switch-l4t-atf/bl1/bl1_main.c
Sandrine Bailleux 6c77e74915 Fix some violations to MISRA rule 8.3
Wherever we use 'struct foo' and 'foo_t' interchangeably in a
function's declaration and definition, use 'struct foo' consistently
for both, as per the TF-A coding guidelines [1].

[1] https://github.com/ARM-software/arm-trusted-firmware/wiki/ARM-Trusted-Firmware-Coding-Guidelines#avoid-anonymous-typedefs-of-structsenums-in-header-files

Change-Id: I7998eb24a26746e87e9b6425529926406745b721
Signed-off-by: Sandrine Bailleux <sandrine.bailleux@arm.com>
2018-07-11 17:33:29 +02:00

303 lines
8.6 KiB
C

/*
* Copyright (c) 2013-2018, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <arch.h>
#include <arch_helpers.h>
#include <assert.h>
#include <auth_mod.h>
#include <bl1.h>
#include <bl_common.h>
#include <console.h>
#include <debug.h>
#include <errata_report.h>
#include <platform.h>
#include <platform_def.h>
#include <smccc_helpers.h>
#include <utils.h>
#include <uuid.h>
#include "bl1_private.h"
/* BL1 Service UUID */
DEFINE_SVC_UUID2(bl1_svc_uid,
0xd46739fd, 0xcb72, 0x9a4d, 0xb5, 0x75,
0x67, 0x15, 0xd6, 0xf4, 0xbb, 0x4a);
static void bl1_load_bl2(void);
/*******************************************************************************
* Helper utility to calculate the BL2 memory layout taking into consideration
* the BL1 RW data assuming that it is at the top of the memory layout.
******************************************************************************/
void bl1_calc_bl2_mem_layout(const meminfo_t *bl1_mem_layout,
meminfo_t *bl2_mem_layout)
{
assert(bl1_mem_layout != NULL);
assert(bl2_mem_layout != NULL);
#if LOAD_IMAGE_V2
/*
* Remove BL1 RW data from the scope of memory visible to BL2.
* This is assuming BL1 RW data is at the top of bl1_mem_layout.
*/
assert(BL1_RW_BASE > bl1_mem_layout->total_base);
bl2_mem_layout->total_base = bl1_mem_layout->total_base;
bl2_mem_layout->total_size = BL1_RW_BASE - bl1_mem_layout->total_base;
#else
/* Check that BL1's memory is lying outside of the free memory */
assert((BL1_RAM_LIMIT <= bl1_mem_layout->free_base) ||
(BL1_RAM_BASE >= bl1_mem_layout->free_base +
bl1_mem_layout->free_size));
/* Remove BL1 RW data from the scope of memory visible to BL2 */
*bl2_mem_layout = *bl1_mem_layout;
reserve_mem(&bl2_mem_layout->total_base,
&bl2_mem_layout->total_size,
BL1_RAM_BASE,
BL1_RAM_LIMIT - BL1_RAM_BASE);
#endif /* LOAD_IMAGE_V2 */
flush_dcache_range((unsigned long)bl2_mem_layout, sizeof(meminfo_t));
}
#if !ERROR_DEPRECATED
/*******************************************************************************
* Compatibility default implementation for deprecated API. This has a weak
* definition. Platform specific code can override it if it wishes to.
******************************************************************************/
#pragma weak bl1_init_bl2_mem_layout
/*******************************************************************************
* Function that takes a memory layout into which BL2 has been loaded and
* populates a new memory layout for BL2 that ensures that BL1's data sections
* resident in secure RAM are not visible to BL2.
******************************************************************************/
void bl1_init_bl2_mem_layout(const struct meminfo *bl1_mem_layout,
struct meminfo *bl2_mem_layout)
{
bl1_calc_bl2_mem_layout(bl1_mem_layout, bl2_mem_layout);
}
#endif
/*******************************************************************************
* Function to perform late architectural and platform specific initialization.
* It also queries the platform to load and run next BL image. Only called
* by the primary cpu after a cold boot.
******************************************************************************/
void bl1_main(void)
{
unsigned int image_id;
/* Announce our arrival */
NOTICE(FIRMWARE_WELCOME_STR);
NOTICE("BL1: %s\n", version_string);
NOTICE("BL1: %s\n", build_message);
INFO("BL1: RAM %p - %p\n", (void *)BL1_RAM_BASE,
(void *)BL1_RAM_LIMIT);
print_errata_status();
#if ENABLE_ASSERTIONS
u_register_t val;
/*
* Ensure that MMU/Caches and coherency are turned on
*/
#ifdef AARCH32
val = read_sctlr();
#else
val = read_sctlr_el3();
#endif
assert(val & SCTLR_M_BIT);
assert(val & SCTLR_C_BIT);
assert(val & SCTLR_I_BIT);
/*
* Check that Cache Writeback Granule (CWG) in CTR_EL0 matches the
* provided platform value
*/
val = (read_ctr_el0() >> CTR_CWG_SHIFT) & CTR_CWG_MASK;
/*
* If CWG is zero, then no CWG information is available but we can
* at least check the platform value is less than the architectural
* maximum.
*/
if (val != 0)
assert(CACHE_WRITEBACK_GRANULE == SIZE_FROM_LOG2_WORDS(val));
else
assert(CACHE_WRITEBACK_GRANULE <= MAX_CACHE_LINE_SIZE);
#endif /* ENABLE_ASSERTIONS */
/* Perform remaining generic architectural setup from EL3 */
bl1_arch_setup();
#if TRUSTED_BOARD_BOOT
/* Initialize authentication module */
auth_mod_init();
#endif /* TRUSTED_BOARD_BOOT */
/* Perform platform setup in BL1. */
bl1_platform_setup();
/* Get the image id of next image to load and run. */
image_id = bl1_plat_get_next_image_id();
/*
* We currently interpret any image id other than
* BL2_IMAGE_ID as the start of firmware update.
*/
if (image_id == BL2_IMAGE_ID)
bl1_load_bl2();
else
NOTICE("BL1-FWU: *******FWU Process Started*******\n");
bl1_prepare_next_image(image_id);
console_flush();
}
/*******************************************************************************
* This function locates and loads the BL2 raw binary image in the trusted SRAM.
* Called by the primary cpu after a cold boot.
* TODO: Add support for alternative image load mechanism e.g using virtio/elf
* loader etc.
******************************************************************************/
static void bl1_load_bl2(void)
{
image_desc_t *image_desc;
image_info_t *image_info;
int err;
/* Get the image descriptor */
image_desc = bl1_plat_get_image_desc(BL2_IMAGE_ID);
assert(image_desc);
/* Get the image info */
image_info = &image_desc->image_info;
INFO("BL1: Loading BL2\n");
err = bl1_plat_handle_pre_image_load(BL2_IMAGE_ID);
if (err) {
ERROR("Failure in pre image load handling of BL2 (%d)\n", err);
plat_error_handler(err);
}
#if LOAD_IMAGE_V2
err = load_auth_image(BL2_IMAGE_ID, image_info);
#else
entry_point_info_t *ep_info;
meminfo_t *bl1_tzram_layout;
/* Get the entry point info */
ep_info = &image_desc->ep_info;
/* Find out how much free trusted ram remains after BL1 load */
bl1_tzram_layout = bl1_plat_sec_mem_layout();
/* Load the BL2 image */
err = load_auth_image(bl1_tzram_layout,
BL2_IMAGE_ID,
image_info->image_base,
image_info,
ep_info);
#endif /* LOAD_IMAGE_V2 */
if (err) {
ERROR("Failed to load BL2 firmware.\n");
plat_error_handler(err);
}
/* Allow platform to handle image information. */
err = bl1_plat_handle_post_image_load(BL2_IMAGE_ID);
if (err) {
ERROR("Failure in post image load handling of BL2 (%d)\n", err);
plat_error_handler(err);
}
NOTICE("BL1: Booting BL2\n");
}
/*******************************************************************************
* Function called just before handing over to the next BL to inform the user
* about the boot progress. In debug mode, also print details about the BL
* image's execution context.
******************************************************************************/
void bl1_print_next_bl_ep_info(const entry_point_info_t *bl_ep_info)
{
#ifdef AARCH32
NOTICE("BL1: Booting BL32\n");
#else
NOTICE("BL1: Booting BL31\n");
#endif /* AARCH32 */
print_entry_point_info(bl_ep_info);
}
#if SPIN_ON_BL1_EXIT
void print_debug_loop_message(void)
{
NOTICE("BL1: Debug loop, spinning forever\n");
NOTICE("BL1: Please connect the debugger to continue\n");
}
#endif
/*******************************************************************************
* Top level handler for servicing BL1 SMCs.
******************************************************************************/
register_t bl1_smc_handler(unsigned int smc_fid,
register_t x1,
register_t x2,
register_t x3,
register_t x4,
void *cookie,
void *handle,
unsigned int flags)
{
#if TRUSTED_BOARD_BOOT
/*
* Dispatch FWU calls to FWU SMC handler and return its return
* value
*/
if (is_fwu_fid(smc_fid)) {
return bl1_fwu_smc_handler(smc_fid, x1, x2, x3, x4, cookie,
handle, flags);
}
#endif
switch (smc_fid) {
case BL1_SMC_CALL_COUNT:
SMC_RET1(handle, BL1_NUM_SMC_CALLS);
case BL1_SMC_UID:
SMC_UUID_RET(handle, bl1_svc_uid);
case BL1_SMC_VERSION:
SMC_RET1(handle, BL1_SMC_MAJOR_VER | BL1_SMC_MINOR_VER);
default:
break;
}
WARN("Unimplemented BL1 SMC Call: 0x%x \n", smc_fid);
SMC_RET1(handle, SMC_UNK);
}
/*******************************************************************************
* BL1 SMC wrapper. This function is only used in AArch32 mode to ensure ABI
* compliance when invoking bl1_smc_handler.
******************************************************************************/
register_t bl1_smc_wrapper(uint32_t smc_fid,
void *cookie,
void *handle,
unsigned int flags)
{
register_t x1, x2, x3, x4;
assert(handle);
get_smc_params_from_ctx(handle, x1, x2, x3, x4);
return bl1_smc_handler(smc_fid, x1, x2, x3, x4, cookie, handle, flags);
}