/* Unicorn Emulator Engine */ /* By Nguyen Anh Quynh & Dang Hoang Vu, 2015 */ /* Sample code to demonstrate how to emulate X86 code */ // windows specific #ifdef _MSC_VER #include #include #define PRIx64 "llX" #ifdef DYNLOAD #include "unicorn_dynload.h" #else // DYNLOAD #include #ifdef _WIN64 #pragma comment(lib, "unicorn_staload64.lib") #else // _WIN64 #pragma comment(lib, "unicorn_staload.lib") #endif // _WIN64 #endif // DYNLOAD // posix specific #else // _MSC_VER #include #include #include #endif // _MSC_VER // common includes #include // code to be emulated #define X86_CODE32 "\x41\x4a" // INC ecx; DEC edx #define X86_CODE32_JUMP "\xeb\x02\x90\x90\x90\x90\x90\x90" // jmp 4; nop; nop; nop; nop; nop; nop // #define X86_CODE32_SELF "\xeb\x1c\x5a\x89\xd6\x8b\x02\x66\x3d\xca\x7d\x75\x06\x66\x05\x03\x03\x89\x02\xfe\xc2\x3d\x41\x41\x41\x41\x75\xe9\xff\xe6\xe8\xdf\xff\xff\xff\x31\xd2\x6a\x0b\x58\x99\x52\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x52\x53\x89\xe1\xca\x7d\x41\x41\x41\x41" //#define X86_CODE32 "\x51\x51\x51\x51" // PUSH ecx; #define X86_CODE32_LOOP "\x41\x4a\xeb\xfe" // INC ecx; DEC edx; JMP self-loop #define X86_CODE32_MEM_WRITE "\x89\x0D\xAA\xAA\xAA\xAA\x41\x4a" // mov [0xaaaaaaaa], ecx; INC ecx; DEC edx #define X86_CODE32_MEM_READ "\x8B\x0D\xAA\xAA\xAA\xAA\x41\x4a" // mov ecx,[0xaaaaaaaa]; INC ecx; DEC edx #define X86_CODE32_JMP_INVALID "\xe9\xe9\xee\xee\xee\x41\x4a" // JMP outside; INC ecx; DEC edx #define X86_CODE32_INOUT "\x41\xE4\x3F\x4a\xE6\x46\x43" // INC ecx; IN AL, 0x3f; DEC edx; OUT 0x46, AL; INC ebx //#define X86_CODE64 "\x41\xBC\x3B\xB0\x28\x2A \x49\x0F\xC9 \x90 \x4D\x0F\xAD\xCF\x49\x87\xFD\x90\x48\x81\xD2\x8A\xCE\x77\x35\x48\xF7\xD9" // <== still crash //#define X86_CODE64 "\x41\xBC\x3B\xB0\x28\x2A\x49\x0F\xC9\x90\x4D\x0F\xAD\xCF\x49\x87\xFD\x90\x48\x81\xD2\x8A\xCE\x77\x35\x48\xF7\xD9" #define X86_CODE64 "\x41\xBC\x3B\xB0\x28\x2A\x49\x0F\xC9\x90\x4D\x0F\xAD\xCF\x49\x87\xFD\x90\x48\x81\xD2\x8A\xCE\x77\x35\x48\xF7\xD9\x4D\x29\xF4\x49\x81\xC9\xF6\x8A\xC6\x53\x4D\x87\xED\x48\x0F\xAD\xD2\x49\xF7\xD4\x48\xF7\xE1\x4D\x19\xC5\x4D\x89\xC5\x48\xF7\xD6\x41\xB8\x4F\x8D\x6B\x59\x4D\x87\xD0\x68\x6A\x1E\x09\x3C\x59" #define X86_CODE16 "\x00\x00" // add byte ptr [bx + si], al #define X86_CODE64_SYSCALL "\x0f\x05" // SYSCALL // memory address where emulation starts #define ADDRESS 0x1000000 // callback for tracing basic blocks static void hook_block(uc_engine *uc, uint64_t address, uint32_t size, void *user_data) { printf(">>> Tracing basic block at 0x%"PRIx64 ", block size = 0x%x\n", address, size); } // callback for tracing instruction static void hook_code(uc_engine *uc, uint64_t address, uint32_t size, void *user_data) { int eflags; printf(">>> Tracing instruction at 0x%"PRIx64 ", instruction size = 0x%x\n", address, size); uc_reg_read(uc, UC_X86_REG_EFLAGS, &eflags); printf(">>> --- EFLAGS is 0x%x\n", eflags); // Uncomment below code to stop the emulation using uc_emu_stop() // if (address == 0x1000009) // uc_emu_stop(uc); } // callback for tracing instruction static void hook_code64(uc_engine *uc, uint64_t address, uint32_t size, void *user_data) { uint64_t rip; uc_reg_read(uc, UC_X86_REG_RIP, &rip); printf(">>> Tracing instruction at 0x%"PRIx64 ", instruction size = 0x%x\n", address, size); printf(">>> RIP is 0x%"PRIx64 "\n", rip); // Uncomment below code to stop the emulation using uc_emu_stop() // if (address == 0x1000009) // uc_emu_stop(uc); } // callback for tracing memory access (READ or WRITE) static bool hook_mem_invalid(uc_engine *uc, uc_mem_type type, uint64_t address, int size, int64_t value, void *user_data) { switch(type) { default: // return false to indicate we want to stop emulation return false; case UC_MEM_WRITE_UNMAPPED: printf(">>> Missing memory is being WRITE at 0x%"PRIx64 ", data size = %u, data value = 0x%"PRIx64 "\n", address, size, value); // map this memory in with 2MB in size uc_mem_map(uc, 0xaaaa0000, 2 * 1024*1024, UC_PROT_ALL); // return true to indicate we want to continue return true; } } static void hook_mem64(uc_engine *uc, uc_mem_type type, uint64_t address, int size, int64_t value, void *user_data) { switch(type) { default: break; case UC_MEM_READ: printf(">>> Memory is being READ at 0x%"PRIx64 ", data size = %u\n", address, size); break; case UC_MEM_WRITE: printf(">>> Memory is being WRITE at 0x%"PRIx64 ", data size = %u, data value = 0x%"PRIx64 "\n", address, size, value); break; } } // callback for IN instruction (X86). // this returns the data read from the port static uint32_t hook_in(uc_engine *uc, uint32_t port, int size, void *user_data) { uint32_t eip; uc_reg_read(uc, UC_X86_REG_EIP, &eip); printf("--- reading from port 0x%x, size: %u, address: 0x%x\n", port, size, eip); switch(size) { default: return 0; // should never reach this case 1: // read 1 byte to AL return 0xf1; case 2: // read 2 byte to AX return 0xf2; break; case 4: // read 4 byte to EAX return 0xf4; } } // callback for OUT instruction (X86). static void hook_out(uc_engine *uc, uint32_t port, int size, uint32_t value, void *user_data) { uint32_t tmp; uint32_t eip; uc_reg_read(uc, UC_X86_REG_EIP, &eip); printf("--- writing to port 0x%x, size: %u, value: 0x%x, address: 0x%x\n", port, size, value, eip); // confirm that value is indeed the value of AL/AX/EAX switch(size) { default: return; // should never reach this case 1: uc_reg_read(uc, UC_X86_REG_AL, &tmp); break; case 2: uc_reg_read(uc, UC_X86_REG_AX, &tmp); break; case 4: uc_reg_read(uc, UC_X86_REG_EAX, &tmp); break; } printf("--- register value = 0x%x\n", tmp); } // callback for SYSCALL instruction (X86). static void hook_syscall(uc_engine *uc, void *user_data) { uint64_t rax; uc_reg_read(uc, UC_X86_REG_RAX, &rax); if (rax == 0x100) { rax = 0x200; uc_reg_write(uc, UC_X86_REG_RAX, &rax); } else printf("ERROR: was not expecting rax=0x%"PRIx64 " in syscall\n", rax); } static void test_i386(void) { uc_engine *uc; uc_err err; uint32_t tmp; uc_hook trace1, trace2; int r_ecx = 0x1234; // ECX register int r_edx = 0x7890; // EDX register printf("Emulate i386 code\n"); // Initialize emulator in X86-32bit mode err = uc_open(UC_ARCH_X86, UC_MODE_32, &uc); if (err) { printf("Failed on uc_open() with error returned: %u\n", err); return; } // map 2MB memory for this emulation uc_mem_map(uc, ADDRESS, 2 * 1024 * 1024, UC_PROT_ALL); // write machine code to be emulated to memory if (uc_mem_write(uc, ADDRESS, X86_CODE32, sizeof(X86_CODE32) - 1)) { printf("Failed to write emulation code to memory, quit!\n"); return; } // initialize machine registers uc_reg_write(uc, UC_X86_REG_ECX, &r_ecx); uc_reg_write(uc, UC_X86_REG_EDX, &r_edx); // tracing all basic blocks with customized callback uc_hook_add(uc, &trace1, UC_HOOK_BLOCK, hook_block, NULL, (uint64_t)1, (uint64_t)0); // tracing all instruction by having @begin > @end uc_hook_add(uc, &trace2, UC_HOOK_CODE, hook_code, NULL, (uint64_t)1, (uint64_t)0); // emulate machine code in infinite time err = uc_emu_start(uc, ADDRESS, ADDRESS + sizeof(X86_CODE32) - 1, 0, 0); if (err) { printf("Failed on uc_emu_start() with error returned %u: %s\n", err, uc_strerror(err)); } // now print out some registers printf(">>> Emulation done. Below is the CPU context\n"); uc_reg_read(uc, UC_X86_REG_ECX, &r_ecx); uc_reg_read(uc, UC_X86_REG_EDX, &r_edx); printf(">>> ECX = 0x%x\n", r_ecx); printf(">>> EDX = 0x%x\n", r_edx); // read from memory if (!uc_mem_read(uc, ADDRESS, &tmp, sizeof(tmp))) printf(">>> Read 4 bytes from [0x%x] = 0x%x\n", ADDRESS, tmp); else printf(">>> Failed to read 4 bytes from [0x%x]\n", ADDRESS); uc_close(uc); } static void test_i386_jump(void) { uc_engine *uc; uc_err err; uc_hook trace1, trace2; printf("===================================\n"); printf("Emulate i386 code with jump\n"); // Initialize emulator in X86-32bit mode err = uc_open(UC_ARCH_X86, UC_MODE_32, &uc); if (err) { printf("Failed on uc_open() with error returned: %u\n", err); return; } // map 2MB memory for this emulation uc_mem_map(uc, ADDRESS, 2 * 1024 * 1024, UC_PROT_ALL); // write machine code to be emulated to memory if (uc_mem_write(uc, ADDRESS, X86_CODE32_JUMP, sizeof(X86_CODE32_JUMP) - 1)) { printf("Failed to write emulation code to memory, quit!\n"); return; } // tracing 1 basic block with customized callback uc_hook_add(uc, &trace1, UC_HOOK_BLOCK, hook_block, NULL, (uint64_t)ADDRESS, (uint64_t)ADDRESS); // tracing 1 instruction at ADDRESS uc_hook_add(uc, &trace2, UC_HOOK_CODE, hook_code, NULL, (uint64_t)ADDRESS, (uint64_t)ADDRESS); // emulate machine code in infinite time err = uc_emu_start(uc, ADDRESS, ADDRESS + sizeof(X86_CODE32_JUMP) - 1, 0, 0); if (err) { printf("Failed on uc_emu_start() with error returned %u: %s\n", err, uc_strerror(err)); } printf(">>> Emulation done. Below is the CPU context\n"); uc_close(uc); } // emulate code that loop forever static void test_i386_loop(void) { uc_engine *uc; uc_err err; int r_ecx = 0x1234; // ECX register int r_edx = 0x7890; // EDX register printf("===================================\n"); printf("Emulate i386 code that loop forever\n"); // Initialize emulator in X86-32bit mode err = uc_open(UC_ARCH_X86, UC_MODE_32, &uc); if (err) { printf("Failed on uc_open() with error returned: %u\n", err); return; } // map 2MB memory for this emulation uc_mem_map(uc, ADDRESS, 2 * 1024 * 1024, UC_PROT_ALL); // write machine code to be emulated to memory if (uc_mem_write(uc, ADDRESS, X86_CODE32_LOOP, sizeof(X86_CODE32_LOOP) - 1)) { printf("Failed to write emulation code to memory, quit!\n"); return; } // initialize machine registers uc_reg_write(uc, UC_X86_REG_ECX, &r_ecx); uc_reg_write(uc, UC_X86_REG_EDX, &r_edx); // emulate machine code in 2 seconds, so we can quit even // if the code loops err = uc_emu_start(uc, ADDRESS, ADDRESS + sizeof(X86_CODE32_LOOP) - 1, 2 * UC_SECOND_SCALE, 0); if (err) { printf("Failed on uc_emu_start() with error returned %u: %s\n", err, uc_strerror(err)); } // now print out some registers printf(">>> Emulation done. Below is the CPU context\n"); uc_reg_read(uc, UC_X86_REG_ECX, &r_ecx); uc_reg_read(uc, UC_X86_REG_EDX, &r_edx); printf(">>> ECX = 0x%x\n", r_ecx); printf(">>> EDX = 0x%x\n", r_edx); uc_close(uc); } // emulate code that read invalid memory static void test_i386_invalid_mem_read(void) { uc_engine *uc; uc_err err; uc_hook trace1, trace2; int r_ecx = 0x1234; // ECX register int r_edx = 0x7890; // EDX register printf("===================================\n"); printf("Emulate i386 code that read from invalid memory\n"); // Initialize emulator in X86-32bit mode err = uc_open(UC_ARCH_X86, UC_MODE_32, &uc); if (err) { printf("Failed on uc_open() with error returned: %u\n", err); return; } // map 2MB memory for this emulation uc_mem_map(uc, ADDRESS, 2 * 1024 * 1024, UC_PROT_ALL); // write machine code to be emulated to memory if (uc_mem_write(uc, ADDRESS, X86_CODE32_MEM_READ, sizeof(X86_CODE32_MEM_READ) - 1)) { printf("Failed to write emulation code to memory, quit!\n"); return; } // initialize machine registers uc_reg_write(uc, UC_X86_REG_ECX, &r_ecx); uc_reg_write(uc, UC_X86_REG_EDX, &r_edx); // tracing all basic blocks with customized callback uc_hook_add(uc, &trace1, UC_HOOK_BLOCK, hook_block, NULL, (uint64_t)1, (uint64_t)0); // tracing all instruction by having @begin > @end uc_hook_add(uc, &trace2, UC_HOOK_CODE, hook_code, NULL, (uint64_t)1, (uint64_t)0); // emulate machine code in infinite time err = uc_emu_start(uc, ADDRESS, ADDRESS + sizeof(X86_CODE32_MEM_READ) - 1, 0, 0); if (err) { printf("Failed on uc_emu_start() with error returned %u: %s\n", err, uc_strerror(err)); } // now print out some registers printf(">>> Emulation done. Below is the CPU context\n"); uc_reg_read(uc, UC_X86_REG_ECX, &r_ecx); uc_reg_read(uc, UC_X86_REG_EDX, &r_edx); printf(">>> ECX = 0x%x\n", r_ecx); printf(">>> EDX = 0x%x\n", r_edx); uc_close(uc); } // emulate code that read invalid memory static void test_i386_invalid_mem_write(void) { uc_engine *uc; uc_err err; uc_hook trace1, trace2, trace3; uint32_t tmp; int r_ecx = 0x1234; // ECX register int r_edx = 0x7890; // EDX register printf("===================================\n"); printf("Emulate i386 code that write to invalid memory\n"); // Initialize emulator in X86-32bit mode err = uc_open(UC_ARCH_X86, UC_MODE_32, &uc); if (err) { printf("Failed on uc_open() with error returned: %u\n", err); return; } // map 2MB memory for this emulation uc_mem_map(uc, ADDRESS, 2 * 1024 * 1024, UC_PROT_ALL); // write machine code to be emulated to memory if (uc_mem_write(uc, ADDRESS, X86_CODE32_MEM_WRITE, sizeof(X86_CODE32_MEM_WRITE) - 1)) { printf("Failed to write emulation code to memory, quit!\n"); return; } // initialize machine registers uc_reg_write(uc, UC_X86_REG_ECX, &r_ecx); uc_reg_write(uc, UC_X86_REG_EDX, &r_edx); // tracing all basic blocks with customized callback uc_hook_add(uc, &trace1, UC_HOOK_BLOCK, hook_block, NULL, (uint64_t)1, (uint64_t)0); // tracing all instruction by having @begin > @end uc_hook_add(uc, &trace2, UC_HOOK_CODE, hook_code, NULL, (uint64_t)1, (uint64_t)0); // intercept invalid memory events uc_hook_add(uc, &trace3, UC_HOOK_MEM_READ_UNMAPPED | UC_HOOK_MEM_WRITE_UNMAPPED, hook_mem_invalid, NULL); // emulate machine code in infinite time err = uc_emu_start(uc, ADDRESS, ADDRESS + sizeof(X86_CODE32_MEM_WRITE) - 1, 0, 0); if (err) { printf("Failed on uc_emu_start() with error returned %u: %s\n", err, uc_strerror(err)); } // now print out some registers printf(">>> Emulation done. Below is the CPU context\n"); uc_reg_read(uc, UC_X86_REG_ECX, &r_ecx); uc_reg_read(uc, UC_X86_REG_EDX, &r_edx); printf(">>> ECX = 0x%x\n", r_ecx); printf(">>> EDX = 0x%x\n", r_edx); // read from memory if (!uc_mem_read(uc, 0xaaaaaaaa, &tmp, sizeof(tmp))) printf(">>> Read 4 bytes from [0x%x] = 0x%x\n", 0xaaaaaaaa, tmp); else printf(">>> Failed to read 4 bytes from [0x%x]\n", 0xffffffaa); if (!uc_mem_read(uc, 0xffffffaa, &tmp, sizeof(tmp))) printf(">>> Read 4 bytes from [0x%x] = 0x%x\n", 0xffffffaa, tmp); else printf(">>> Failed to read 4 bytes from [0x%x]\n", 0xffffffaa); uc_close(uc); } // emulate code that jump to invalid memory static void test_i386_jump_invalid(void) { uc_engine *uc; uc_err err; uc_hook trace1, trace2; int r_ecx = 0x1234; // ECX register int r_edx = 0x7890; // EDX register printf("===================================\n"); printf("Emulate i386 code that jumps to invalid memory\n"); // Initialize emulator in X86-32bit mode err = uc_open(UC_ARCH_X86, UC_MODE_32, &uc); if (err) { printf("Failed on uc_open() with error returned: %u\n", err); return; } // map 2MB memory for this emulation uc_mem_map(uc, ADDRESS, 2 * 1024 * 1024, UC_PROT_ALL); // write machine code to be emulated to memory if (uc_mem_write(uc, ADDRESS, X86_CODE32_JMP_INVALID, sizeof(X86_CODE32_JMP_INVALID) - 1)) { printf("Failed to write emulation code to memory, quit!\n"); return; } // initialize machine registers uc_reg_write(uc, UC_X86_REG_ECX, &r_ecx); uc_reg_write(uc, UC_X86_REG_EDX, &r_edx); // tracing all basic blocks with customized callback uc_hook_add(uc, &trace1, UC_HOOK_BLOCK, hook_block, NULL, (uint64_t)1, (uint64_t)0); // tracing all instructions by having @begin > @end uc_hook_add(uc, &trace2, UC_HOOK_CODE, hook_code, NULL, (uint64_t)1, (uint64_t)0); // emulate machine code in infinite time err = uc_emu_start(uc, ADDRESS, ADDRESS + sizeof(X86_CODE32_JMP_INVALID) - 1, 0, 0); if (err) { printf("Failed on uc_emu_start() with error returned %u: %s\n", err, uc_strerror(err)); } // now print out some registers printf(">>> Emulation done. Below is the CPU context\n"); uc_reg_read(uc, UC_X86_REG_ECX, &r_ecx); uc_reg_read(uc, UC_X86_REG_EDX, &r_edx); printf(">>> ECX = 0x%x\n", r_ecx); printf(">>> EDX = 0x%x\n", r_edx); uc_close(uc); } static void test_i386_inout(void) { uc_engine *uc; uc_err err; uc_hook trace1, trace2, trace3, trace4; int r_eax = 0x1234; // EAX register int r_ecx = 0x6789; // ECX register printf("===================================\n"); printf("Emulate i386 code with IN/OUT instructions\n"); // Initialize emulator in X86-32bit mode err = uc_open(UC_ARCH_X86, UC_MODE_32, &uc); if (err) { printf("Failed on uc_open() with error returned: %u\n", err); return; } // map 2MB memory for this emulation uc_mem_map(uc, ADDRESS, 2 * 1024 * 1024, UC_PROT_ALL); // write machine code to be emulated to memory if (uc_mem_write(uc, ADDRESS, X86_CODE32_INOUT, sizeof(X86_CODE32_INOUT) - 1)) { printf("Failed to write emulation code to memory, quit!\n"); return; } // initialize machine registers uc_reg_write(uc, UC_X86_REG_EAX, &r_eax); uc_reg_write(uc, UC_X86_REG_ECX, &r_ecx); // tracing all basic blocks with customized callback uc_hook_add(uc, &trace1, UC_HOOK_BLOCK, hook_block, NULL, (uint64_t)1, (uint64_t)0); // tracing all instructions uc_hook_add(uc, &trace2, UC_HOOK_CODE, hook_code, NULL, (uint64_t)1, (uint64_t)0); // uc IN instruction uc_hook_add(uc, &trace3, UC_HOOK_INSN, hook_in, NULL, UC_X86_INS_IN); // uc OUT instruction uc_hook_add(uc, &trace4, UC_HOOK_INSN, hook_out, NULL, UC_X86_INS_OUT); // emulate machine code in infinite time err = uc_emu_start(uc, ADDRESS, ADDRESS + sizeof(X86_CODE32_INOUT) - 1, 0, 0); if (err) { printf("Failed on uc_emu_start() with error returned %u: %s\n", err, uc_strerror(err)); } // now print out some registers printf(">>> Emulation done. Below is the CPU context\n"); uc_reg_read(uc, UC_X86_REG_EAX, &r_eax); uc_reg_read(uc, UC_X86_REG_ECX, &r_ecx); printf(">>> EAX = 0x%x\n", r_eax); printf(">>> ECX = 0x%x\n", r_ecx); uc_close(uc); } static void test_x86_64(void) { uc_engine *uc; uc_err err; uc_hook trace1, trace2, trace3, trace4; int64_t rax = 0x71f3029efd49d41d; int64_t rbx = 0xd87b45277f133ddb; int64_t rcx = 0xab40d1ffd8afc461; int64_t rdx = 0x919317b4a733f01; int64_t rsi = 0x4c24e753a17ea358; int64_t rdi = 0xe509a57d2571ce96; int64_t r8 = 0xea5b108cc2b9ab1f; int64_t r9 = 0x19ec097c8eb618c1; int64_t r10 = 0xec45774f00c5f682; int64_t r11 = 0xe17e9dbec8c074aa; int64_t r12 = 0x80f86a8dc0f6d457; int64_t r13 = 0x48288ca5671c5492; int64_t r14 = 0x595f72f6e4017f6e; int64_t r15 = 0x1efd97aea331cccc; int64_t rsp = ADDRESS + 0x200000; printf("Emulate x86_64 code\n"); // Initialize emulator in X86-64bit mode err = uc_open(UC_ARCH_X86, UC_MODE_64, &uc); if (err) { printf("Failed on uc_open() with error returned: %u\n", err); return; } // map 2MB memory for this emulation uc_mem_map(uc, ADDRESS, 2 * 1024 * 1024, UC_PROT_ALL); // write machine code to be emulated to memory if (uc_mem_write(uc, ADDRESS, X86_CODE64, sizeof(X86_CODE64) - 1)) { printf("Failed to write emulation code to memory, quit!\n"); return; } // initialize machine registers uc_reg_write(uc, UC_X86_REG_RSP, &rsp); uc_reg_write(uc, UC_X86_REG_RAX, &rax); uc_reg_write(uc, UC_X86_REG_RBX, &rbx); uc_reg_write(uc, UC_X86_REG_RCX, &rcx); uc_reg_write(uc, UC_X86_REG_RDX, &rdx); uc_reg_write(uc, UC_X86_REG_RSI, &rsi); uc_reg_write(uc, UC_X86_REG_RDI, &rdi); uc_reg_write(uc, UC_X86_REG_R8, &r8); uc_reg_write(uc, UC_X86_REG_R9, &r9); uc_reg_write(uc, UC_X86_REG_R10, &r10); uc_reg_write(uc, UC_X86_REG_R11, &r11); uc_reg_write(uc, UC_X86_REG_R12, &r12); uc_reg_write(uc, UC_X86_REG_R13, &r13); uc_reg_write(uc, UC_X86_REG_R14, &r14); uc_reg_write(uc, UC_X86_REG_R15, &r15); // tracing all basic blocks with customized callback uc_hook_add(uc, &trace1, UC_HOOK_BLOCK, hook_block, NULL, (uint64_t)1, (uint64_t)0); // tracing all instructions in the range [ADDRESS, ADDRESS+20] uc_hook_add(uc, &trace2, UC_HOOK_CODE, hook_code64, NULL, (uint64_t)ADDRESS, (uint64_t)(ADDRESS+20)); // tracing all memory WRITE access (with @begin > @end) uc_hook_add(uc, &trace3, UC_HOOK_MEM_WRITE, hook_mem64, NULL, (uint64_t)1, (uint64_t)0); // tracing all memory READ access (with @begin > @end) uc_hook_add(uc, &trace4, UC_HOOK_MEM_READ, hook_mem64, NULL, (uint64_t)1, (uint64_t)0); // emulate machine code in infinite time (last param = 0), or when // finishing all the code. err = uc_emu_start(uc, ADDRESS, ADDRESS + sizeof(X86_CODE64) - 1, 0, 0); if (err) { printf("Failed on uc_emu_start() with error returned %u: %s\n", err, uc_strerror(err)); } // now print out some registers printf(">>> Emulation done. Below is the CPU context\n"); uc_reg_read(uc, UC_X86_REG_RAX, &rax); uc_reg_read(uc, UC_X86_REG_RBX, &rbx); uc_reg_read(uc, UC_X86_REG_RCX, &rcx); uc_reg_read(uc, UC_X86_REG_RDX, &rdx); uc_reg_read(uc, UC_X86_REG_RSI, &rsi); uc_reg_read(uc, UC_X86_REG_RDI, &rdi); uc_reg_read(uc, UC_X86_REG_R8, &r8); uc_reg_read(uc, UC_X86_REG_R9, &r9); uc_reg_read(uc, UC_X86_REG_R10, &r10); uc_reg_read(uc, UC_X86_REG_R11, &r11); uc_reg_read(uc, UC_X86_REG_R12, &r12); uc_reg_read(uc, UC_X86_REG_R13, &r13); uc_reg_read(uc, UC_X86_REG_R14, &r14); uc_reg_read(uc, UC_X86_REG_R15, &r15); printf(">>> RAX = 0x%" PRIx64 "\n", rax); printf(">>> RBX = 0x%" PRIx64 "\n", rbx); printf(">>> RCX = 0x%" PRIx64 "\n", rcx); printf(">>> RDX = 0x%" PRIx64 "\n", rdx); printf(">>> RSI = 0x%" PRIx64 "\n", rsi); printf(">>> RDI = 0x%" PRIx64 "\n", rdi); printf(">>> R8 = 0x%" PRIx64 "\n", r8); printf(">>> R9 = 0x%" PRIx64 "\n", r9); printf(">>> R10 = 0x%" PRIx64 "\n", r10); printf(">>> R11 = 0x%" PRIx64 "\n", r11); printf(">>> R12 = 0x%" PRIx64 "\n", r12); printf(">>> R13 = 0x%" PRIx64 "\n", r13); printf(">>> R14 = 0x%" PRIx64 "\n", r14); printf(">>> R15 = 0x%" PRIx64 "\n", r15); uc_close(uc); } static void test_x86_64_syscall(void) { uc_engine *uc; uc_hook trace1; uc_err err; int64_t rax = 0x100; printf("===================================\n"); printf("Emulate x86_64 code with 'syscall' instruction\n"); // Initialize emulator in X86-64bit mode err = uc_open(UC_ARCH_X86, UC_MODE_64, &uc); if (err) { printf("Failed on uc_open() with error returned: %u\n", err); return; } // map 2MB memory for this emulation uc_mem_map(uc, ADDRESS, 2 * 1024 * 1024, UC_PROT_ALL); // write machine code to be emulated to memory if (uc_mem_write(uc, ADDRESS, X86_CODE64_SYSCALL, sizeof(X86_CODE64_SYSCALL) - 1)) { printf("Failed to write emulation code to memory, quit!\n"); return; } // hook interrupts for syscall uc_hook_add(uc, &trace1, UC_HOOK_INSN, hook_syscall, NULL, UC_X86_INS_SYSCALL); // initialize machine registers uc_reg_write(uc, UC_X86_REG_RAX, &rax); // emulate machine code in infinite time (last param = 0), or when // finishing all the code. err = uc_emu_start(uc, ADDRESS, ADDRESS + sizeof(X86_CODE64_SYSCALL) - 1, 0, 0); if (err) { printf("Failed on uc_emu_start() with error returned %u: %s\n", err, uc_strerror(err)); } // now print out some registers printf(">>> Emulation done. Below is the CPU context\n"); uc_reg_read(uc, UC_X86_REG_RAX, &rax); printf(">>> RAX = 0x%" PRIx64 "\n", rax); uc_close(uc); } static void test_x86_16(void) { uc_engine *uc; uc_err err; uint8_t tmp; int32_t eax = 7; int32_t ebx = 5; int32_t esi = 6; printf("Emulate x86 16-bit code\n"); // Initialize emulator in X86-16bit mode err = uc_open(UC_ARCH_X86, UC_MODE_16, &uc); if (err) { printf("Failed on uc_open() with error returned: %u\n", err); return; } // map 8KB memory for this emulation uc_mem_map(uc, 0, 8 * 1024, UC_PROT_ALL); // write machine code to be emulated to memory if (uc_mem_write(uc, 0, X86_CODE16, sizeof(X86_CODE64) - 1)) { printf("Failed to write emulation code to memory, quit!\n"); return; } // initialize machine registers uc_reg_write(uc, UC_X86_REG_EAX, &eax); uc_reg_write(uc, UC_X86_REG_EBX, &ebx); uc_reg_write(uc, UC_X86_REG_ESI, &esi); // emulate machine code in infinite time (last param = 0), or when // finishing all the code. err = uc_emu_start(uc, 0, sizeof(X86_CODE16) - 1, 0, 0); if (err) { printf("Failed on uc_emu_start() with error returned %u: %s\n", err, uc_strerror(err)); } // now print out some registers printf(">>> Emulation done. Below is the CPU context\n"); // read from memory if (!uc_mem_read(uc, 11, &tmp, 1)) printf(">>> Read 1 bytes from [0x%x] = 0x%x\n", 11, tmp); else printf(">>> Failed to read 1 bytes from [0x%x]\n", 11); uc_close(uc); } int main(int argc, char **argv, char **envp) { // dynamically load shared library #ifdef DYNLOAD if (!uc_dyn_load(NULL, 0)) { printf("Error dynamically loading shared library.\n"); printf("Please check that unicorn.dll/unicorn.so is available as well as\n"); printf("any other dependent dll/so files.\n"); printf("The easiest way is to place them in the same directory as this app.\n"); return 1; } #endif if (argc == 2) { if (!strcmp(argv[1], "-32")) { test_i386(); test_i386_inout(); test_i386_jump(); test_i386_loop(); test_i386_invalid_mem_read(); test_i386_invalid_mem_write(); test_i386_jump_invalid(); } if (!strcmp(argv[1], "-64")) { test_x86_64(); test_x86_64_syscall(); } if (!strcmp(argv[1], "-16")) { test_x86_16(); } // test memleak if (!strcmp(argv[1], "-0")) { while(1) { test_i386(); // test_x86_64(); } } } else { printf("Syntax: %s <-16|-32|-64>\n", argv[0]); } // dynamically free shared library #ifdef DYNLOAD uc_dyn_free(); #endif return 0; }