ppsspp/ext/at3_standalone/fft.cpp

404 lines
9.3 KiB
C++
Raw Normal View History

/*
* FFT/IFFT transforms
* Copyright (c) 2008 Loren Merritt
* Copyright (c) 2002 Fabrice Bellard
* Partly based on libdjbfft by D. J. Bernstein
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* FFT/IFFT transforms.
*/
#include <stdlib.h>
#include <string.h>
2024-05-01 09:56:24 +00:00
#define _USE_MATH_DEFINES
#include <math.h>
#include "mem.h"
#include "fft.h"
2024-04-11 00:12:16 +00:00
#define sqrthalf (float)M_SQRT1_2
void imdct_calc(FFTContext *s, FFTSample *output, const FFTSample *input);
void imdct_half(FFTContext *s, FFTSample *output, const FFTSample *input);
/* cos(2*pi*x/n) for 0<=x<=n/4, followed by its reverse */
COSTABLE(16);
COSTABLE(32);
COSTABLE(64);
COSTABLE(128);
COSTABLE(256);
COSTABLE(512);
COSTABLE(1024);
2024-04-11 09:39:07 +00:00
static FFTSample * const av_cos_tabs[] = {
NULL, NULL, NULL, NULL,
av_cos_16,
av_cos_32,
av_cos_64,
av_cos_128,
av_cos_256,
av_cos_512,
av_cos_1024,
};
void fft_calc(FFTContext *s, FFTComplex *z);
static int split_radix_permutation(int i, int n, int inverse)
{
int m;
if(n <= 2) return i&1;
m = n >> 1;
if(!(i&m)) return split_radix_permutation(i, m, inverse)*2;
m >>= 1;
if(inverse == !(i&m)) return split_radix_permutation(i, m, inverse)*4 + 1;
else return split_radix_permutation(i, m, inverse)*4 - 1;
}
2024-04-11 00:12:16 +00:00
void ff_init_ff_cos_tabs(int index)
{
int i;
int m = 1<<index;
double freq = 2*M_PI/m;
FFTSample *tab = av_cos_tabs[index];
for(i=0; i<=m/4; i++)
tab[i] = cos(i*freq);
for(i=1; i<m/4; i++)
tab[m/2-i] = tab[i];
}
static const int avx_tab[] = {
0, 4, 1, 5, 8, 12, 9, 13, 2, 6, 3, 7, 10, 14, 11, 15
};
static int is_second_half_of_fft32(int i, int n)
{
if (n <= 32)
return i >= 16;
else if (i < n/2)
return is_second_half_of_fft32(i, n/2);
else if (i < 3*n/4)
return is_second_half_of_fft32(i - n/2, n/4);
else
return is_second_half_of_fft32(i - 3*n/4, n/4);
}
2024-04-11 00:12:16 +00:00
int ff_fft_init(FFTContext *s, int nbits, int inverse)
{
int i, j, n;
if (nbits < 2 || nbits > 16)
goto fail;
s->nbits = nbits;
n = 1 << nbits;
s->revtab = (uint16_t *)av_malloc(n * sizeof(uint16_t));
if (!s->revtab)
goto fail;
s->tmp_buf = (FFTComplex *)av_malloc(n * sizeof(FFTComplex));
if (!s->tmp_buf)
goto fail;
s->inverse = inverse;
for(j=4; j<=nbits; j++) {
ff_init_ff_cos_tabs(j);
}
2024-04-11 00:12:16 +00:00
for(i=0; i<n; i++) {
j = i;
int index = -split_radix_permutation(i, n, s->inverse) & (n - 1);
s->revtab[index] = j;
}
return 0;
fail:
av_freep(&s->revtab);
av_freep(&s->tmp_buf);
return -1;
}
2024-04-11 00:12:16 +00:00
void ff_fft_end(FFTContext *s)
{
av_freep(&s->revtab);
av_freep(&s->tmp_buf);
}
#define BF(x, y, a, b) do { \
x = a - b; \
y = a + b; \
} while (0)
#define BUTTERFLIES(a0,a1,a2,a3) {\
BF(t3, t5, t5, t1);\
BF(a2.re, a0.re, a0.re, t5);\
BF(a3.im, a1.im, a1.im, t3);\
BF(t4, t6, t2, t6);\
BF(a3.re, a1.re, a1.re, t4);\
BF(a2.im, a0.im, a0.im, t6);\
}
// force loading all the inputs before storing any.
// this is slightly slower for small data, but avoids store->load aliasing
// for addresses separated by large powers of 2.
#define BUTTERFLIES_BIG(a0,a1,a2,a3) {\
FFTSample r0=a0.re, i0=a0.im, r1=a1.re, i1=a1.im;\
BF(t3, t5, t5, t1);\
BF(a2.re, a0.re, r0, t5);\
BF(a3.im, a1.im, i1, t3);\
BF(t4, t6, t2, t6);\
BF(a3.re, a1.re, r1, t4);\
BF(a2.im, a0.im, i0, t6);\
}
#define TRANSFORM(a0,a1,a2,a3,wre,wim) {\
CMUL(t1, t2, a2.re, a2.im, wre, -wim);\
CMUL(t5, t6, a3.re, a3.im, wre, wim);\
BUTTERFLIES(a0,a1,a2,a3)\
}
#define TRANSFORM_ZERO(a0,a1,a2,a3) {\
t1 = a2.re;\
t2 = a2.im;\
t5 = a3.re;\
t6 = a3.im;\
BUTTERFLIES(a0,a1,a2,a3)\
}
/* z[0...8n-1], w[1...2n-1] */
#define PASS(name)\
static void name(FFTComplex *z, const FFTSample *wre, unsigned int n)\
{\
FFTDouble t1, t2, t3, t4, t5, t6;\
int o1 = 2*n;\
int o2 = 4*n;\
int o3 = 6*n;\
const FFTSample *wim = wre+o1;\
n--;\
\
TRANSFORM_ZERO(z[0],z[o1],z[o2],z[o3]);\
TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
do {\
z += 2;\
wre += 2;\
wim -= 2;\
TRANSFORM(z[0],z[o1],z[o2],z[o3],wre[0],wim[0]);\
TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
} while(--n);\
}
PASS(pass)
#undef BUTTERFLIES
#define BUTTERFLIES BUTTERFLIES_BIG
PASS(pass_big)
#define DECL_FFT(n,n2,n4)\
static void fft##n(FFTComplex *z)\
{\
fft##n2(z);\
fft##n4(z+n4*2);\
fft##n4(z+n4*3);\
pass(z,av_cos_##n,n4/2);\
}
static void fft4(FFTComplex *z)
{
FFTDouble t1, t2, t3, t4, t5, t6, t7, t8;
BF(t3, t1, z[0].re, z[1].re);
BF(t8, t6, z[3].re, z[2].re);
BF(z[2].re, z[0].re, t1, t6);
BF(t4, t2, z[0].im, z[1].im);
BF(t7, t5, z[2].im, z[3].im);
BF(z[3].im, z[1].im, t4, t8);
BF(z[3].re, z[1].re, t3, t7);
BF(z[2].im, z[0].im, t2, t5);
}
static void fft8(FFTComplex *z)
{
FFTDouble t1, t2, t3, t4, t5, t6;
fft4(z);
BF(t1, z[5].re, z[4].re, -z[5].re);
BF(t2, z[5].im, z[4].im, -z[5].im);
BF(t5, z[7].re, z[6].re, -z[7].re);
BF(t6, z[7].im, z[6].im, -z[7].im);
BUTTERFLIES(z[0],z[2],z[4],z[6]);
TRANSFORM(z[1],z[3],z[5],z[7],sqrthalf,sqrthalf);
}
static void fft16(FFTComplex *z)
{
FFTDouble t1, t2, t3, t4, t5, t6;
FFTSample cos_16_1 = av_cos_16[1];
FFTSample cos_16_3 = av_cos_16[3];
fft8(z);
fft4(z+8);
fft4(z+12);
TRANSFORM_ZERO(z[0],z[4],z[8],z[12]);
TRANSFORM(z[2],z[6],z[10],z[14],sqrthalf,sqrthalf);
TRANSFORM(z[1],z[5],z[9],z[13],cos_16_1,cos_16_3);
TRANSFORM(z[3],z[7],z[11],z[15],cos_16_3,cos_16_1);
}
DECL_FFT(32,16,8)
DECL_FFT(64,32,16)
DECL_FFT(128,64,32)
DECL_FFT(256,128,64)
DECL_FFT(512,256,128)
#define pass pass_big
DECL_FFT(1024,512,256)
static void (* const fft_dispatch[])(FFTComplex*) = {
fft4, fft8, fft16, fft32, fft64, fft128, fft256, fft512, fft1024,
};
void fft_calc(FFTContext *s, FFTComplex *z) {
fft_dispatch[s->nbits-2](z);
}
#include <stdlib.h>
#include <string.h>
#include "fft.h"
#include "mem.h"
/**
* init MDCT or IMDCT computation.
*/
int ff_mdct_init(FFTContext *s, int nbits, int inverse, double scale)
{
int n, n4, i;
double alpha, theta;
int tstep;
memset(s, 0, sizeof(*s));
n = 1 << nbits;
s->mdct_bits = nbits;
s->mdct_size = n;
n4 = n >> 2;
s->mdct_permutation = FF_MDCT_PERM_NONE;
if (ff_fft_init(s, s->mdct_bits - 2, inverse) < 0)
goto fail;
s->tcos = (FFTSample *)av_malloc_array(n / 2, sizeof(FFTSample));
if (!s->tcos)
goto fail;
switch (s->mdct_permutation) {
case FF_MDCT_PERM_NONE:
s->tsin = s->tcos + n4;
tstep = 1;
break;
case FF_MDCT_PERM_INTERLEAVE:
s->tsin = s->tcos + 1;
tstep = 2;
break;
default:
goto fail;
}
theta = 1.0 / 8.0 + (scale < 0 ? n4 : 0);
scale = sqrt(fabs(scale));
for (i = 0; i < n4; i++) {
alpha = 2 * M_PI * (i + theta) / n;
s->tcos[i * tstep] = -cos(alpha) * scale;
s->tsin[i * tstep] = -sin(alpha) * scale;
}
return 0;
fail:
ff_mdct_end(s);
return -1;
}
/**
* Compute the middle half of the inverse MDCT of size N = 2^nbits,
* thus excluding the parts that can be derived by symmetry
* @param output N/2 samples
* @param input N/2 samples
*/
void imdct_half(FFTContext *s, FFTSample *output, const FFTSample *input)
{
int k, n8, n4, n2, n, j;
const uint16_t *revtab = s->revtab;
const FFTSample *tcos = s->tcos;
const FFTSample *tsin = s->tsin;
const FFTSample *in1, *in2;
FFTComplex *z = (FFTComplex *)output;
n = 1 << s->mdct_bits;
n2 = n >> 1;
n4 = n >> 2;
n8 = n >> 3;
/* pre rotation */
in1 = input;
in2 = input + n2 - 1;
for (k = 0; k < n4; k++) {
j = revtab[k];
CMUL(z[j].re, z[j].im, *in2, *in1, tcos[k], tsin[k]);
in1 += 2;
in2 -= 2;
}
fft_calc(s, z);
/* post rotation + reordering */
for (k = 0; k < n8; k++) {
FFTSample r0, i0, r1, i1;
CMUL(r0, i1, z[n8 - k - 1].im, z[n8 - k - 1].re, tsin[n8 - k - 1], tcos[n8 - k - 1]);
CMUL(r1, i0, z[n8 + k].im, z[n8 + k].re, tsin[n8 + k], tcos[n8 + k]);
z[n8 - k - 1].re = r0;
z[n8 - k - 1].im = i0;
z[n8 + k].re = r1;
z[n8 + k].im = i1;
}
}
/**
* Compute inverse MDCT of size N = 2^nbits
* @param output N samples
* @param input N/2 samples
*/
void imdct_calc(FFTContext *s, FFTSample *output, const FFTSample *input)
{
int k;
int n = 1 << s->mdct_bits;
int n2 = n >> 1;
int n4 = n >> 2;
imdct_half(s, output + n4, input);
for (k = 0; k < n4; k++) {
output[k] = -output[n2 - k - 1];
output[n - k - 1] = output[n2 + k];
}
}
void ff_mdct_end(FFTContext *s)
{
av_freep(&s->tcos);
ff_fft_end(s);
}