mirror of
https://github.com/CTCaer/switch-l4t-atf.git
synced 2025-01-22 10:14:31 +00:00
82cb2c1ad9
To make software license auditing simpler, use SPDX[0] license identifiers instead of duplicating the license text in every file. NOTE: Files that have been imported by FreeBSD have not been modified. [0]: https://spdx.org/ Change-Id: I80a00e1f641b8cc075ca5a95b10607ed9ed8761a Signed-off-by: dp-arm <dimitris.papastamos@arm.com>
283 lines
10 KiB
C
283 lines
10 KiB
C
/*
|
|
* Copyright (c) 2013-2017, ARM Limited and Contributors. All rights reserved.
|
|
*
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*/
|
|
|
|
#include <arch.h>
|
|
#include <arch_helpers.h>
|
|
#include <assert.h>
|
|
#include <bl_common.h>
|
|
#include <context.h>
|
|
#include <context_mgmt.h>
|
|
#include <errata_report.h>
|
|
#include <platform.h>
|
|
#include <stddef.h>
|
|
#include "psci_private.h"
|
|
|
|
/*******************************************************************************
|
|
* Per cpu non-secure contexts used to program the architectural state prior
|
|
* return to the normal world.
|
|
* TODO: Use the memory allocator to set aside memory for the contexts instead
|
|
* of relying on platform defined constants.
|
|
******************************************************************************/
|
|
static cpu_context_t psci_ns_context[PLATFORM_CORE_COUNT];
|
|
|
|
/******************************************************************************
|
|
* Define the psci capability variable.
|
|
*****************************************************************************/
|
|
unsigned int psci_caps;
|
|
|
|
/*******************************************************************************
|
|
* Function which initializes the 'psci_non_cpu_pd_nodes' or the
|
|
* 'psci_cpu_pd_nodes' corresponding to the power level.
|
|
******************************************************************************/
|
|
static void psci_init_pwr_domain_node(unsigned int node_idx,
|
|
unsigned int parent_idx,
|
|
unsigned int level)
|
|
{
|
|
if (level > PSCI_CPU_PWR_LVL) {
|
|
psci_non_cpu_pd_nodes[node_idx].level = level;
|
|
psci_lock_init(psci_non_cpu_pd_nodes, node_idx);
|
|
psci_non_cpu_pd_nodes[node_idx].parent_node = parent_idx;
|
|
psci_non_cpu_pd_nodes[node_idx].local_state =
|
|
PLAT_MAX_OFF_STATE;
|
|
} else {
|
|
psci_cpu_data_t *svc_cpu_data;
|
|
|
|
psci_cpu_pd_nodes[node_idx].parent_node = parent_idx;
|
|
|
|
/* Initialize with an invalid mpidr */
|
|
psci_cpu_pd_nodes[node_idx].mpidr = PSCI_INVALID_MPIDR;
|
|
|
|
svc_cpu_data =
|
|
&(_cpu_data_by_index(node_idx)->psci_svc_cpu_data);
|
|
|
|
/* Set the Affinity Info for the cores as OFF */
|
|
svc_cpu_data->aff_info_state = AFF_STATE_OFF;
|
|
|
|
/* Invalidate the suspend level for the cpu */
|
|
svc_cpu_data->target_pwrlvl = PSCI_INVALID_PWR_LVL;
|
|
|
|
/* Set the power state to OFF state */
|
|
svc_cpu_data->local_state = PLAT_MAX_OFF_STATE;
|
|
|
|
psci_flush_dcache_range((uintptr_t)svc_cpu_data,
|
|
sizeof(*svc_cpu_data));
|
|
|
|
cm_set_context_by_index(node_idx,
|
|
(void *) &psci_ns_context[node_idx],
|
|
NON_SECURE);
|
|
}
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* This functions updates cpu_start_idx and ncpus field for each of the node in
|
|
* psci_non_cpu_pd_nodes[]. It does so by comparing the parent nodes of each of
|
|
* the CPUs and check whether they match with the parent of the previous
|
|
* CPU. The basic assumption for this work is that children of the same parent
|
|
* are allocated adjacent indices. The platform should ensure this though proper
|
|
* mapping of the CPUs to indices via plat_core_pos_by_mpidr() and
|
|
* plat_my_core_pos() APIs.
|
|
*******************************************************************************/
|
|
static void psci_update_pwrlvl_limits(void)
|
|
{
|
|
int j;
|
|
unsigned int nodes_idx[PLAT_MAX_PWR_LVL] = {0};
|
|
unsigned int temp_index[PLAT_MAX_PWR_LVL], cpu_idx;
|
|
|
|
for (cpu_idx = 0; cpu_idx < PLATFORM_CORE_COUNT; cpu_idx++) {
|
|
psci_get_parent_pwr_domain_nodes(cpu_idx,
|
|
PLAT_MAX_PWR_LVL,
|
|
temp_index);
|
|
for (j = PLAT_MAX_PWR_LVL - 1; j >= 0; j--) {
|
|
if (temp_index[j] != nodes_idx[j]) {
|
|
nodes_idx[j] = temp_index[j];
|
|
psci_non_cpu_pd_nodes[nodes_idx[j]].cpu_start_idx
|
|
= cpu_idx;
|
|
}
|
|
psci_non_cpu_pd_nodes[nodes_idx[j]].ncpus++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* Core routine to populate the power domain tree. The tree descriptor passed by
|
|
* the platform is populated breadth-first and the first entry in the map
|
|
* informs the number of root power domains. The parent nodes of the root nodes
|
|
* will point to an invalid entry(-1).
|
|
******************************************************************************/
|
|
static void populate_power_domain_tree(const unsigned char *topology)
|
|
{
|
|
unsigned int i, j = 0, num_nodes_at_lvl = 1, num_nodes_at_next_lvl;
|
|
unsigned int node_index = 0, parent_node_index = 0, num_children;
|
|
int level = PLAT_MAX_PWR_LVL;
|
|
|
|
/*
|
|
* For each level the inputs are:
|
|
* - number of nodes at this level in plat_array i.e. num_nodes_at_level
|
|
* This is the sum of values of nodes at the parent level.
|
|
* - Index of first entry at this level in the plat_array i.e.
|
|
* parent_node_index.
|
|
* - Index of first free entry in psci_non_cpu_pd_nodes[] or
|
|
* psci_cpu_pd_nodes[] i.e. node_index depending upon the level.
|
|
*/
|
|
while (level >= PSCI_CPU_PWR_LVL) {
|
|
num_nodes_at_next_lvl = 0;
|
|
/*
|
|
* For each entry (parent node) at this level in the plat_array:
|
|
* - Find the number of children
|
|
* - Allocate a node in a power domain array for each child
|
|
* - Set the parent of the child to the parent_node_index - 1
|
|
* - Increment parent_node_index to point to the next parent
|
|
* - Accumulate the number of children at next level.
|
|
*/
|
|
for (i = 0; i < num_nodes_at_lvl; i++) {
|
|
assert(parent_node_index <=
|
|
PSCI_NUM_NON_CPU_PWR_DOMAINS);
|
|
num_children = topology[parent_node_index];
|
|
|
|
for (j = node_index;
|
|
j < node_index + num_children; j++)
|
|
psci_init_pwr_domain_node(j,
|
|
parent_node_index - 1,
|
|
level);
|
|
|
|
node_index = j;
|
|
num_nodes_at_next_lvl += num_children;
|
|
parent_node_index++;
|
|
}
|
|
|
|
num_nodes_at_lvl = num_nodes_at_next_lvl;
|
|
level--;
|
|
|
|
/* Reset the index for the cpu power domain array */
|
|
if (level == PSCI_CPU_PWR_LVL)
|
|
node_index = 0;
|
|
}
|
|
|
|
/* Validate the sanity of array exported by the platform */
|
|
assert(j == PLATFORM_CORE_COUNT);
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* This function does the architectural setup and takes the warm boot
|
|
* entry-point `mailbox_ep` as an argument. The function also initializes the
|
|
* power domain topology tree by querying the platform. The power domain nodes
|
|
* higher than the CPU are populated in the array psci_non_cpu_pd_nodes[] and
|
|
* the CPU power domains are populated in psci_cpu_pd_nodes[]. The platform
|
|
* exports its static topology map through the
|
|
* populate_power_domain_topology_tree() API. The algorithm populates the
|
|
* psci_non_cpu_pd_nodes and psci_cpu_pd_nodes iteratively by using this
|
|
* topology map. On a platform that implements two clusters of 2 cpus each,
|
|
* and supporting 3 domain levels, the populated psci_non_cpu_pd_nodes would
|
|
* look like this:
|
|
*
|
|
* ---------------------------------------------------
|
|
* | system node | cluster 0 node | cluster 1 node |
|
|
* ---------------------------------------------------
|
|
*
|
|
* And populated psci_cpu_pd_nodes would look like this :
|
|
* <- cpus cluster0 -><- cpus cluster1 ->
|
|
* ------------------------------------------------
|
|
* | CPU 0 | CPU 1 | CPU 2 | CPU 3 |
|
|
* ------------------------------------------------
|
|
******************************************************************************/
|
|
int psci_setup(const psci_lib_args_t *lib_args)
|
|
{
|
|
const unsigned char *topology_tree;
|
|
|
|
assert(VERIFY_PSCI_LIB_ARGS_V1(lib_args));
|
|
|
|
/* Do the Architectural initialization */
|
|
psci_arch_setup();
|
|
|
|
/* Query the topology map from the platform */
|
|
topology_tree = plat_get_power_domain_tree_desc();
|
|
|
|
/* Populate the power domain arrays using the platform topology map */
|
|
populate_power_domain_tree(topology_tree);
|
|
|
|
/* Update the CPU limits for each node in psci_non_cpu_pd_nodes */
|
|
psci_update_pwrlvl_limits();
|
|
|
|
/* Populate the mpidr field of cpu node for this CPU */
|
|
psci_cpu_pd_nodes[plat_my_core_pos()].mpidr =
|
|
read_mpidr() & MPIDR_AFFINITY_MASK;
|
|
|
|
psci_init_req_local_pwr_states();
|
|
|
|
/*
|
|
* Set the requested and target state of this CPU and all the higher
|
|
* power domain levels for this CPU to run.
|
|
*/
|
|
psci_set_pwr_domains_to_run(PLAT_MAX_PWR_LVL);
|
|
|
|
plat_setup_psci_ops((uintptr_t)lib_args->mailbox_ep, &psci_plat_pm_ops);
|
|
assert(psci_plat_pm_ops);
|
|
|
|
/*
|
|
* Flush `psci_plat_pm_ops` as it will be accessed by secondary CPUs
|
|
* during warm boot, possibly before data cache is enabled.
|
|
*/
|
|
psci_flush_dcache_range((uintptr_t)&psci_plat_pm_ops,
|
|
sizeof(psci_plat_pm_ops));
|
|
|
|
/* Initialize the psci capability */
|
|
psci_caps = PSCI_GENERIC_CAP;
|
|
|
|
if (psci_plat_pm_ops->pwr_domain_off)
|
|
psci_caps |= define_psci_cap(PSCI_CPU_OFF);
|
|
if (psci_plat_pm_ops->pwr_domain_on &&
|
|
psci_plat_pm_ops->pwr_domain_on_finish)
|
|
psci_caps |= define_psci_cap(PSCI_CPU_ON_AARCH64);
|
|
if (psci_plat_pm_ops->pwr_domain_suspend &&
|
|
psci_plat_pm_ops->pwr_domain_suspend_finish) {
|
|
psci_caps |= define_psci_cap(PSCI_CPU_SUSPEND_AARCH64);
|
|
if (psci_plat_pm_ops->get_sys_suspend_power_state)
|
|
psci_caps |= define_psci_cap(PSCI_SYSTEM_SUSPEND_AARCH64);
|
|
}
|
|
if (psci_plat_pm_ops->system_off)
|
|
psci_caps |= define_psci_cap(PSCI_SYSTEM_OFF);
|
|
if (psci_plat_pm_ops->system_reset)
|
|
psci_caps |= define_psci_cap(PSCI_SYSTEM_RESET);
|
|
if (psci_plat_pm_ops->get_node_hw_state)
|
|
psci_caps |= define_psci_cap(PSCI_NODE_HW_STATE_AARCH64);
|
|
|
|
#if ENABLE_PSCI_STAT
|
|
psci_caps |= define_psci_cap(PSCI_STAT_RESIDENCY_AARCH64);
|
|
psci_caps |= define_psci_cap(PSCI_STAT_COUNT_AARCH64);
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* This duplicates what the primary cpu did after a cold boot in BL1. The same
|
|
* needs to be done when a cpu is hotplugged in. This function could also over-
|
|
* ride any EL3 setup done by BL1 as this code resides in rw memory.
|
|
******************************************************************************/
|
|
void psci_arch_setup(void)
|
|
{
|
|
/* Program the counter frequency */
|
|
write_cntfrq_el0(plat_get_syscnt_freq2());
|
|
|
|
/* Initialize the cpu_ops pointer. */
|
|
init_cpu_ops();
|
|
|
|
/* Having initialized cpu_ops, we can now print errata status */
|
|
print_errata_status();
|
|
}
|
|
|
|
/******************************************************************************
|
|
* PSCI Library interface to initialize the cpu context for the next non
|
|
* secure image during cold boot. The relevant registers in the cpu context
|
|
* need to be retrieved and programmed on return from this interface.
|
|
*****************************************************************************/
|
|
void psci_prepare_next_non_secure_ctx(entry_point_info_t *next_image_info)
|
|
{
|
|
assert(GET_SECURITY_STATE(next_image_info->h.attr) == NON_SECURE);
|
|
cm_init_my_context(next_image_info);
|
|
cm_prepare_el3_exit(NON_SECURE);
|
|
}
|