switch-l4t-atf/common/bl_common.c
Vikram Kanigiri 4112bfa0c2 Populate BL31 input parameters as per new spec
This patch is based on spec published at
https://github.com/ARM-software/tf-issues/issues/133

It rearranges the bl31_args struct into
bl31_params and bl31_plat_params which provide the
information needed for Trusted firmware and platform
specific data via x0 and x1

On the FVP platform BL3-1 params and BL3-1 plat params
and its constituents are stored at the start of TZDRAM.

The information about memory availability and size for
BL3-1, BL3-2 and BL3-3 is moved into platform specific data.

Change-Id: I8b32057a3d0dd3968ea26c2541a0714177820da9
2014-05-22 16:14:19 +01:00

484 lines
16 KiB
C

/*
* Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* Neither the name of ARM nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <arch.h>
#include <arch_helpers.h>
#include <assert.h>
#include <bl_common.h>
#include <debug.h>
#include <io_storage.h>
#include <platform.h>
#include <errno.h>
#include <stdio.h>
unsigned long page_align(unsigned long value, unsigned dir)
{
unsigned long page_size = 1 << FOUR_KB_SHIFT;
/* Round up the limit to the next page boundary */
if (value & (page_size - 1)) {
value &= ~(page_size - 1);
if (dir == UP)
value += page_size;
}
return value;
}
static inline unsigned int is_page_aligned (unsigned long addr) {
const unsigned long page_size = 1 << FOUR_KB_SHIFT;
return (addr & (page_size - 1)) == 0;
}
void change_security_state(unsigned int target_security_state)
{
unsigned long scr = read_scr();
if (target_security_state == SECURE)
scr &= ~SCR_NS_BIT;
else if (target_security_state == NON_SECURE)
scr |= SCR_NS_BIT;
else
assert(0);
write_scr(scr);
}
/*******************************************************************************
* The next two functions are the weak definitions. Platform specific
* code can override them if it wishes to.
******************************************************************************/
/*******************************************************************************
* Function that takes a memory layout into which BL31 has been either top or
* bottom loaded. Using this information, it populates bl31_mem_layout to tell
* BL31 how much memory it has access to and how much is available for use. It
* does not need the address where BL31 has been loaded as BL31 will reclaim
* all the memory used by BL2.
* TODO: Revisit if this and init_bl2_mem_layout can be replaced by a single
* routine.
******************************************************************************/
void init_bl31_mem_layout(const meminfo_t *bl2_mem_layout,
meminfo_t *bl31_mem_layout,
unsigned int load_type)
{
if (load_type == BOT_LOAD) {
/*
* ------------ ^
* | BL2 | |
* |----------| ^ | BL2
* | | | BL2 free | total
* | | | size | size
* |----------| BL2 free base v |
* | BL31 | |
* ------------ BL2 total base v
*/
unsigned long bl31_size;
bl31_mem_layout->free_base = bl2_mem_layout->free_base;
bl31_size = bl2_mem_layout->free_base - bl2_mem_layout->total_base;
bl31_mem_layout->free_size = bl2_mem_layout->total_size - bl31_size;
} else {
/*
* ------------ ^
* | BL31 | |
* |----------| ^ | BL2
* | | | BL2 free | total
* | | | size | size
* |----------| BL2 free base v |
* | BL2 | |
* ------------ BL2 total base v
*/
unsigned long bl2_size;
bl31_mem_layout->free_base = bl2_mem_layout->total_base;
bl2_size = bl2_mem_layout->free_base - bl2_mem_layout->total_base;
bl31_mem_layout->free_size = bl2_mem_layout->free_size + bl2_size;
}
bl31_mem_layout->total_base = bl2_mem_layout->total_base;
bl31_mem_layout->total_size = bl2_mem_layout->total_size;
bl31_mem_layout->attr = load_type;
flush_dcache_range((unsigned long) bl31_mem_layout, sizeof(meminfo_t));
return;
}
/*******************************************************************************
* Function that takes a memory layout into which BL2 has been either top or
* bottom loaded along with the address where BL2 has been loaded in it. Using
* this information, it populates bl2_mem_layout to tell BL2 how much memory
* it has access to and how much is available for use.
******************************************************************************/
void init_bl2_mem_layout(meminfo_t *bl1_mem_layout,
meminfo_t *bl2_mem_layout,
unsigned int load_type,
unsigned long bl2_base)
{
unsigned tmp;
if (load_type == BOT_LOAD) {
bl2_mem_layout->total_base = bl2_base;
tmp = bl1_mem_layout->free_base - bl2_base;
bl2_mem_layout->total_size = bl1_mem_layout->free_size + tmp;
} else {
bl2_mem_layout->total_base = bl1_mem_layout->free_base;
tmp = bl1_mem_layout->total_base + bl1_mem_layout->total_size;
bl2_mem_layout->total_size = tmp - bl1_mem_layout->free_base;
}
bl2_mem_layout->free_base = bl1_mem_layout->free_base;
bl2_mem_layout->free_size = bl1_mem_layout->free_size;
bl2_mem_layout->attr = load_type;
flush_dcache_range((unsigned long) bl2_mem_layout, sizeof(meminfo_t));
return;
}
static void dump_load_info(unsigned long image_load_addr,
unsigned long image_size,
const meminfo_t *mem_layout)
{
#if DEBUG
printf("Trying to load image at address 0x%lx, size = 0x%lx\r\n",
image_load_addr, image_size);
printf("Current memory layout:\r\n");
printf(" total region = [0x%lx, 0x%lx]\r\n", mem_layout->total_base,
mem_layout->total_base + mem_layout->total_size);
printf(" free region = [0x%lx, 0x%lx]\r\n", mem_layout->free_base,
mem_layout->free_base + mem_layout->free_size);
#endif
}
/* Generic function to return the size of an image */
unsigned long image_size(const char *image_name)
{
uintptr_t dev_handle;
uintptr_t image_handle;
uintptr_t image_spec;
size_t image_size = 0;
int io_result = IO_FAIL;
assert(image_name != NULL);
/* Obtain a reference to the image by querying the platform layer */
io_result = plat_get_image_source(image_name, &dev_handle, &image_spec);
if (io_result != IO_SUCCESS) {
WARN("Failed to obtain reference to image '%s' (%i)\n",
image_name, io_result);
return 0;
}
/* Attempt to access the image */
io_result = io_open(dev_handle, image_spec, &image_handle);
if (io_result != IO_SUCCESS) {
WARN("Failed to access image '%s' (%i)\n",
image_name, io_result);
return 0;
}
/* Find the size of the image */
io_result = io_size(image_handle, &image_size);
if ((io_result != IO_SUCCESS) || (image_size == 0)) {
WARN("Failed to determine the size of the image '%s' file (%i)\n",
image_name, io_result);
}
io_result = io_close(image_handle);
/* Ignore improbable/unrecoverable error in 'close' */
/* TODO: Consider maintaining open device connection from this
* bootloader stage
*/
io_result = io_dev_close(dev_handle);
/* Ignore improbable/unrecoverable error in 'dev_close' */
return image_size;
}
/*******************************************************************************
* Generic function to load an image into the trusted RAM,
* given a name, extents of free memory & whether the image should be loaded at
* the bottom or top of the free memory. It updates the memory layout if the
* load is successful. It also updates the image information and the entry point
* information in the params passed
******************************************************************************/
int load_image(meminfo_t *mem_layout,
const char *image_name,
unsigned int load_type,
unsigned long fixed_addr,
image_info_t *image_data,
entry_point_info_t *entry_point_info)
{
uintptr_t dev_handle;
uintptr_t image_handle;
uintptr_t image_spec;
unsigned long temp_image_base = 0;
unsigned long image_base = 0;
long offset = 0;
size_t image_size = 0;
size_t bytes_read = 0;
int io_result = IO_FAIL;
assert(mem_layout != NULL);
assert(image_name != NULL);
assert(image_data->h.version >= VERSION_1);
/* Obtain a reference to the image by querying the platform layer */
io_result = plat_get_image_source(image_name, &dev_handle, &image_spec);
if (io_result != IO_SUCCESS) {
WARN("Failed to obtain reference to image '%s' (%i)\n",
image_name, io_result);
return io_result;
}
/* Attempt to access the image */
io_result = io_open(dev_handle, image_spec, &image_handle);
if (io_result != IO_SUCCESS) {
WARN("Failed to access image '%s' (%i)\n",
image_name, io_result);
return io_result;
}
/* Find the size of the image */
io_result = io_size(image_handle, &image_size);
if ((io_result != IO_SUCCESS) || (image_size == 0)) {
WARN("Failed to determine the size of the image '%s' file (%i)\n",
image_name, io_result);
goto exit;
}
/* See if we have enough space */
if (image_size > mem_layout->free_size) {
WARN("Cannot load '%s' file: Not enough space.\n",
image_name);
dump_load_info(0, image_size, mem_layout);
goto exit;
}
switch (load_type) {
case TOP_LOAD:
/* Load the image in the top of free memory */
temp_image_base = mem_layout->free_base + mem_layout->free_size;
temp_image_base -= image_size;
/* Page align base address and check whether the image still fits */
image_base = page_align(temp_image_base, DOWN);
assert(image_base <= temp_image_base);
if (image_base < mem_layout->free_base) {
WARN("Cannot load '%s' file: Not enough space.\n",
image_name);
dump_load_info(image_base, image_size, mem_layout);
io_result = -ENOMEM;
goto exit;
}
/* Calculate the amount of extra memory used due to alignment */
offset = temp_image_base - image_base;
break;
case BOT_LOAD:
/* Load the BL2 image in the bottom of free memory */
temp_image_base = mem_layout->free_base;
image_base = page_align(temp_image_base, UP);
assert(image_base >= temp_image_base);
/* Page align base address and check whether the image still fits */
if (image_base + image_size >
mem_layout->free_base + mem_layout->free_size) {
WARN("Cannot load '%s' file: Not enough space.\n",
image_name);
dump_load_info(image_base, image_size, mem_layout);
io_result = -ENOMEM;
goto exit;
}
/* Calculate the amount of extra memory used due to alignment */
offset = image_base - temp_image_base;
break;
default:
assert(0);
}
/*
* Some images must be loaded at a fixed address, not a dynamic one.
*
* This has been implemented as a hack on top of the existing dynamic
* loading mechanism, for the time being. If the 'fixed_addr' function
* argument is different from zero, then it will force the load address.
* So we still have this principle of top/bottom loading but the code
* determining the load address is bypassed and the load address is
* forced to the fixed one.
*
* This can result in quite a lot of wasted space because we still use
* 1 sole meminfo structure to represent the extents of free memory,
* where we should use some sort of linked list.
*
* E.g. we want to load BL2 at address 0x04020000, the resulting memory
* layout should look as follows:
* ------------ 0x04040000
* | | <- Free space (1)
* |----------|
* | BL2 |
* |----------| 0x04020000
* | | <- Free space (2)
* |----------|
* | BL1 |
* ------------ 0x04000000
*
* But in the current hacky implementation, we'll need to specify
* whether BL2 is loaded at the top or bottom of the free memory.
* E.g. if BL2 is considered as top-loaded, the meminfo structure
* will give the following view of the memory, hiding the chunk of
* free memory above BL2:
* ------------ 0x04040000
* | |
* | |
* | BL2 |
* |----------| 0x04020000
* | | <- Free space (2)
* |----------|
* | BL1 |
* ------------ 0x04000000
*/
if (fixed_addr != 0) {
/* Load the image at the given address. */
image_base = fixed_addr;
/* Check whether the image fits. */
if ((image_base < mem_layout->free_base) ||
(image_base + image_size >
mem_layout->free_base + mem_layout->free_size)) {
WARN("Cannot load '%s' file: Not enough space.\n",
image_name);
dump_load_info(image_base, image_size, mem_layout);
io_result = -ENOMEM;
goto exit;
}
/* Check whether the fixed load address is page-aligned. */
if (!is_page_aligned(image_base)) {
WARN("Cannot load '%s' file at unaligned address 0x%lx\n",
image_name, fixed_addr);
io_result = -ENOMEM;
goto exit;
}
/*
* Calculate the amount of extra memory used due to fixed
* loading.
*/
if (load_type == TOP_LOAD) {
unsigned long max_addr, space_used;
/*
* ------------ max_addr
* | /wasted/ | | offset
* |..........|..............................
* | image | | image_flen
* |----------| fixed_addr
* | |
* | |
* ------------ total_base
*/
max_addr = mem_layout->total_base + mem_layout->total_size;
/*
* Compute the amount of memory used by the image.
* Corresponds to all space above the image load
* address.
*/
space_used = max_addr - fixed_addr;
/*
* Calculate the amount of wasted memory within the
* amount of memory used by the image.
*/
offset = space_used - image_size;
} else /* BOT_LOAD */
/*
* ------------
* | |
* | |
* |----------|
* | image |
* |..........| fixed_addr
* | /wasted/ | | offset
* ------------ total_base
*/
offset = fixed_addr - mem_layout->total_base;
}
/* We have enough space so load the image now */
/* TODO: Consider whether to try to recover/retry a partially successful read */
io_result = io_read(image_handle, image_base, image_size, &bytes_read);
if ((io_result != IO_SUCCESS) || (bytes_read < image_size)) {
WARN("Failed to load '%s' file (%i)\n", image_name, io_result);
goto exit;
}
image_data->image_base = image_base;
image_data->image_size = image_size;
entry_point_info->pc = image_base;
/*
* File has been successfully loaded. Update the free memory
* data structure & flush the contents of the TZRAM so that
* the next EL can see it.
*/
/* Update the memory contents */
flush_dcache_range(image_base, image_size);
mem_layout->free_size -= image_size + offset;
/* Update the base of free memory since its moved up */
if (load_type == BOT_LOAD)
mem_layout->free_base += offset + image_size;
exit:
io_close(image_handle);
/* Ignore improbable/unrecoverable error in 'close' */
/* TODO: Consider maintaining open device connection from this bootloader stage */
io_dev_close(dev_handle);
/* Ignore improbable/unrecoverable error in 'dev_close' */
return io_result;
}