e718e
This patch introduces the PSCI Library interface. The major changes
introduced are as follows:
* Earlier BL31 was responsible for Architectural initialization during cold
boot via bl31_arch_setup() whereas PSCI was responsible for the same during
warm boot. This functionality is now consolidated by the PSCI library
and it does Architectural initialization via psci_arch_setup() during both
cold and warm boots.
* Earlier the warm boot entry point was always `psci_entrypoint()`. This was
not flexible enough as a library interface. Now PSCI expects the runtime
firmware to provide the entry point via `psci_setup()`. A new function
`bl31_warm_entrypoint` is introduced in BL31 and the previous
`psci_entrypoint()` is deprecated.
* The `smc_helpers.h` is reorganized to separate the SMC Calling Convention
defines from the Trusted Firmware SMC helpers. The former is now in a new
header file `smcc.h` and the SMC helpers are moved to Architecture specific
header.
* The CPU context is used by PSCI for context initialization and
restoration after power down (PSCI Context). It is also used by BL31 for SMC
handling and context management during Normal-Secure world switch (SMC
Context). The `psci_smc_handler()` interface is redefined to not use SMC
helper macros thus enabling to decouple the PSCI context from EL3 runtime
firmware SMC context. This enables PSCI to be integrated with other runtime
firmware using a different SMC context.
NOTE: With this patch the architectural setup done in `bl31_arch_setup()`
is done as part of `psci_setup()` and hence `bl31_platform_setup()` will be
invoked prior to architectural setup. It is highly unlikely that the platform
setup will depend on architectural setup and cause any failure. Please be
be aware of this change in sequence.
Change-Id: I7f497a08d33be234bbb822c28146250cb20dab73
This patch moves the PSCI services and BL31 frameworks like context
management and per-cpu data into new library components `PSCI` and
`el3_runtime` respectively. This enables PSCI to be built independently from
BL31. A new `psci_lib.mk` makefile is introduced which adds the relevant
PSCI library sources and gets included by `bl31.mk`. Other changes which
are done as part of this patch are:
* The runtime services framework is now moved to the `common/` folder to
enable reuse.
* The `asm_macros.S` and `assert_macros.S` helpers are moved to architecture
specific folder.
* The `plat_psci_common.c` is moved from the `plat/common/aarch64/` folder
to `plat/common` folder. The original file location now has a stub which
just includes the file from new location to maintain platform compatibility.
Most of the changes wouldn't affect platform builds as they just involve
changes to the generic bl1.mk and bl31.mk makefiles.
NOTE: THE `plat_psci_common.c` FILE HAS MOVED LOCATION AND THE STUB FILE AT
THE ORIGINAL LOCATION IS NOW DEPRECATED. PLATFORMS SHOULD MODIFY THEIR
MAKEFILES TO INCLUDE THE FILE FROM THE NEW LOCATION.
Change-Id: I6bd87d5b59424995c6a65ef8076d4fda91ad5e86
This patch reworks type usage in generic code, drivers and ARM platform files
to make it more portable. The major changes done with respect to
type usage are as listed below:
* Use uintptr_t for storing address instead of uint64_t or unsigned long.
* Review usage of unsigned long as it can no longer be assumed to be 64 bit.
* Use u_register_t for register values whose width varies depending on
whether AArch64 or AArch32.
* Use generic C types where-ever possible.
In addition to the above changes, this patch also modifies format specifiers
in print invocations so that they are AArch64/AArch32 agnostic. Only files
related to upcoming feature development have been reworked.
Change-Id: I9f8c78347c5a52ba7027ff389791f1dad63ee5f8
At the moment, all BL images share a similar memory layout: they start
with their code section, followed by their read-only data section.
The two sections are contiguous in memory. Therefore, the end of the
code section and the beginning of the read-only data one might share
a memory page. This forces both to be mapped with the same memory
attributes. As the code needs to be executable, this means that the
read-only data stored on the same memory page as the code are
executable as well. This could potentially be exploited as part of
a security attack.
This patch introduces a new build flag called
SEPARATE_CODE_AND_RODATA, which isolates the code and read-only data
on separate memory pages. This in turn allows independent control of
the access permissions for the code and read-only data.
This has an impact on memory footprint, as padding bytes need to be
introduced between the code and read-only data to ensure the
segragation of the two. To limit the memory cost, the memory layout
of the read-only section has been changed in this case.
- When SEPARATE_CODE_AND_RODATA=0, the layout is unchanged, i.e.
the read-only section still looks like this (padding omitted):
| ... |
+-------------------+
| Exception vectors |
+-------------------+
| Read-only data |
+-------------------+
| Code |
+-------------------+ BLx_BASE
In this case, the linker script provides the limits of the whole
read-only section.
- When SEPARATE_CODE_AND_RODATA=1, the exception vectors and
read-only data are swapped, such that the code and exception
vectors are contiguous, followed by the read-only data. This
gives the following new layout (padding omitted):
| ... |
+-------------------+
| Read-only data |
+-------------------+
| Exception vectors |
+-------------------+
| Code |
+-------------------+ BLx_BASE
In this case, the linker script now exports 2 sets of addresses
instead: the limits of the code and the limits of the read-only
data. Refer to the Firmware Design guide for more details. This
provides platform code with a finer-grained view of the image
layout and allows it to map these 2 regions with the appropriate
access permissions.
Note that SEPARATE_CODE_AND_RODATA applies to all BL images.
Change-Id: I936cf80164f6b66b6ad52b8edacadc532c935a49
This patch adds a new linker symbol in BL1's linker script named
'__BL1_ROM_END__', which marks the end of BL1's ROM content. This
covers BL1's code, read-only data and read-write data to relocate
in Trusted SRAM. The address of this new linker symbol is exported
to C code through the 'BL1_ROM_END' macro.
The section related to linker symbols in the Firmware Design guide
has been updated and improved.
Change-Id: I5c442ff497c78d865ffba1d7d044511c134e11c7
This patch adds following optional PSCI STAT functions:
- PSCI_STAT_RESIDENCY: This call returns the amount of time spent
in power_state in microseconds, by the node represented by the
`target_cpu` and the highest level of `power_state`.
- PSCI_STAT_COUNT: This call returns the number of times a
`power_state` has been used by the node represented by the
`target_cpu` and the highest power level of `power_state`.
These APIs provides residency statistics for power states that has
been used by the platform. They are implemented according to v1.0
of the PSCI specification.
By default this optional feature is disabled in the PSCI
implementation. To enable it, set the boolean flag
`ENABLE_PSCI_STAT` to 1. This also sets `ENABLE_PMF` to 1.
Change-Id: Ie62e9d37d6d416ccb1813acd7f616d1ddd3e8aff
This patch adds Performance Measurement Framework(PMF) in the
ARM Trusted Firmware. PMF is implemented as a library and the
SMC interface is provided through ARM SiP service.
The PMF provides capturing, storing, dumping and retrieving the
time-stamps, by enabling the development of services by different
providers, that can be easily integrated into ARM Trusted Firmware.
The PMF capture and retrieval APIs can also do appropriate cache
maintenance operations to the timestamp memory when the caller
indicates so.
`pmf_main.c` consists of core functions that implement service
registration, initialization, storing, dumping and retrieving
the time-stamp.
`pmf_smc.c` consists SMC handling for registered PMF services.
`pmf.h` consists of the macros that can be used by the PMF service
providers to register service and declare time-stamp functions.
`pmf_helpers.h` consists of internal macros that are used by `pmf.h`
By default this feature is disabled in the ARM trusted firmware.
To enable it set the boolean flag `ENABLE_PMF` to 1.
NOTE: The caller is responsible for specifying the appropriate cache
maintenance flags and for acquiring/releasing appropriate locks
before/after capturing/retrieving the time-stamps.
Change-Id: Ib45219ac07c2a81b9726ef6bd9c190cc55e81854
Add build time option 'cadence1' for ZYNQMP_CONSOLE to select the 2nd
UART available in the SoC.
Signed-off-by: Soren Brinkmann <soren.brinkmann@xilinx.com>
Acked-by: Michal Simek <michal.simek@xilinx.com>
A production ROM with TBB enabled must have the ability to boot test software
before a real ROTPK is deployed (e.g. manufacturing mode). Previously the
function plat_get_rotpk_info() must return a valid ROTPK for TBB to succeed.
This patch adds an additional bit `ROTPK_NOT_DEPLOYED` in the output `flags`
parameter from plat_get_rotpk_info(). If this bit is set, then the ROTPK
in certificate is used without verifying against the platform value.
FixesARM-software/tf-issues#381
Change-Id: Icbbffab6bff8ed76b72431ee21337f550d8fdbbb
* Move stdlib header files from include/stdlib to include/lib/stdlib for
consistency with other library headers.
* Fix checkpatch paths to continue excluding stdlib files.
* Create stdlib.mk to define the stdlib source files and include directories.
* Include stdlib.mk from the top level Makefile.
* Update stdlib header path in the fip_create Makefile.
* Update porting-guide.md with the new paths.
Change-Id: Ia92c2dc572e9efb54a783e306b5ceb2ce24d27fa