Sandrine Bailleux a37255a205 Make the memory layout more flexible
Currently the platform code gets to define the base address of each
boot loader image. However, the linker scripts couteract this
flexibility by enforcing a fixed overall layout of the different
images. For example, they require that the BL3-1 image sits below
the BL2 image. Choosing BL3-1 and BL2 base addresses in such a way
that it violates this constraint makes the build fail at link-time.

This patch requires the platform code to now define a limit address
for each image. The linker scripts check that the image fits within
these bounds so they don't rely anymore on the position of a given
image in regard to the others.

Fixes ARM-software/tf-issues#163

Change-Id: I8c108646825da19a6a8dfb091b613e1dd4ae133c
2014-05-23 11:05:44 +01:00

124 lines
4.0 KiB
ArmAsm

/*
* Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* Neither the name of ARM nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <platform.h>
OUTPUT_FORMAT(PLATFORM_LINKER_FORMAT)
OUTPUT_ARCH(PLATFORM_LINKER_ARCH)
ENTRY(tsp_entrypoint)
MEMORY {
RAM (rwx): ORIGIN = TSP_SEC_MEM_BASE, LENGTH = TSP_SEC_MEM_SIZE
}
SECTIONS
{
. = BL32_BASE;
ASSERT(. == ALIGN(4096),
"BL32_BASE address is not aligned on a page boundary.")
ro . : {
__RO_START__ = .;
*tsp_entrypoint.o(.text*)
*(.text*)
*(.rodata*)
*(.vectors)
__RO_END_UNALIGNED__ = .;
/*
* Memory page(s) mapped to this section will be marked as
* read-only, executable. No RW data from the next section must
* creep in. Ensure the rest of the current memory page is unused.
*/
. = NEXT(4096);
__RO_END__ = .;
} >RAM
.data . : {
__DATA_START__ = .;
*(.data*)
__DATA_END__ = .;
} >RAM
stacks (NOLOAD) : {
__STACKS_START__ = .;
*(tzfw_normal_stacks)
__STACKS_END__ = .;
} >RAM
/*
* The .bss section gets initialised to 0 at runtime.
* Its base address must be 16-byte aligned.
*/
.bss : ALIGN(16) {
__BSS_START__ = .;
*(SORT_BY_ALIGNMENT(.bss*))
*(COMMON)
__BSS_END__ = .;
} >RAM
/*
* The xlat_table section is for full, aligned page tables (4K).
* Removing them from .bss avoids forcing 4K alignment on
* the .bss section and eliminates the unecessary zero init
*/
xlat_table (NOLOAD) : {
*(xlat_table)
} >RAM
/*
* The base address of the coherent memory section must be page-aligned (4K)
* to guarantee that the coherent data are stored on their own pages and
* are not mixed with normal data. This is required to set up the correct
* memory attributes for the coherent data page tables.
*/
coherent_ram (NOLOAD) : ALIGN(4096) {
__COHERENT_RAM_START__ = .;
*(tzfw_coherent_mem)
__COHERENT_RAM_END_UNALIGNED__ = .;
/*
* Memory page(s) mapped to this section will be marked
* as device memory. No other unexpected data must creep in.
* Ensure the rest of the current memory page is unused.
*/
. = NEXT(4096);
__COHERENT_RAM_END__ = .;
} >RAM
__BL32_END__ = .;
__BSS_SIZE__ = SIZEOF(.bss);
__COHERENT_RAM_UNALIGNED_SIZE__ =
__COHERENT_RAM_END_UNALIGNED__ - __COHERENT_RAM_START__;
ASSERT(. <= BL32_LIMIT, "BL3-2 image has exceeded its limit.")
}