switch-l4t-atf/drivers/arm/tzc400/tzc400.c
Dan Handley 97043ac98e Reduce deep nesting of header files
Reduce the number of header files included from other header
files as much as possible without splitting the files. Use forward
declarations where possible. This allows removal of some unnecessary
"#ifndef __ASSEMBLY__" statements.

Also, review the .c and .S files for which header files really need
including and reorder the #include statements alphabetically.

Fixes ARM-software/tf-issues#31

Change-Id: Iec92fb976334c77453e010b60bcf56f3be72bd3e
2014-05-06 13:57:48 +01:00

266 lines
7.9 KiB
C

/*
* Copyright (c) 2014, ARM Limited and Contributors. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* Neither the name of ARM nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <assert.h>
#include <debug.h>
#include <mmio.h>
#include <stddef.h>
#include <tzc400.h>
static uint32_t tzc_read_build_config(uint64_t base)
{
return mmio_read_32(base + BUILD_CONFIG_OFF);
}
static uint32_t tzc_read_gate_keeper(uint64_t base)
{
return mmio_read_32(base + GATE_KEEPER_OFF);
}
static void tzc_write_gate_keeper(uint64_t base, uint32_t val)
{
mmio_write_32(base + GATE_KEEPER_OFF, val);
}
static void tzc_write_action(uint64_t base, tzc_action_t action)
{
mmio_write_32(base + ACTION_OFF, action);
}
static void tzc_write_region_base_low(uint64_t base, uint32_t region, uint32_t val)
{
mmio_write_32(base + REGION_BASE_LOW_OFF + REGION_NUM_OFF(region), val);
}
static void tzc_write_region_base_high(uint64_t base, uint32_t region, uint32_t val)
{
mmio_write_32(base + REGION_BASE_HIGH_OFF + REGION_NUM_OFF(region), val);
}
static void tzc_write_region_top_low(uint64_t base, uint32_t region, uint32_t val)
{
mmio_write_32(base + REGION_TOP_LOW_OFF + REGION_NUM_OFF(region), val);
}
static void tzc_write_region_top_high(uint64_t base, uint32_t region, uint32_t val)
{
mmio_write_32(base + REGION_TOP_HIGH_OFF + REGION_NUM_OFF(region), val);
}
static void tzc_write_region_attributes(uint64_t base, uint32_t region, uint32_t val)
{
mmio_write_32(base + REGION_ATTRIBUTES_OFF + REGION_NUM_OFF(region), val);
}
static void tzc_write_region_id_access(uint64_t base, uint32_t region, uint32_t val)
{
mmio_write_32(base + REGION_ID_ACCESS_OFF + REGION_NUM_OFF(region), val);
}
static uint32_t tzc_read_component_id(uint64_t base)
{
uint32_t id;
id = mmio_read_8(base + CID0_OFF);
id |= (mmio_read_8(base + CID1_OFF) << 8);
id |= (mmio_read_8(base + CID2_OFF) << 16);
id |= (mmio_read_8(base + CID3_OFF) << 24);
return id;
}
static uint32_t tzc_get_gate_keeper(uint64_t base, uint8_t filter)
{
uint32_t tmp;
tmp = (tzc_read_gate_keeper(base) >> GATE_KEEPER_OS_SHIFT) &
GATE_KEEPER_OS_MASK;
return tmp >> filter;
}
/* This function is not MP safe. */
static void tzc_set_gate_keeper(uint64_t base, uint8_t filter, uint32_t val)
{
uint32_t tmp;
/* Upper half is current state. Lower half is requested state. */
tmp = (tzc_read_gate_keeper(base) >> GATE_KEEPER_OS_SHIFT) &
GATE_KEEPER_OS_MASK;
if (val)
tmp |= (1 << filter);
else
tmp &= ~(1 << filter);
tzc_write_gate_keeper(base, (tmp & GATE_KEEPER_OR_MASK) <<
GATE_KEEPER_OR_SHIFT);
/* Wait here until we see the change reflected in the TZC status. */
while (((tzc_read_gate_keeper(base) >> GATE_KEEPER_OS_SHIFT) &
GATE_KEEPER_OS_MASK) != tmp)
;
}
void tzc_init(tzc_instance_t *controller)
{
uint32_t tzc_id, tzc_build;
assert(controller != NULL);
/*
* We expect to see a tzc400. Check component ID. The TZC-400 TRM shows
* component ID is expected to be "0xB105F00D".
*/
tzc_id = tzc_read_component_id(controller->base);
if (tzc_id != TZC400_COMPONENT_ID) {
ERROR("TZC : Wrong device ID (0x%x).\n", tzc_id);
panic();
}
/* Save values we will use later. */
tzc_build = tzc_read_build_config(controller->base);
controller->num_filters = ((tzc_build >> BUILD_CONFIG_NF_SHIFT) &
BUILD_CONFIG_NF_MASK) + 1;
controller->addr_width = ((tzc_build >> BUILD_CONFIG_AW_SHIFT) &
BUILD_CONFIG_AW_MASK) + 1;
controller->num_regions = ((tzc_build >> BUILD_CONFIG_NR_SHIFT) &
BUILD_CONFIG_NR_MASK) + 1;
}
/*
* `tzc_configure_region` is used to program regions into the TrustZone
* controller. A region can be associated with more than one filter. The
* associated filters are passed in as a bitmap (bit0 = filter0).
* NOTE:
* The region 0 covers the whole address space and is enabled on all filters,
* this cannot be changed. It is, however, possible to change some region 0
* permissions.
*/
void tzc_configure_region(const tzc_instance_t *controller,
uint32_t filters,
uint8_t region,
uint64_t region_base,
uint64_t region_top,
tzc_region_attributes_t sec_attr,
uint32_t ns_device_access)
{
uint64_t max_addr;
assert(controller != NULL);
/* Do range checks on filters and regions. */
assert(((filters >> controller->num_filters) == 0) &&
(region < controller->num_regions));
/*
* Do address range check based on TZC configuration. A 64bit address is
* the max and expected case.
*/
max_addr = UINT64_MAX >> (64 - controller->addr_width);
if ((region_top > max_addr) || (region_base >= region_top))
assert(0);
/* region_base and (region_top + 1) must be 4KB aligned */
assert(((region_base | (region_top + 1)) & (4096 - 1)) == 0);
assert(sec_attr <= TZC_REGION_S_RDWR);
/*
* Inputs look ok, start programming registers.
* All the address registers are 32 bits wide and have a LOW and HIGH
* component used to construct a up to a 64bit address.
*/
tzc_write_region_base_low(controller->base, region, (uint32_t)(region_base));
tzc_write_region_base_high(controller->base, region, (uint32_t)(region_base >> 32));
tzc_write_region_top_low(controller->base, region, (uint32_t)(region_top));
tzc_write_region_top_high(controller->base, region, (uint32_t)(region_top >> 32));
/* Assign the region to a filter and set secure attributes */
tzc_write_region_attributes(controller->base, region,
(sec_attr << REGION_ATTRIBUTES_SEC_SHIFT) | filters);
/*
* Specify which non-secure devices have permission to access this
* region.
*/
tzc_write_region_id_access(controller->base, region, ns_device_access);
}
void tzc_set_action(const tzc_instance_t *controller, tzc_action_t action)
{
assert(controller != NULL);
/*
* - Currently no handler is provided to trap an error via interrupt
* or exception.
* - The interrupt action has not been tested.
*/
tzc_write_action(controller->base, action);
}
void tzc_enable_filters(const tzc_instance_t *controller)
{
uint32_t state;
uint32_t filter;
assert(controller != NULL);
for (filter = 0; filter < controller->num_filters; filter++) {
state = tzc_get_gate_keeper(controller->base, filter);
if (state) {
ERROR("TZC : Filter %d Gatekeeper already enabled.\n",
filter);
panic();
}
tzc_set_gate_keeper(controller->base, filter, 1);
}
}
void tzc_disable_filters(const tzc_instance_t *controller)
{
uint32_t filter;
assert(controller != NULL);
/*
* We don't do the same state check as above as the Gatekeepers are
* disabled after reset.
*/
for (filter = 0; filter < controller->num_filters; filter++)
tzc_set_gate_keeper(controller->base, filter, 0);
}