box64/rebuild_wrappers.py

1711 lines
65 KiB
Python
Executable File

#!/usr/bin/env python3
import os
import sys
try:
assert(sys.version_info.major == 3)
if sys.version_info.minor >= 9:
# Python 3.9+
from typing import Generic, NewType, Optional, TypeVar, Union, final
from collections.abc import Iterable
Dict = dict
List = list
Tuple = tuple
elif sys.version_info.minor >= 8:
# Python [3.8, 3.9)
from typing import Dict, List, Tuple, Generic, Iterable, NewType, Optional, TypeVar, Union, final
elif (sys.version_info.minor >= 5) and (sys.version_info.micro >= 2):
# Python [3.5.2, 3.8)
from typing import Dict, List, Tuple, Generic, Iterable, NewType, Optional, TypeVar, Union
final = lambda fun: fun # type: ignore
elif sys.version_info.minor >= 5:
# Python [3.5, 3.5.2)
from typing import Dict, List, Tuple, Generic, Iterable, Optional, TypeVar, Union
class GTDummy:
def __getitem__(self, _): return self
final = lambda fun: fun # type: ignore
def NewType(_, b): return b # type: ignore
else:
# Python < 3.5
#print("Your Python version does not have the typing module, fallback to empty 'types'")
# Dummies
class GTDummy:
def __getitem__(self, _):
return self
Dict = GTDummy() # type: ignore
List = GTDummy() # type: ignore
Generic = GTDummy() # type: ignore
Iterable = GTDummy() # type: ignore
Optional = GTDummy() # type: ignore
def NewType(_, b): return b # type: ignore
Tuple = GTDummy() # type: ignore
def TypeVar(T): return object # type: ignore
Union = GTDummy() # type: ignore
except ImportError:
print("It seems your Python version is quite broken...")
assert(False)
"""
Generates all files in src/wrapped/generated
===
TL;DR: Automagically creates type definitions (/.F.+/ functions/typedefs...).
All '//%' in the headers are used by the script.
Reads each lines of each "_private.h" headers.
For each of them:
- If if starts with a #ifdef, #else, #ifndef, #endif, it memorizes which definition is required
- If it starts with a "GO", it will do multiple things:
- It memorizes the type used by the function (second macro argument)
- It memorizes the type it is mapped to, if needed (eg, iFEvp is mapped to iFEp: the first "real" argument is dropped)
- It checks if the type given (both original and mapped to) are valid
- If the signature contains a 'E' but it is not a "GOM" command, it will throw an error
- If the line starts with a '//%S', it will memorize a structure declaration.
The structure of it is: "//%S <letter> <structure name> <signature equivalent>"
NOTE: Those structure letters are "fake types" that are accepted in the macros.
After sorting the data, it generates:
wrapper.c
---------
(Private) type definitions (/.F.+_t/)
Function definitions (/.F.+/ functions, that actually execute the function given as argument)
isSimpleWrapper definition
wrapper.h
---------
Generic "wrapper_t" type definition
Function declarations (/.F.+/ functions)
*types.h
--------
Local types definition, for the original signatures
The SUPER() macro definition, used to generate and initialize the `*_my_t` library structure
(TODO: also automate this declaration/definition? It would require more metadata,
and may break sometime in the future due to the system changing...)
*defs.h
-------
Local `#define`s, for signature mapping
*undefs.h
---------
Local `#undefine`s, for signature mapping
Example:
========
In wrappedtest_private.h:
----------------------
//%S X TestLibStructure ppu
GO(superfunction, pFX)
GOM(superFunction2, pFpX)
Generated files:
wrapper.c: [snippet]
----------
typedef void *(*pFppu_t)(void*, void*, uint32_t);
typedef void *(*pFpppu_t)(void*, void*, void*, uint32_t);
void pFppu(x64emu_t *emu, uintptr_t fcn) { pFppu_t *fn = (pFppu_t)fn; R_RAX=...; }
void pFpppu(x64emu_t *emu, uintptr_t fcn) { pFpppu_t *fn = (pFpppu_t)fn; R_RAX=...; }
int isSimpleWrapper(wrapper_t fun) {
if (fcn == pFppu) return 1;
if (fcn == pFpppu) return 1;
return 0;
}
wrapper.h: [snippet]
----------
void pFppu(x64emu_t *emu, uintptr_t fcn);
void pFpppu(x64emu_t *emu, uintptr_t fcn);
int isSimpleWrapper(wrapper_t fun);
wrappedtesttypes.h:
-------------------
typedef void *(*pFpX_t)(void*, TestLibStructure);
#define SUPER() \\
GO(superFunction2, pFpX)
wrappedtestdefs.h:
------------------
#define pFX pFppu
#define pFpX pFpppu
wrappedtestundefs.h:
--------------------
#undef pFX
#undef pFpX
"""
# TODO: Add /.F.*A/ automatic generation (and suppression)
class FunctionConvention(object):
def __init__(self, ident: str, convname: str, valid_chars: List[str]) -> None:
self.ident = ident
self.name = convname
self.values = valid_chars
# Free letters: B FG JK QR T YZa e gh jk mno qrst yz
conventions = {
'F': FunctionConvention('F', "System V", ['E', 'v', 'c', 'w', 'i', 'I', 'C', 'W', 'u', 'U', 'f', 'd', 'D', 'l', 'L', 'p', 'V', 'O', 'S', 'N', 'H', 'P', 'A', 'x', 'X', 'Y', 'b']),
'W': FunctionConvention('W', "Windows", ['E', 'v', 'c', 'w', 'i', 'I', 'C', 'W', 'u', 'U', 'f', 'd', 'l', 'L', 'p', 'V', 'O', 'S', 'N', 'P', 'A'])
}
sortedvalues = ['E', 'v', 'c', 'w', 'i', 'I', 'C', 'W', 'u', 'U', 'f', 'd', 'D', 'l', 'L', 'p', 'V', 'O', 'S', 'N', 'H', 'P', 'A', 'x', 'X', 'Y', 'b', '0', '1']
assert(all(all(c not in conv.values[:i] and c in sortedvalues for i, c in enumerate(conv.values)) for conv in conventions.values()))
# Some type depend on HAVE_LD80BITS; define this here so we can use it in readFiles and main
depends_on_ld: str = "DY"
assert(all(c in sortedvalues for c in depends_on_ld))
class FunctionType(str):
@staticmethod
def validate(s: str, post: str) -> bool:
if len(s) < 3:
raise NotImplementedError("Type {0} too short{1}".format(s, post))
chk_type = s[0] + s[2:]
if "E" in s:
if ("E" in s[:2]) or ("E" in s[3:]):
raise NotImplementedError(
"emu64_t* not as the first parameter{0}".format(post))
if len(s) < 4:
raise NotImplementedError("Type {0} too short{1}".format(s, post))
# TODO: change *FEv into true functions (right now they are redirected to *FE)
#chk_type = s[0] + s[3:]
if s[1] not in conventions:
raise NotImplementedError("Bad middle letter {0}{1}".format(s[1], post))
return all(c in conventions[s[1]].values for c in chk_type) and (('v' not in chk_type[1:]) or (len(chk_type) == 2))
def get_convention(self) -> FunctionConvention:
return conventions[self[1]]
def splitchar(self) -> List[int]:
"""
splitchar -- Sorting key function for function signatures
The longest strings are at the end, and for identical length, the string
are sorted using a pseudo-lexicographic sort, where characters have a value
of `values.index`.
"""
try:
ret = [len(self), ord(self.get_convention().ident), self.get_convention().values.index(self[0])]
for c in self[2:]:
ret.append(self.get_convention().values.index(c))
return ret
except ValueError as e:
raise ValueError("Value is " + self) from e
def __getitem__(self, i: Union[int, slice]) -> 'FunctionType': # type: ignore [override]
return FunctionType(super().__getitem__(i))
RedirectType = NewType('RedirectType', FunctionType)
DefineType = NewType('DefineType', str)
StructType = NewType('StructType', str)
T = TypeVar('T')
U = TypeVar('U')
# TODO: simplify construction of this (add an 'insert' method?...)
class CustOrderedDict(Generic[T, U], Iterable[T]):
def __init__(self, dict: Dict[T, U], keys: List[T]):
self.__indict__ = dict
self.__inkeys__ = keys
def __iter__(self):
return iter(self.__inkeys__)
def __getitem__(self, k: T) -> U:
return self.__indict__[k]
Filename = str
ClausesStr = str
@final
class Define:
name: DefineType
inverted_: bool
defines: List[DefineType] = []
def __init__(self, name: str, inverted_: bool):
# All values of "name" are included in defines (throw otherwise)
if DefineType(name) not in self.defines:
raise KeyError(name)
self.name = DefineType(name)
self.inverted_ = inverted_
def copy(self) -> "Define":
return Define(self.name, self.inverted_)
def value(self) -> int:
return self.defines.index(self.name)*2 + (1 if self.inverted_ else 0)
def invert(self) -> None:
"""
invert -- Transform a `defined()` into a `!defined()` and vice-versa, in place.
"""
self.inverted_ = not self.inverted_
def inverted(self) -> "Define":
"""
inverted -- Transform a `defined()` into a `!defined()` and vice-versa, out-of-place.
"""
return Define(self.name, not self.inverted_)
def __str__(self) -> str:
if self.inverted_:
return "!defined(" + self.name + ")"
else:
return "defined(" + self.name + ")"
@final
class Clause:
defines: List[Define]
def __init__(self, defines: Union[List[Define], str] = []):
if isinstance(defines, str):
if defines == "":
self.defines = []
else:
self.defines = list(
map(
lambda x:
Define(x[9:-1] if x[0] == '!' else x[8:-1], x[0] == '!')
, defines.split(" && ")
)
)
else:
self.defines = [d.copy() for d in defines]
def copy(self) -> "Clause":
return Clause(self.defines)
def append(self, define: Define) -> None:
self.defines.append(define)
def invert_last(self) -> None:
self.defines[-1].invert()
def pop_last(self) -> None:
if len(self.defines) > 0: self.defines.pop()
def __str__(self) -> str:
return " && ".join(map(str, self.defines))
@final
class Clauses:
"""
Represent a list of clauses, aka a list of or-ed together and-ed "defined"
conditions
"""
definess: List[Clause]
def __init__(self, definess: Union[List[Clause], str] = []):
if isinstance(definess, str):
if definess == "()":
self.definess = []
elif ") || (" in definess:
self.definess = list(map(Clause, definess[1:-1].split(") || (")))
else:
self.definess = [Clause(definess)]
else:
self.definess = definess[:]
def copy(self) -> "Clauses":
return Clauses(self.definess[:])
def add(self, defines: Clause) -> None:
self.definess.append(defines)
def splitdef(self) -> List[int]:
"""
splitdef -- Sorting key function for #ifdefs
All #if defined(...) are sorted first by the number of clauses, then by the
number of '&&' in each clause and then by the "key" of the tested names
(left to right, inverted placed after non-inverted).
"""
ret = [len(self.definess)]
for cunj in self.definess:
ret.append(len(cunj.defines))
for cunj in self.definess:
for d in cunj.defines:
ret.append(d.value())
return ret
def __str__(self) -> ClausesStr:
if len(self.definess) == 1:
return str(self.definess[0])
else:
return "(" + ") || (".join(map(str, self.definess)) + ")"
JumbledGlobals = Dict[ClausesStr, List[FunctionType]]
JumbledRedirects = Dict[ClausesStr, Dict[RedirectType, FunctionType]]
JumbledTypedefs = Dict[RedirectType, List[str]]
JumbledStructures = Dict[str, Tuple[StructType, str]]
JumbledStructUses = Dict[RedirectType, FunctionType]
JumbledFilesSpecific = Dict[Filename, Tuple[JumbledTypedefs, JumbledStructures, JumbledStructUses]]
SortedGlobals = CustOrderedDict[ClausesStr, List[FunctionType]]
SortedRedirects = CustOrderedDict[ClausesStr, List[Tuple[RedirectType, FunctionType]]]
SortedTypedefs = CustOrderedDict[RedirectType, List[str]]
SortedStructUses = CustOrderedDict[RedirectType, FunctionType]
SortedFilesSpecific = Dict[Filename, Tuple[SortedTypedefs, SortedStructUses]]
def readFiles(files: Iterable[Filename]) -> Tuple[JumbledGlobals, JumbledRedirects, JumbledFilesSpecific]:
"""
readFiles
This function is the one that parses the files.
It returns the jumbled (gbl, redirects, {file: (typedefs, mystructs)}) tuple.
"""
# Initialize variables: gbl for all values, redirects for redirections
gbl : JumbledGlobals = {}
redirects: JumbledRedirects = {}
filespec : JumbledFilesSpecific = {}
functions: Dict[str, Filename] = {}
halt_required = False # Is there a GO(*, .FE*) or similar in-batch error(s)?
# First read the files inside the headers
for filepath in files:
filename: Filename = filepath.split("/")[-1]
dependants: Clause = Clause()
# typedefs is a list of all "*FE*" types for the current file
# mystructs is a map of all char -> (structure C name, replacement) for structures
typedefs : JumbledTypedefs = {}
mystructs : JumbledStructures = {}
mystructuses: JumbledStructUses = {}
filespec[filename[:-10]] = (typedefs, mystructs, mystructuses)
def add_symbol_name(funname: Union[str, None], funsname: Dict[ClausesStr, List[str]] = {"": []}):
# Optional arguments are evaluated only once!
nonlocal halt_required
if funname is None:
for k in funsname:
if (k != "") and (len(funsname[k]) != 0):
# Note: if this condition ever raises, check the wrapper pointed by it.
# If you find no problem, comment the error below, add a "pass" line (so python is happy)
# and open a ticket so I can fix this.
raise NotImplementedError("Some functions are only implemented under one condition (probably) ({0}:{1})"
.format(k, filename) + " [extra note in the script]\nProblematic function{}: {}".format(("" if len(funsname[k]) == 1 else "s"), funsname[k]))
for f in funsname[k]:
if f in ['_fini', '_init', '__bss_start', '__data_start', '_edata', '_end']:
continue # Always allow those symbols [TODO: check if OK]
if f in functions:
# Check for resemblances between functions[f] and filename
if filename.startswith(functions[f][:-12]) or functions[f].startswith(filename[:-12]):
# Probably OK
continue
# Manual compatible libs detection
match = lambda l, r: (filename[7:-10], functions[f][7:-10]) in [(l, r), (r, l)]
if match("sdl1image", "sdl2image") \
or match("sdl1mixer", "sdl2mixer") \
or match("sdl1net", "sdl2net") \
or match("sdl1ttf", "sdl2ttf") \
or match("libgl", "libegl") \
or match("libgl", "glesv2") \
or match("libegl", "glesv2") \
or match("softokn3", "p11kit") \
or match("libc", "tcmallocminimal") \
or match("libc", "tbbmallocproxy") \
or match("libc", "androidshmem") \
or match("tcmallocminimal", "tbbmallocproxy"):
continue
# Note: this test is very (too) simple. If it ever raises, comment
# `halt_required = True` and open an issue.
print("The function or data {0} is declared in multiple files ({1}/{2})"
.format(f, functions[f], filename) + " [extra note in the script]")
halt_required = True
functions[f] = filename
else:
if funname == "":
raise NotImplementedError("This function name (\"\") is suspicious... ({0})".format(filename))
l = len(dependants.defines)
already_pst = funname in funsname[""]
if l > 1:
return
elif l == 1:
funsname.setdefault(str(dependants), [])
already_pst = already_pst or (funname in funsname[str(dependants)])
if already_pst:
print("Function or data {0} is duplicated! ({1})".format(funname, filename))
halt_required = True
return
if l == 1:
s = str(dependants.defines[0].inverted())
if (s in funsname) and (funname in funsname[s]):
funsname[s].remove(funname)
funsname[""].append(funname)
else:
funsname[str(dependants)].append(funname)
else:
funsname[""].append(funname)
with open(filepath, 'r') as file:
line: str # Because VSCode really struggles with files
for line in file:
ln = line.strip()
# If the line is a `#' line (#ifdef LD80BITS/#ifndef LD80BITS/header)
if ln.startswith("#"):
preproc_cmd = ln[1:].strip()
try:
if preproc_cmd.startswith("if defined(GO)"):
continue #if defined(GO) && defined(GOM)...
elif preproc_cmd.startswith("if !(defined(GO)"):
continue #if !(defined(GO) && defined(GOM)...)
elif preproc_cmd.startswith("error"):
continue #error meh!
elif preproc_cmd.startswith("endif"):
dependants.pop_last()
elif preproc_cmd.startswith("ifdef"):
dependants.append(Define(preproc_cmd[5:].strip(), False))
elif preproc_cmd.startswith("ifndef"):
dependants.append(Define(preproc_cmd[6:].strip(), True))
elif preproc_cmd.startswith("else"):
dependants.invert_last()
else:
raise NotImplementedError("Unknown preprocessor directive: {0} ({1}:{2})".format(
preproc_cmd.split(" ")[0], filename, line[:-1]
))
except KeyError as k:
raise NotImplementedError("Unknown key: {0} ({1}:{2})".format(
k.args[0], filename, line[:-1]
)) from k
# If the line is a `GO...' line (GO/GOM/GO2/...)...
elif ln.startswith("GO"):
# ... then look at the second parameter of the line
try:
gotype = ln.split("(")[0].strip()
funname = ln.split(",")[0].split("(")[1].strip()
ln = ln.split(",")[1].split(")")[0].strip()
if not filename.endswith("_genvate.h"):
add_symbol_name(funname)
except IndexError:
raise NotImplementedError("Invalid GO command: {0}:{1}".format(
filename, line[:-1]
))
hasFlatStructure = False
origLine = ln
if not FunctionType.validate(ln, " ({0}:{1})".format(filename, line[:-1])):
# This needs more work
old = RedirectType(FunctionType(ln))
if (ln[0] in old.get_convention().values) \
and ('v' not in ln[2:]) \
and all((c in old.get_convention().values) or (c in mystructs) for c in ln[2:]):
hasFlatStructure = True
for sn in mystructs:
ln = ln.replace(sn, mystructs[sn][1])
ln = ln[0] + 'F' + ln[2:] # In case a structure named 'F' is used
mystructuses[RedirectType(FunctionType(origLine))] = FunctionType(ln)
else:
if old.get_convention().name == "System V":
acceptables = ['0', '1'] + old.get_convention().values
if any(c not in acceptables for c in ln[2:]):
raise NotImplementedError("{0} ({1}:{2})".format(ln[2:], filename, line[:-1]))
# Ok, this is acceptable: there is 0, 1 and/or void
ln = ln[:2] + (ln[2:]
.replace("v", "") # void -> nothing
.replace("0", "i") # 0 -> integer
.replace("1", "i")) # 1 -> integer
assert(len(ln) >= 3)
else:
acceptables = ['0', '1', 'D', 'H'] + old.get_convention().values
if any(c not in acceptables for c in ln[2:]):
raise NotImplementedError("{0} ({1}:{2})".format(ln[2:], filename, line[:-1]))
# Ok, this is acceptable: there is 0, 1 and/or void
ln = ln[:2] + (ln[2:]
.replace("v", "") # void -> nothing
.replace("D", "p") # long double -> pointer
.replace("H", "p") # unsigned __int128 -> pointer
.replace("0", "i") # 0 -> integer
.replace("1", "i")) # 1 -> integer
assert(len(ln) >= 3)
redirects.setdefault(str(dependants), {})
redirects[str(dependants)][old] = FunctionType(ln)
origLine = ln
# Simply append the function type if it's not yet existing
gbl.setdefault(str(dependants), [])
if ln not in gbl[str(dependants)]:
gbl[str(dependants)].append(FunctionType(ln))
if any(c in origLine for c in depends_on_ld):
if (gotype != "GOM") and (gotype != "GOWM") and (gotype != "GOD") and (gotype != "GOWD"):
print("\033[91mError:\033[m type depends on HAVE_LD80BITS but the GO type doesn't support that ({0}:{1})"
.format(filename, line[:-1]))
halt_required = True
if (gotype == "GO2") or (gotype == "GOW2") or (gotype == "GOD") or (gotype == "GODW"):
altfun = line.split(',')[2].split(')')[0].strip()
if altfun == "":
print("\033[91mError:\033[m empty alt function ({0}:{1})".format(filename, line[:-1]))
halt_required = True
elif altfun == funname:
print("\033[91mError:\033[m alt function is the original function ({0}:{1})".format(filename, line[:-1]))
halt_required = True
if origLine[2] == "E":
if (gotype != "GOM") and (gotype != "GOWM"):
if ((gotype != "GO2") and (gotype != "GOW2")) or not (line.split(',')[2].split(')')[0].strip().startswith('my_')):
print("\033[91mThis is probably not what you meant!\033[m ({0}:{1})".format(filename, line[:-1]))
halt_required = True
if len(origLine) > 3:
funtype = RedirectType(FunctionType(origLine[:2] + origLine[3:]))
else:
funtype = RedirectType(FunctionType(origLine[:2] + "v"))
# filename isn't stored with the '_private.h' part
typedefs.setdefault(funtype, [])
typedefs[funtype].append(funname)
elif (gotype == "GOM") or (gotype == "GOWM"):
# OK on box64 for a GOM to not have emu...
funtype = RedirectType(FunctionType(origLine))
typedefs.setdefault(funtype, [])
typedefs[funtype].append(funname)
# print("\033[94mAre you sure of this?\033[m ({0}:{1})".format(filename, line[:-1]))
# halt_required = True
elif hasFlatStructure:
# Still put the type in typedefs, but don't add the function name
typedefs.setdefault(RedirectType(FunctionType(origLine)), [])
# If the line is a structure metadata information...
# FIXME: what happens with e.g. a Windows function?
elif ln.startswith("//%S"):
metadata = [e for e in ln.split() if e]
if len(metadata) != 4:
raise NotImplementedError("Invalid structure metadata supply (too many fields) ({0}:{1})".format(filename, line[:-1]))
if metadata[0] != "//%S":
raise NotImplementedError("Invalid structure metadata supply (invalid signature) ({0}:{1})".format(filename, line[:-1]))
if len(metadata[1]) != 1:
# If you REALLY need it, consider opening a ticket
# Before you do, consider that everything that is a valid in a C token is valid here too
raise NotImplementedError("Structure names cannot be of length greater than 1 ({0}:{1})".format(filename, line[:-1]))
if metadata[3] == "":
# If you need this, please open an issue (this is never actually called, empty strings are removed)
raise NotImplementedError("Invalid structure metadata supply (empty replacement) ({0}:{1})".format(filename, line[:-1]))
if any(c not in conventions['F'].values for c in metadata[3]):
# Note that replacement cannot be another structure type
raise NotImplementedError("Invalid structure metadata supply (invalid replacement) ({0}:{1})".format(filename, line[:-1]))
if metadata[1] in mystructs:
raise NotImplementedError("Invalid structure nickname {0} (duplicate) ({1}/{2})".format(metadata[1], filename, line[:-1]))
if (metadata[1] in conventions['F'].values) or (metadata[1] in ['0', '1']):
raise NotImplementedError("Invalid structure nickname {0} (reserved) ({1}/{2})".format(metadata[1], filename, line[:-1]))
# OK, add into the database
mystructs[metadata[1]] = (StructType(metadata[2]), metadata[3])
# If the line contains any symbol name...
elif ("GO" in ln) or ("DATA" in ln):
# Probably "//GO(..., " or "DATA(...," at least
try:
funname = ln.split('(')[1].split(',')[0].strip()
add_symbol_name(funname)
except IndexError:
# Oops, it wasn't...
pass
add_symbol_name(None)
if halt_required:
raise ValueError("Fix all previous errors before proceeding")
if ("" not in gbl) or ("" not in redirects):
print("\033[1;31mThere is suspiciously not many types...\033[m")
print("Check the CMakeLists.txt file. If you are SURE there is nothing wrong"
" (as a random example, `set()` resets the variable...), then comment out the following exit.")
print("(Also, the program WILL crash later if you proceed.)")
sys.exit(2) # Check what you did, not proceeding
return gbl, redirects, filespec
def sortArrays(gbl_tmp : JumbledGlobals, red_tmp : JumbledRedirects, filespec: JumbledFilesSpecific) \
-> Tuple[SortedGlobals, SortedRedirects, SortedFilesSpecific]:
# Now, take all function types, and make a new table gbl_vals
# This table contains all #if conditions for when a function type needs to
# be generated. There is also a filter to avoid duplicate/opposite clauses.
gbl_vals: Dict[FunctionType, Clauses] = {}
for k1 in gbl_tmp:
ks = Clause(k1)
for v in gbl_tmp[k1]:
if k1 == "":
# Unconditionally define v
gbl_vals[v] = Clauses()
elif v in gbl_vals:
if gbl_vals[v].definess == []:
# v already unconditionally defined
continue
for other_key in gbl_vals[v].definess:
for other_key_val in other_key.defines:
if other_key_val not in ks.defines:
# Not a duplicate or more specific case
# (could be a less specific one though)
break
else:
break
else:
gbl_vals[v].add(ks)
else:
gbl_vals[v] = Clauses([Clause(k1)])
for v in gbl_vals:
strdefines = list(map(str, gbl_vals[v].definess))
for k2 in gbl_vals[v].definess:
for i in range(len(k2.defines)):
if " && ".join(map(str, k2.defines[:i] + [k2.defines[i].inverted()] + k2.defines[i+1:])) in strdefines:
# Opposite clauses detected
gbl_vals[v] = Clauses()
break
else:
continue
break
# Now create a new gbl and gbl_idxs
# gbl will contain the final version of gbl (without duplicates, based on
# gbl_vals)
# gbl_idxs will contain all #if clauses
gbl: Dict[ClausesStr, List[FunctionType]] = {}
gbl_idxs: List[ClausesStr] = []
for k1 in gbl_vals:
clauses = gbl_vals[k1]
key = str(clauses)
gbl.setdefault(key, [])
gbl[key].append(k1)
if key not in gbl_idxs:
gbl_idxs.append(key)
# Sort the #if clauses as defined in `splitdef`
gbl_idxs.sort(key=lambda c: Clauses(c).splitdef())
# This map will contain all additional function types that are "redirected"
# to an already defined type (with some remapping).
redirects_vals: Dict[Tuple[RedirectType, FunctionType], Clauses] = {}
for k1 in red_tmp:
ks = Clause(k1)
for v in red_tmp[k1]:
if k1 == "":
# Unconditionally define v
redirects_vals[(v, red_tmp[k1][v])] = Clauses()
elif (v, red_tmp[k1][v]) in redirects_vals:
if redirects_vals[(v, red_tmp[k1][v])].definess == []:
# v already unconditionally defined
continue
for other_key in redirects_vals[(v, red_tmp[k1][v])].definess:
for other_key_val in other_key.defines:
if other_key_val not in ks.defines:
# Not a duplicate or more specific case
# (could be a less specific one though)
break
else:
break
else:
redirects_vals[(v, red_tmp[k1][v])].add(ks)
else:
redirects_vals[(v, red_tmp[k1][v])] = Clauses([Clause(k1)])
# Also do the same trick as before (it also helps keep the order
# in the file deterministic)
redirects: Dict[ClausesStr, List[Tuple[RedirectType, FunctionType]]] = {}
redirects_idxs: List[ClausesStr] = []
for k1, v in redirects_vals:
clauses = redirects_vals[(k1, v)]
key = str(clauses)
redirects.setdefault(key, [])
redirects[key].append((k1, v))
if key not in redirects_idxs:
redirects_idxs.append(key)
redirects_idxs.sort(key=lambda c: Clauses(c).splitdef())
# Sort the function types as defined in `splitchar`
for k3 in gbl:
gbl[k3].sort(key=FunctionType.splitchar)
oldvals = { k: conventions[k].values for k in conventions }
for k in conventions:
conventions[k].values = sortedvalues
for k3 in redirects:
redirects[k3].sort(key=lambda v: v[0].splitchar() + v[1].splitchar())
for k in conventions:
conventions[k].values = oldvals[k]
sortedfilespec: SortedFilesSpecific = {}
for fn in filespec:
# Maybe do better?
mystructs_vals: List[str] = sorted(filespec[fn][1].keys())
if mystructs_vals != []:
for k in conventions:
conventions[k].values = conventions[k].values + list(mystructs_vals)
mytypedefs_vals: List[RedirectType] = sorted(filespec[fn][0].keys(), key=FunctionType.splitchar)
sortedfilespec[fn] = (
CustOrderedDict(dict((v, sorted(filespec[fn][0][v])) for v in mytypedefs_vals), mytypedefs_vals),
CustOrderedDict(filespec[fn][2], sorted(filespec[fn][2], key=FunctionType.splitchar))
)
if mystructs_vals != []:
for k in conventions:
conventions[k].values = conventions[k].values[:-len(mystructs_vals)]
return CustOrderedDict(gbl, gbl_idxs), CustOrderedDict(redirects, redirects_idxs), sortedfilespec
def checkRun(root: str, jumbled: JumbledFilesSpecific, \
gbls: SortedGlobals, redirects: SortedRedirects, filesspec: SortedFilesSpecific) -> Optional[str]:
# Check if there was any new functions compared to last run
functions_list: str = ""
for k in gbls:
for v in gbls[k]:
functions_list = functions_list + "#" + k + " " + v + "\n"
for k in redirects:
for vr, vf in redirects[k]:
functions_list = functions_list + "#" + k + " " + vr + " -> " + vf + "\n"
for filename in sorted(filesspec.keys()):
functions_list = functions_list + filename + ":\n"
for st in sorted(jumbled[filename][1].keys()):
functions_list = functions_list + \
"% " + st + " " + jumbled[filename][1][st][0] + " " + jumbled[filename][1][st][1] + "\n"
for vr in filesspec[filename][0]:
functions_list = functions_list + "- " + vr + ":\n"
for fn in filesspec[filename][0][vr]:
functions_list = functions_list + " - " + fn + "\n"
for defined in filesspec[filename][1]:
functions_list = functions_list + "% " + defined + "\n"
# functions_list is a unique string, compare it with the last run
try:
last_run = ""
with open(os.path.join(root, "src", "wrapped", "generated", "functions_list.txt"), 'r') as file:
last_run = file.read()
if last_run == functions_list:
# Mark as OK for CMake
with open(os.path.join(root, "src", "wrapped", "generated", "functions_list.txt"), 'w') as file:
file.write(functions_list)
return None
except IOError:
# The file does not exist yet, first run
pass
return functions_list
def main(root: str, files: Iterable[Filename], ver: str):
"""
main -- The main function
root: the root path (where the CMakeLists.txt is located)
files: a list of files to parse (wrapped*.h)
ver: version number
"""
# gbl_tmp:
# "defined() && ..." -> [vFv, ...]
# red_tmp:
# "defined() && ..." -> [vFEv -> vFv, ...]
# fsp_tmp:
# "filename" -> (
# [vFEv -> fopen, ...],
# [G -> ("SDL_J...", UU), ...],
# [vFGppp -> vFUUppp, ...]
# )
gbl_tmp: JumbledGlobals
red_tmp: JumbledRedirects
fsp_tmp: JumbledFilesSpecific
gbl_tmp, red_tmp, fsp_tmp = readFiles(files)
# gbls: sorted gbl_tmp
# redirects: sorted red_tmp
# filesspec:
# "filename" -> (
# sorted [vFEv -> fopen, ...],
# sorted [vFGppp -> vFUUppp, ...]
# )
gbls : SortedGlobals
redirects: SortedRedirects
filesspec: SortedFilesSpecific
gbls, redirects, filesspec = sortArrays(gbl_tmp, red_tmp, fsp_tmp)
functions_list = checkRun(root, fsp_tmp, gbls, redirects, filesspec)
if functions_list is None:
print("Detected same build as last run, skipping")
return 0
# Detect simple wrappings
allowed_conv_ident = "F"
allowed_conv = conventions[allowed_conv_ident]
# H could be allowed maybe?
allowed_simply: Dict[str, str] = {"ARM64": "v", "RV64": "v"}
allowed_regs : Dict[str, str] = {"ARM64": "cCwWiuIUlLp", "RV64": "CWuIUlLp"}
allowed_fpr : Dict[str, str] = {"ARM64": "fd", "RV64": "fd"}
# Detect functions which return in an x87 register
retx87_wraps: Dict[ClausesStr, List[FunctionType]] = {}
return_x87: str = "D"
# Sanity checks
forbidden_simple: Dict[str, str] = {"ARM64": "EDVOSNHPAxXYb", "RV64": "EcwiDVOSNHPAxXYb"}
assert(all(k in allowed_simply for k in forbidden_simple))
assert(all(k in allowed_regs for k in forbidden_simple))
assert(all(k in allowed_fpr for k in forbidden_simple))
for k1 in forbidden_simple:
assert(len(allowed_simply[k1]) + len(allowed_regs[k1]) + len(allowed_fpr[k1]) + len(forbidden_simple[k1]) == len(allowed_conv.values))
assert(all(c not in allowed_regs[k1] for c in allowed_simply[k1]))
assert(all(c not in allowed_simply[k1] + allowed_regs[k1] for c in allowed_fpr[k1]))
assert(all(c not in allowed_simply[k1] + allowed_regs[k1] + allowed_fpr[k1] for c in forbidden_simple[k1]))
assert(all(c in allowed_simply[k1] + allowed_regs[k1] + allowed_fpr[k1] + forbidden_simple[k1] for c in allowed_conv.values))
assert(all(c in allowed_conv.values for c in return_x87))
assert(all(c in forbidden_simple[k] for c in depends_on_ld for k in forbidden_simple))
simple_wraps: Dict[str, Dict[ClausesStr, List[Tuple[FunctionType, int]]]] = {
k1: {} for k1 in forbidden_simple
}
def check_simple(v: FunctionType) -> Dict[str, int]:
regs_count: int = 0
fpr_count : int = 0
ret: Dict[str, int] = {}
for k in forbidden_simple:
if v.get_convention() is not allowed_conv:
continue
if v[0] in forbidden_simple[k]:
continue
for c in v[2:]:
if c in allowed_regs[k]:
regs_count = regs_count + 1
elif c in allowed_fpr[k]:
fpr_count = fpr_count + 1
elif c in allowed_simply[k]:
continue
else:
break
else:
# No character in forbidden_simply
if (regs_count <= 6) and (fpr_count <= 8):
# All checks passed!
ret_val = 1 + fpr_count
if v[0] in allowed_fpr[k]:
ret_val = -ret_val
ret[k] = ret_val
# Else, too many arguments
return ret
# Only search in real wrappers (mapped ones are nearly always not simple)
for k in gbls:
for v in gbls[k]:
simples = check_simple(v)
for k1, i in simples.items():
if k in simple_wraps[k1]:
simple_wraps[k1][k].append((v, i))
else:
simple_wraps[k1][k] = [(v, i)]
simple_idxs = { k1: sorted(v1.keys(), key=lambda x: Clauses(x).splitdef()) for k1, v1 in simple_wraps.items() }
def check_return_x87(v: FunctionType) -> bool:
return v[0] in return_x87
for k in gbls:
tmp = [v for v in gbls[k] if check_return_x87(v)]
if tmp:
retx87_wraps[k] = tmp
retx87_idxs = sorted(retx87_wraps.keys(), key=lambda x: Clauses(x).splitdef())
# Now the files rebuilding part
# File headers and guards
files_header = {
"wrapper.c": """
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include "wrapper.h"
#include "emu/x64emu_private.h"
#include "emu/x87emu_private.h"
#include "regs.h"
#include "x64emu.h"
#define COMPLEX_IMPL
#include "complext.h"
extern void* my__IO_2_1_stdin_ ;
extern void* my__IO_2_1_stdout_;
extern void* my__IO_2_1_stderr_;
static void* io_convert(void* v)
{lbr}
if(!v)
return v;
if(v == my__IO_2_1_stdin_)
return stdin;
if(v == my__IO_2_1_stdout_)
return stdout;
if(v == my__IO_2_1_stderr_)
return stderr;
return v;
{rbr}
static void* io_convert_back(void* v)
{lbr}
if(!v)
return v;
if(v == stdin)
return my__IO_2_1_stdin_;
if(v == stdout)
return my__IO_2_1_stdout_;
if(v == stderr)
return my__IO_2_1_stderr_;
return v;
{rbr}
#define ST0val ST0.d
int of_convert(int);
void* align_xcb_connection(void* src);
void unalign_xcb_connection(void* src, void* dst);
""",
"wrapper.h": """
#ifndef __WRAPPER_H_
#define __WRAPPER_H_
#include <stdint.h>
#include <string.h>
#include "complext.h"
typedef struct x64emu_s x64emu_t;
// the generic wrapper pointer functions
typedef void (*wrapper_t)(x64emu_t* emu, uintptr_t fnc);
// list of defined wrapper
// E = current x86emu struct
// v = void
// C = unsigned byte c = char
// W = unsigned short w = short
// u = uint32, i = int32
// U = uint64, I = int64
// L = unsigned long, l = signed long (long is an int with the size of a pointer)
// H = Huge 128bits value/struct
// p = pointer, P = void* on the stack
// f = float, d = double, D = long double, K = fake long double
// V = vaargs
// O = libc O_ flags bitfield
// o = stdout
// S = _IO_2_1_stdXXX_ pointer (or FILE*)
// N = ... automatically sending 1 arg
// A = va_list
// 0 = constant 0, 1 = constant 1
// x = float complex
// X = double complex
// b = xcb_connection_t*
""",
"fntypes.h": """
#ifndef __{filename}TYPES_H_
#define __{filename}TYPES_H_
#ifndef LIBNAME
#error You should only #include this file inside a wrapped*.c file
#endif
#ifndef ADDED_FUNCTIONS
#define ADDED_FUNCTIONS()
#endif
""",
"fndefs.h": """
#ifndef __{filename}DEFS_H_
#define __{filename}DEFS_H_
""",
"fnundefs.h": """
#ifndef __{filename}UNDEFS_H_
#define __{filename}UNDEFS_H_
"""
}
files_guard = {
"wrapper.c": """
""",
"wrapper.h": """
int isSimpleWrapper(wrapper_t fun);
#endif // __WRAPPER_H_
""",
"fntypes.h": """
#endif // __{filename}TYPES_H_
""",
"fndefs.h": """
#endif // __{filename}DEFS_H_
""",
"fnundefs.h": """
#endif // __{filename}UNDEFS_H_
"""
}
banner = "/********************************************************" + ('*'*len(ver)) + "***\n" \
" * File automatically generated by rebuild_wrappers.py (v" + ver + ") *\n" \
" ********************************************************" + ('*'*len(ver)) + "***/\n"
trim = lambda string: '\n'.join(line[2:] for line in string.splitlines())[1:]
# Yes, the for loops are inversed. This is because both dicts should have the same keys.
for fhdr in files_guard:
files_header[fhdr] = banner + trim(files_header[fhdr])
for fhdr in files_header:
files_guard[fhdr] = trim(files_guard[fhdr])
# Rewrite the wrapper.c file:
# i and u should only be 32 bits
td_types = {
# E v c w i I C W u U f d D l L p V O S N H P A x X Y b
'F': ["x64emu_t*", "void", "int8_t", "int16_t", "int32_t", "int64_t", "uint8_t", "uint16_t", "uint32_t", "uint64_t", "float", "double", "long double", "intptr_t", "uintptr_t", "void*", "void*", "int32_t", "void*", "...", "unsigned __int128", "void*", "void*", "complexf_t", "complex_t", "complexl_t", "void*"],
# E v c w i I C W u U f d l L p V O S N P A
'W': ["x64emu_t*", "void", "int8_t", "int16_t", "int32_t", "int64_t", "uint8_t", "uint16_t", "uint32_t", "uint64_t", "float", "double", "intptr_t", "uintptr_t", "void*", "void*", "int32_t", "void*", "...", "void*", "void*"]
}
td_types_nold = {
'F': {'D': "double", 'Y': "complex_t"},
'W': {}
}
td_types_ld = {
k: {t: td_types[k][conventions[k].values.index(t)] for t in td_types_nold[k]} for k in td_types_nold
}
assert(all(k in conventions for k in td_types))
assert(all(k in conventions for k in td_types_nold))
assert(all(t in depends_on_ld for k in td_types_nold for t in td_types_nold[k]))
for k in conventions:
if len(conventions[k].values) != len(td_types[k]):
raise NotImplementedError("len(values) = {lenval} != len(td_types) = {lentypes}".format(lenval=len(conventions[k].values), lentypes=len(td_types[k])))
def generate_typedefs(arr: Iterable[FunctionType], file) -> None:
any_depends_on_ld = False
for v in arr:
if any(c in v for c in depends_on_ld):
any_depends_on_ld = True
continue
name = v + "_t"
v = v[:-1] if v.endswith('NN') else v # FIXME
file.write("typedef " + td_types[v.get_convention().ident][v.get_convention().values.index(v[0])] + " (*" + name + ")"
+ "(" + ', '.join(td_types[v.get_convention().ident][v.get_convention().values.index(t)] for t in v[2:]) + ");\n")
if any_depends_on_ld:
file.write("\n#ifdef HAVE_LD80BITS\n")
for v in arr:
if all(c not in v for c in depends_on_ld):
continue
name = v + "_t"
v = v[:-1] if v.endswith('NN') else v # FIXME
file.write("typedef " + td_types[v.get_convention().ident][v.get_convention().values.index(v[0])] + " (*" + name + ")"
+ "(" + ', '.join(td_types[v.get_convention().ident][v.get_convention().values.index(t)] for t in v[2:]) + ");\n")
file.write("#else // HAVE_LD80BITS\n")
for k in td_types_nold:
for t in td_types_nold[k]:
td_types[k][conventions[k].values.index(t)] = td_types_nold[k][t]
for v in arr:
if all(c not in v for c in depends_on_ld):
continue
name = v + "_t"
v = v[:-1] if v.endswith('NN') else v # FIXME
file.write("typedef " + td_types[v.get_convention().ident][v.get_convention().values.index(v[0])] + " (*" + name + ")"
+ "(" + ', '.join(td_types[v.get_convention().ident][v.get_convention().values.index(t)] for t in v[2:]) + ");\n")
for k in td_types_nold:
for t in td_types_ld[k]:
td_types[k][conventions[k].values.index(t)] = td_types_ld[k][t]
file.write("#endif\n")
with open(os.path.join(root, "src", "wrapped", "generated", "wrapper.c"), 'w') as file:
file.write(files_header["wrapper.c"].format(lbr="{", rbr="}", version=ver))
# First part: typedefs
for k in gbls:
if k != str(Clauses()):
file.write("\n#if " + k + "\n")
generate_typedefs(gbls[k], file)
if k != str(Clauses()):
file.write("#endif\n")
file.write("\n")
# Next part: function definitions
# Helper variables
# Return type template
vals = {
conventions['F']: [
"\n#error Invalid return type: emulator\n", # E
"fn({0});", # v
"R_RAX=fn({0});", # c
"R_RAX=fn({0});", # w
"R_RAX=(int32_t)fn({0});", # i
"R_RAX=(int64_t)fn({0});", # I
"R_RAX=(unsigned char)fn({0});", # C
"R_RAX=(unsigned short)fn({0});", # W
"R_RAX=(uint32_t)fn({0});", # u
"R_RAX=fn({0});", # U
"emu->xmm[0].f[0]=fn({0});", # f
"emu->xmm[0].d[0]=fn({0});", # d
"long double ld=fn({0}); fpu_do_push(emu); ST0val = ld;", # D
"R_RAX=(intptr_t)fn({0});", # l
"R_RAX=(uintptr_t)fn({0});", # L
"R_RAX=(uintptr_t)fn({0});", # p
"\n#error Invalid return type: va_list\n", # V
"\n#error Invalid return type: at_flags\n", # O
"R_RAX=(uintptr_t)io_convert_back(fn({0}));", # S
"\n#error Invalid return type: ... with 1 arg\n", # N
"unsigned __int128 u128 = fn({0}); R_RAX=(u128&0xFFFFFFFFFFFFFFFFL); R_RDX=(u128>>64)&0xFFFFFFFFFFFFFFFFL;", # H
"\n#error Invalid return type: pointer in the stack\n", # P
"\n#error Invalid return type: va_list\n", # A
"from_complexf(emu, fn({0}));", # x
"from_complex(emu, fn({0}));", # X
"from_complexl(emu, fn({0}));", # Y
"\n#error Invalid return type: xcb_connection_t*\n", # b
],
conventions['W']: [
"\n#error Invalid return type: emulator\n", # E
"fn({0});", # v
"R_RAX=fn({0});", # c
"R_RAX=fn({0});", # w
"R_RAX=(int32_t)fn({0});", # i
"R_RAX=(int64_t)fn({0});", # I
"R_RAX=(unsigned char)fn({0});", # C
"R_RAX=(unsigned short)fn({0});", # W
"R_RAX=(uint32_t)fn({0});", # u
"R_RAX=fn({0});", # U
"emu->xmm[0].f[0]=fn({0});", # f
"emu->xmm[0].d[0]=fn({0});", # d
"R_RAX=(intptr_t)fn({0});", # l
"R_RAX=(uintptr_t)fn({0});", # L
"R_RAX=(uintptr_t)fn({0});", # p
"\n#error Invalid return type: va_list\n", # V
"\n#error Invalid return type: at_flags\n", # O
"R_RAX=io_convert_back(fn({0}));", # S
"\n#error Invalid return type: ... with 1 arg\n", # N
"\n#error Invalid return type: pointer in the stack\n", # P
"\n#error Invalid return type: va_list\n", # A
]
}
vals_nold = {
conventions['F']: {
'D': "double db=fn({0}); fpu_do_push(emu); ST0val = db;",
'Y': "from_complexk(emu, fn({0}));",
},
conventions['W']: {}
}
vals_ld = {
k: {t: vals[k][k.values.index(t)] for t in vals_nold[k]} for k in vals_nold
}
# vreg: value is in a general register
# E v c w i I C W u U f d D l L p V O S N H P A x X Y b
vreg = [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 2, 0, 1, 0, 0, 0, 1]
# vxmm: value is in a XMM register
# E v c w i I C W u U f d D l L p V O S N H P A x X Y b
vxmm = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0]
# vother: value is elsewere
# E v c w i I C W u U f d D l L p V O S N H P A x X Y b
vother = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
# vstack: value is on the stack (or out of register)
# E v c w i I C W u U f d D l L p V O S N H P A x X Y b
vstack = [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 2, 4, 1]
arg_r = [
"", # E
"", # v
"(int8_t){p}, ", # c
"(int16_t){p}, ", # w
"(int32_t){p}, ", # i
"(int64_t){p}, ", # I
"(uint8_t){p}, ", # C
"(uint16_t){p}, ", # W
"(uint32_t){p}, ", # u
"(uint64_t){p}, ", # U
"", # f
"", # d
"", # D
"(intptr_t){p}, ", # l
"(uintptr_t){p}, ", # L
"(void*){p}, ", # p
"", # V
"of_convert((int32_t){p}), ", # O
"io_convert((void*){p}), ", # S
"(void*){p}, ", # N
"(unsigned __int128){p} + ((unsigned __int128){p2} << 64), ", # H
"", # P
"(void*){p}, ", # A
"", # x
"", # X
"", # Y
"aligned_xcb, ", # b
]
arg_x = [
"", # E
"", # v
"", # c
"", # w
"", # i
"", # I
"", # C
"", # W
"", # u
"", # U
"emu->xmm[{p}].f[0], ", # f
"emu->xmm[{p}].d[0], ", # d
"", # D
"", # l
"", # L
"", # p
"", # V
"", # O
"", # S
"", # N
"", # H
"", # P
"", # A
"to_complexf(emu, {p}), ", # x
"to_complex(emu, {p}), ", # X
"", # Y
"", # b
]
arg_o = [
"emu, ", # E
"", # v
"", # c
"", # w
"", # i
"", # I
"", # C
"", # W
"", # u
"", # U
"", # f
"", # d
"", # D
"", # l
"", # L
"", # p
"(void*)(R_RSP + {p}), ", # V
"", # O
"", # S
"", # N
"", # H
"", # P
"", # A
"", # x
"", # X
"", # Y
"", # b
]
arg_s = [
"", # E
"", # v
"*(int8_t*)(R_RSP + {p}), ", # c
"*(int16_t*)(R_RSP + {p}), ", # w
"*(int32_t*)(R_RSP + {p}), ", # i
"*(int64_t*)(R_RSP + {p}), ", # I
"*(uint8_t*)(R_RSP + {p}), ", # C
"*(uint16_t*)(R_RSP + {p}), ", # W
"*(uint32_t*)(R_RSP + {p}), ", # u
"*(uint64_t*)(R_RSP + {p}), ", # U
"*(float*)(R_RSP + {p}), ", # f
"*(double*)(R_RSP + {p}), ", # d
"LD2localLD((void*)(R_RSP + {p})), ", # D
"*(intptr_t*)(R_RSP + {p}), ", # l
"*(uintptr_t*)(R_RSP + {p}), ", # L
"*(void**)(R_RSP + {p}), ", # p
"", # V
"of_convert(*(int32_t*)(R_RSP + {p})), ", # O
"io_convert(*(void**)(R_RSP + {p})), ", # S
"*(void**)(R_RSP + {p}), ", # N
"*(unsigned __int128*)(R_RSP + {p}), ", # H
"*(void**)(R_RSP + {p}), ", # P
"*(void**)(R_RSP + {p}), ", # A
"*(complexf_t*)(R_RSP + {p}), ", # x
"*(complex_t*)(R_RSP + {p}), ", # X
"to_complexl(emu, R_RSP + {p}), ", # Y
"aligned_xcb, ", # b
]
arg_s_nold = {
'D': "FromLD((void*)(R_RSP + {p})), ", # K
'Y': "to_complexk(emu, R_RSP + {p}), ", # y
}
arg_s_ld = {
t: arg_s[conventions['F'].values.index(t)] for t in arg_s_nold
}
# Asserts
for k in conventions:
assert all(v in conventions['F'].values for v in conventions[k].values), "a convention is not a subset of System V"
assert all(vr == vs for (vr, vs) in zip(vreg, vstack) if vr != 0), "vreg and vstack are inconsistent"
assert all(vx == vs for (vx, vs) in zip(vxmm, vstack) if vx != 0), "vxmm and vstack are inconsistent"
assert all((vo == 0) == (vs != 0) for (vo, vs) in zip(vother, vstack)), "vother and vstack are inconsistent"
if len(conventions['F'].values) != len(vstack):
raise NotImplementedError("len(values) = {lenval} != len(vstack) = {lenvstack}".format(lenval=len(conventions['F'].values), lenvstack=len(vstack)))
if len(conventions['F'].values) != len(vreg):
raise NotImplementedError("len(values) = {lenval} != len(vreg) = {lenvreg}".format(lenval=len(conventions['F'].values), lenvreg=len(vreg)))
if len(conventions['F'].values) != len(vxmm):
raise NotImplementedError("len(values) = {lenval} != len(vxmm) = {lenvxmm}".format(lenval=len(conventions['F'].values), lenvxmm=len(vxmm)))
if len(conventions['F'].values) != len(vother):
raise NotImplementedError("len(values) = {lenval} != len(vother) = {lenvother}".format(lenval=len(conventions['F'].values), lenvother=len(vother)))
if len(conventions['F'].values) != len(arg_s):
raise NotImplementedError("len(values) = {lenval} != len(arg_s) = {lenargs}".format(lenval=len(conventions['F'].values), lenargs=len(arg_s)))
if len(conventions['F'].values) != len(arg_r):
raise NotImplementedError("len(values) = {lenval} != len(arg_r) = {lenargr}".format(lenval=len(conventions['F'].values), lenargr=len(arg_r)))
if len(conventions['F'].values) != len(arg_x):
raise NotImplementedError("len(values) = {lenval} != len(arg_x) = {lenargx}".format(lenval=len(conventions['F'].values), lenargx=len(arg_x)))
if len(conventions['F'].values) != len(arg_o):
raise NotImplementedError("len(values) = {lenval} != len(arg_o) = {lenargo}".format(lenval=len(conventions['F'].values), lenargo=len(arg_o)))
for k in conventions:
c = conventions[k]
if c not in vals:
raise NotImplementedError("convention {k} not in vals".format(k=k))
if len(c.values) != len(vals[c]):
raise NotImplementedError("len([{k}]values) = {lenval} != len(vals[...]) = {lenvals}".format(k=k, lenval=len(c.values), lenvals=len(vals[c])))
# When arg_* is not empty, v* should not be 0
if any(map(lambda v, a: (a != "") and (v == 0), vstack, arg_s)):
raise NotImplementedError("Something in the stack has a null offset and a non-empty arg string")
if any(map(lambda v, a: (a != "") and (v == 0), vreg, arg_r)):
raise NotImplementedError("Something in the stack has a null offset and a non-empty arg string")
if any(map(lambda v, a: (a != "") and (v == 0), vxmm, arg_x)):
raise NotImplementedError("Something in the stack has a null offset and a non-empty arg string")
if any(map(lambda v, a: (a != "") and (v == 0), vother, arg_o)):
raise NotImplementedError("Something in the stack has a null offset and a non-empty arg string")
# Everything is either in the stack or somewhere else, it cannot be in a GPr and in an XMMr, etc
if any(map(lambda o, s: (o == 0) == (s == 0), vother, vstack)):
raise NotImplementedError("Something cannot be in exactly one of the stack and somewhere else")
if any(map(lambda r, x: (r > 0) and (x > 0), vreg, vxmm)):
raise NotImplementedError("Something can be in both a general purpose register and in an XMM register")
if any(map(lambda r, s: (r > 0) and (s == 0), vreg, vstack)):
raise NotImplementedError("Something can be in a general purpose register but not in the stack")
if any(map(lambda x, s: (x > 0) and (s == 0), vxmm, vstack)):
raise NotImplementedError("Something can be in an XMM register but not in the stack")
# Helper functions to write the function definitions
systemVconv = conventions['F']
def function_pre_systemV(args: FunctionType, d: int = 8, r: int = 0, x: int = 0) -> Tuple[Optional[str], str]:
# args: string of argument types
# d: delta (in the stack)
# r: general register no
# x: XMM register no
if len(args) == 0:
return None, ""
# Redirections
if args[0] == "0":
return function_pre_systemV(args[1:], d, r, x)
elif args[0] == "1":
return function_pre_systemV(args[1:], d, r, x)
idx = systemVconv.values.index(args[0])
# Name of the registers
reg_arg = ["R_RDI", "R_RSI", "R_RDX", "R_RCX", "R_R8", "R_R9"]
if args[0] == "b":
if 'b' in args[1:]:
raise NotImplementedError("Multiple XCB connections unsupported")
content = ""
if r < len(reg_arg):
content = reg_arg[r]
else:
content = "(R_RSP + " + str(d) + ")"
return "(void*)" + content, f"void *aligned_xcb = align_xcb_connection((void*){content}); "
elif (r < len(reg_arg)) and (vreg[idx] > 0):
for _ in range(vreg[idx]):
if r < len(reg_arg):
r = r + 1
else:
d = d + 8
return function_pre_systemV(args[1:], d, r, x)
elif (x < 8) and (vxmm[idx] > 0):
return function_pre_systemV(args[1:], d, r, x+1)
elif vstack[idx] > 0:
return function_pre_systemV(args[1:], d+8*vstack[idx], r, x)
else:
return function_pre_systemV(args[1:], d, r, x)
def function_post_systemV(content: Optional[str]) -> str:
if content is not None:
return f" unalign_xcb_connection(aligned_xcb, {content});"
else:
return ""
def function_args_systemV(args: FunctionType, d: int = 8, r: int = 0, x: int = 0) -> str:
# args: string of argument types
# d: delta (in the stack)
# r: general register no
# x: XMM register no
if len(args) == 0:
return ""
# Redirections
if args[0] == "0":
return "0, " + function_args_systemV(args[1:], d, r, x)
elif args[0] == "1":
return "1, " + function_args_systemV(args[1:], d, r, x)
idx = systemVconv.values.index(args[0])
# Name of the registers
reg_arg = ["R_RDI", "R_RSI", "R_RDX", "R_RCX", "R_R8", "R_R9"]
if (r < len(reg_arg)) and (vreg[idx] > 0):
ret = ""
if (vreg[idx] == 2) and ("{p2}" in arg_r[idx]):
if r < len(reg_arg):
# Value is in a general register
ret = ret + arg_r[idx].format(p=reg_arg[r], p2=reg_arg[r+1])
r = r + 2
else:
# Remaining is in the stack
ret = ret + arg_s[idx].format(p=d)
d = d + 8
else:
for _ in range(vreg[idx]):
# There may be values in multiple registers
if r < len(reg_arg):
# Value is in a general register
ret = ret + arg_r[idx].format(p=reg_arg[r])
r = r + 1
else:
# Remaining is in the stack
ret = ret + arg_s[idx].format(p=d)
d = d + 8
return ret + function_args_systemV(args[1:], d, r, x)
elif (x < 8) and (vxmm[idx] > 0):
# Value is in an XMM register
return arg_x[idx].format(p=x) + function_args_systemV(args[1:], d, r, x+vxmm[idx])
elif vstack[idx] > 0:
# Value is in the stack
return arg_s[idx].format(p=d) + function_args_systemV(args[1:], d+8*vstack[idx], r, x)
else:
# Value is somewhere else
return arg_o[idx].format(p=d) + function_args_systemV(args[1:], d, r, x)
# windowsconv = conventions['W']
def function_args_windows(args: FunctionType, d: int = 40, r: int = 0) -> str:
# args: string of argument types
# d: delta (in the stack)
# r: general register no
# We can re-use vstack to know if we need to put a pointer or the value
if len(args) == 0:
return ""
# Redirections
if args[0] == "0":
return "0, " + function_args_windows(args[1:], d, r)
elif args[0] == "1":
return "1, " + function_args_windows(args[1:], d, r)
idx = systemVconv.values.index(args[0]) # Little hack to be able to re-use
# Name of the registers
reg_arg = ["R_RCX", "R_RDX", "R_R8", "R_R9"]
if (r < len(reg_arg)) and (vstack[idx] == 1):
# We use a register
if vreg[idx] == 1:
# Value is in a general register
return arg_r[idx].format(p=reg_arg[r]) + function_args_windows(args[1:], d, r+1)
else:
# Remaining is in an XMM register
return arg_x[idx].format(p=r) + function_args_windows(args[1:], d, r+1)
elif vstack[idx] > 0:
# Value is in the stack
return arg_s[idx].format(p=d) + function_args_windows(args[1:], d+8*vstack[idx], r)
else:
# Value is somewhere else
return arg_o[idx].format(p=d) + function_args_windows(args[1:], d, r)
def function_writer(f, N: FunctionType, W: str) -> None:
# Write to f the function type N (real type W)
f.write("void {0}(x64emu_t *emu, uintptr_t fcn) {2} {1} fn = ({1})fcn; ".format(N, W, "{"))
# Generic function
conv = N.get_convention()
if conv is systemVconv:
prepost, pre = function_pre_systemV(N[2:])
f.write(pre + vals[conv][conv.values.index(N[0])].format(function_args_systemV(N[2:])[:-2]) + function_post_systemV(prepost))
else:
f.write(vals[conv][conv.values.index(N[0])].format(function_args_windows(N[2:])[:-2]))
f.write(" }\n")
for k in gbls:
any_depends_on_ld = False
if k != str(Clauses()):
file.write("\n#if " + k + "\n")
for v in gbls[k]:
if any(c in v for c in depends_on_ld):
any_depends_on_ld = True
continue
if v == FunctionType("vFv"):
# Suppress all warnings...
file.write("void vFv(x64emu_t *emu, uintptr_t fcn) { vFv_t fn = (vFv_t)fcn; fn(); (void)emu; }\n")
else:
function_writer(file, v, v + "_t")
if any_depends_on_ld:
file.write("\n#ifdef HAVE_LD80BITS\n")
for v in gbls[k]:
if all(c not in v for c in depends_on_ld):
continue
if v == FunctionType("vFv"):
# Suppress all warnings...
file.write("void vFv(x64emu_t *emu, uintptr_t fcn) { vFv_t fn = (vFv_t)fcn; fn(); (void)emu; }\n")
else:
function_writer(file, v, v + "_t")
file.write("#else // HAVE_LD80BITS\n")
for c in vals_nold:
for t in vals_nold[c]:
vals[c][c.values.index(t)] = vals_nold[c][t]
for t in arg_s_nold:
arg_s[conventions['F'].values.index(t)] = arg_s_nold[t]
for v in gbls[k]:
if all(c not in v for c in depends_on_ld):
continue
if v == FunctionType("vFv"):
# Suppress all warnings...
file.write("void vFv(x64emu_t *emu, uintptr_t fcn) { vFv_t fn = (vFv_t)fcn; fn(); (void)emu; }\n")
else:
function_writer(file, v, v + "_t")
for c in vals_nold:
for t in vals_ld[c]:
vals[c][c.values.index(t)] = vals_ld[c][t]
for t in arg_s_nold:
arg_s[conventions['F'].values.index(t)] = arg_s_nold[t]
file.write("#endif\n")
if k != str(Clauses()):
file.write("#endif\n")
file.write("\n")
for k in redirects:
any_depends_on_ld = False
if k != str(Clauses()):
file.write("\n#if " + k + "\n")
for vr, vf in redirects[k]:
if any(c in vr for c in depends_on_ld):
any_depends_on_ld = True
continue
function_writer(file, vr, vf + "_t")
if any_depends_on_ld:
file.write("\n#ifdef HAVE_LD80BITS\n")
for vr, vf in redirects[k]:
if all(c not in vr for c in depends_on_ld):
continue
function_writer(file, vr, vf + "_t")
file.write("#else // HAVE_LD80BITS\n")
for c in vals_nold:
for t in vals_nold[c]:
vals[c][c.values.index(t)] = vals_nold[c][t]
for t in arg_s_nold:
arg_s[conventions['F'].values.index(t)] = arg_s_nold[t]
for vr, vf in redirects[k]:
if all(c not in vr for c in depends_on_ld):
continue
function_writer(file, vr, vf + "_t")
for c in vals_nold:
for t in vals_ld[c]:
vals[c][c.values.index(t)] = vals_ld[c][t]
for t in arg_s_nold:
arg_s[conventions['F'].values.index(t)] = arg_s_nold[t]
file.write("#endif\n")
if k != str(Clauses()):
file.write("#endif\n")
# Write the isSimpleWrapper function
inttext = ""
file.write("\n")
for k1 in simple_idxs:
file.write("#{inttext}if defined({k1})\nint isSimpleWrapper(wrapper_t fun) {{\n\tif (box64_is32bits) return 0;\n".format(inttext=inttext, k1=k1))
inttext = "el"
for k in simple_idxs[k1]:
if k != str(Clauses()):
file.write("#if " + k + "\n")
for vf, val in simple_wraps[k1][k]:
file.write("\tif (fun == &" + vf + ") return " + str(val) + ";\n")
if k != str(Clauses()):
file.write("#endif\n")
file.write("\treturn 0;\n}\n")
file.write("#else\nint isSimpleWrapper(wrapper_t fun) {\n\treturn 0;\n}\n#endif\n")
# Write the isRetX87Wrapper function
file.write("\nint isRetX87Wrapper32(wrapper_t fun)\n#ifndef BOX32\n{ return 0; }\n#else\n ;\n#endif\n")
file.write("\nint isRetX87Wrapper(wrapper_t fun) {\n")
for k in retx87_idxs:
if k != str(Clauses()):
file.write("#if " + k + "\n")
for vf in retx87_wraps[k]:
file.write("\tif (fun == &" + vf + ") return 1;\n")
if k != str(Clauses()):
file.write("#endif\n")
file.write("\treturn 0;\n}\n")
file.write(files_guard["wrapper.c"].format(lbr="{", rbr="}", version=ver))
# Rewrite the wrapper.h file:
with open(os.path.join(root, "src", "wrapped", "generated", "wrapper.h"), 'w') as file:
file.write(files_header["wrapper.h"].format(lbr="{", rbr="}", version=ver))
# Normal function types
for k in gbls:
if k != str(Clauses()):
file.write("\n#if " + k + "\n")
for v in gbls[k]:
file.write("void " + v + "(x64emu_t *emu, uintptr_t fnc);\n")
if k != str(Clauses()):
file.write("#endif\n")
file.write("\n")
# Redirects
for k in redirects:
if k != str(Clauses()):
file.write("\n#if " + k + "\n")
for vr, _ in redirects[k]:
file.write("void " + vr + "(x64emu_t *emu, uintptr_t fnc);\n")
if k != str(Clauses()):
file.write("#endif\n")
file.write(files_guard["wrapper.h"].format(lbr="{", rbr="}", version=ver))
# Rewrite the *types.h files:
for k in conventions:
td_types[k][conventions[k].values.index('A')] = "va_list"
td_types[k][conventions[k].values.index('V')] = "..."
orig_val_len = {k: len(conventions[k].values) for k in conventions}
for fn in filesspec:
for strc in fsp_tmp[fn][1]:
for k in conventions:
conventions[k].values.append(strc)
td_types[k].append(fsp_tmp[fn][1][strc][0])
with open(os.path.join(root, "src", "wrapped", "generated", fn + "types.h"), 'w') as file:
file.write(files_header["fntypes.h"].format(lbr="{", rbr="}", version=ver, filename=fn))
generate_typedefs(filesspec[fn][0], file)
file.write("\n#define SUPER() ADDED_FUNCTIONS()")
for r in filesspec[fn][0]:
for f in filesspec[fn][0][r]:
file.write(" \\\n\tGO({0}, {1}_t)".format(f, r))
file.write("\n")
file.write(files_guard["fntypes.h"].format(lbr="{", rbr="}", version=ver, filename=fn))
with open(os.path.join(root, "src", "wrapped", "generated", fn + "defs.h"), 'w') as file:
file.write(files_header["fndefs.h"].format(lbr="{", rbr="}", version=ver, filename=fn))
for defined in filesspec[fn][1]:
file.write("#define {defined} {define}\n".format(defined=defined, define=filesspec[fn][1][defined]))
file.write(files_guard["fndefs.h"].format(lbr="{", rbr="}", version=ver, filename=fn))
with open(os.path.join(root, "src", "wrapped", "generated", fn + "undefs.h"), 'w') as file:
file.write(files_header["fnundefs.h"].format(lbr="{", rbr="}", version=ver, filename=fn))
for defined in filesspec[fn][1]:
file.write("#undef {defined}\n".format(defined=defined))
file.write(files_guard["fnundefs.h"].format(lbr="{", rbr="}", version=ver, filename=fn))
for k in conventions:
conventions[k].values = conventions[k].values[:orig_val_len[k]]
td_types[k] = td_types[k][:orig_val_len[k]]
# Save the string for the next iteration, writing was successful
with open(os.path.join(root, "src", "wrapped", "generated", "functions_list.txt"), 'w') as file:
file.write(functions_list)
return 0
if __name__ == '__main__':
limit: List[int] = []
for i, v in enumerate(sys.argv):
if v == "--":
limit.append(i)
Define.defines = list(map(DefineType, sys.argv[2:limit[0]]))
if main(sys.argv[1], sys.argv[limit[0]+1:], "2.5.0.24") != 0:
exit(2)
exit(0)