ppsspp/GPU/Software/RasterizerRectangle.cpp

468 lines
16 KiB
C++
Raw Normal View History

// See comment in header for the purpose of the code in this file.
#include <algorithm>
#include <cmath>
#include "Common/Data/Convert/ColorConv.h"
2020-10-04 08:04:01 +00:00
#include "Common/Profiler/Profiler.h"
#include "Common/StringUtils.h"
#include "Common/Thread/ParallelLoop.h"
#include "Core/Config.h"
#include "Core/Debugger/MemBlockInfo.h"
#include "Core/MemMap.h"
#include "Core/Reporting.h"
#include "Core/System.h"
#include "GPU/GPUState.h"
#include "GPU/Common/TextureCacheCommon.h"
#include "GPU/Software/DrawPixel.h"
#include "GPU/Software/Rasterizer.h"
#include "GPU/Software/Sampler.h"
#include "GPU/Software/SoftGpu.h"
#if defined(_M_SSE)
#include <emmintrin.h>
#endif
extern DSStretch g_DarkStalkerStretch;
// For Darkstalkers hack. Ugh.
extern bool currentDialogActive;
namespace Rasterizer {
// Through mode, with the specific Darkstalker settings.
inline void DrawSinglePixel5551(u16 *pixel, const u32 color_in, const PixelFuncID &pixelID) {
u32 new_color;
if ((color_in >> 24) == 255) {
new_color = color_in & 0xFFFFFF;
} else {
const u32 old_color = RGBA5551ToRGBA8888(*pixel);
const Vec4<int> dst = Vec4<int>::FromRGBA(old_color);
Vec3<int> blended = AlphaBlendingResult(pixelID, Vec4<int>::FromRGBA(color_in), dst);
// ToRGB() always automatically clamps.
new_color = blended.ToRGB();
}
new_color |= (*pixel & 0x8000) ? 0xff000000 : 0x00000000;
*pixel = RGBA8888ToRGBA5551(new_color);
}
static inline Vec4IntResult SOFTRAST_CALL ModulateRGBA(Vec4IntArg prim_in, Vec4IntArg texcolor_in, const SamplerID &samplerID) {
Vec4<int> out;
Vec4<int> prim_color = prim_in;
Vec4<int> texcolor = texcolor_in;
#if defined(_M_SSE)
// Modulate weights slightly on the tex color, by adding one to prim and dividing by 256.
const __m128i p = _mm_slli_epi16(_mm_packs_epi32(prim_color.ivec, prim_color.ivec), 4);
const __m128i pboost = _mm_add_epi16(p, _mm_set1_epi16(1 << 4));
__m128i t = _mm_slli_epi16(_mm_packs_epi32(texcolor.ivec, texcolor.ivec), 4);
if (samplerID.useColorDoubling) {
const __m128i amask = _mm_set_epi16(-1, 0, 0, 0, -1, 0, 0, 0);
const __m128i a = _mm_and_si128(t, amask);
const __m128i rgb = _mm_andnot_si128(amask, t);
t = _mm_or_si128(_mm_slli_epi16(rgb, 1), a);
}
const __m128i b = _mm_mulhi_epi16(pboost, t);
out.ivec = _mm_unpacklo_epi16(b, _mm_setzero_si128());
#else
if (samplerID.useColorDoubling) {
Vec4<int> tex = texcolor * Vec4<int>(2, 2, 2, 1);
out = ((prim_color + Vec4<int>::AssignToAll(1)) * tex) / 256;
} else {
out = (prim_color + Vec4<int>::AssignToAll(1)) * texcolor / 256;
}
#endif
return ToVec4IntResult(out);
}
void DrawSprite(const VertexData &v0, const VertexData &v1, const RasterizerState &state) {
const u8 *texptr = state.texptr[0];
GETextureFormat texfmt = state.samplerID.TexFmt();
int texbufw = state.texbufw[0];
ScreenCoords pprime(v0.screenpos.x, v0.screenpos.y, 0);
Sampler::FetchFunc fetchFunc = Sampler::GetFetchFunc(state.samplerID);
auto &pixelID = state.pixelID;
auto &samplerID = state.samplerID;
DrawingCoords pos0 = TransformUnit::ScreenToDrawing(v0.screenpos);
// Include the ending pixel based on its center, not start.
DrawingCoords pos1 = TransformUnit::ScreenToDrawing(v1.screenpos + ScreenCoords(7, 7, 0));
DrawingCoords scissorTL(gstate.getScissorX1(), gstate.getScissorY1(), 0);
DrawingCoords scissorBR(gstate.getScissorX2(), gstate.getScissorY2(), 0);
int z = pos0.z;
int fog = 255;
bool isWhite = v1.color0 == Vec4<int>(255, 255, 255, 255);
constexpr int MIN_LINES_PER_THREAD = 32;
if (state.enableTextures) {
// 1:1 (but with mirror support) texture mapping!
int s_start = v0.texturecoords.x;
int t_start = v0.texturecoords.y;
int ds = v1.texturecoords.x > v0.texturecoords.x ? 1 : -1;
int dt = v1.texturecoords.y > v0.texturecoords.y ? 1 : -1;
if (ds < 0) {
s_start += ds;
}
if (dt < 0) {
t_start += dt;
}
// First clip the right and bottom sides, since we don't need to adjust the deltas.
if (pos1.x > scissorBR.x) pos1.x = scissorBR.x + 1;
if (pos1.y > scissorBR.y) pos1.y = scissorBR.y + 1;
// Now clip the other sides.
if (pos0.x < scissorTL.x) {
s_start += (scissorTL.x - pos0.x) * ds;
pos0.x = scissorTL.x;
}
if (pos0.y < scissorTL.y) {
t_start += (scissorTL.y - pos0.y) * dt;
pos0.y = scissorTL.y;
}
if (!pixelID.stencilTest &&
pixelID.DepthTestFunc() == GE_COMP_ALWAYS &&
!pixelID.applyLogicOp &&
!pixelID.colorTest &&
!pixelID.dithering &&
// TODO: Safe?
pixelID.AlphaTestFunc() != GE_COMP_ALWAYS &&
pixelID.alphaTestRef == 0 &&
!pixelID.hasAlphaTestMask &&
pixelID.alphaBlend &&
samplerID.useTextureAlpha &&
samplerID.TexFunc() == GE_TEXFUNC_MODULATE &&
!pixelID.applyColorWriteMask &&
pixelID.FBFormat() == GE_FORMAT_5551) {
if (isWhite) {
ParallelRangeLoop(&g_threadManager, [=](int y1, int y2) {
int t = t_start + (y1 - pos0.y) * dt;
for (int y = y1; y < y2; y++) {
int s = s_start;
u16 *pixel = fb.Get16Ptr(pos0.x, y, gstate.FrameBufStride());
for (int x = pos0.x; x < pos1.x; x++) {
u32 tex_color = Vec4<int>(fetchFunc(s, t, texptr, texbufw, 0)).ToRGBA();
if (tex_color & 0xFF000000) {
DrawSinglePixel5551(pixel, tex_color, pixelID);
}
s += ds;
pixel++;
}
t += dt;
}
}, pos0.y, pos1.y, MIN_LINES_PER_THREAD);
} else {
ParallelRangeLoop(&g_threadManager, [=](int y1, int y2) {
int t = t_start + (y1 - pos0.y) * dt;
for (int y = y1; y < y2; y++) {
int s = s_start;
u16 *pixel = fb.Get16Ptr(pos0.x, y, gstate.FrameBufStride());
for (int x = pos0.x; x < pos1.x; x++) {
Vec4<int> prim_color = v1.color0;
Vec4<int> tex_color = fetchFunc(s, t, texptr, texbufw, 0);
prim_color = Vec4<int>(ModulateRGBA(ToVec4IntArg(prim_color), ToVec4IntArg(tex_color), state.samplerID));
if (prim_color.a() > 0) {
DrawSinglePixel5551(pixel, prim_color.ToRGBA(), pixelID);
}
s += ds;
pixel++;
}
t += dt;
}
}, pos0.y, pos1.y, MIN_LINES_PER_THREAD);
}
} else {
int xoff = ((v0.screenpos.x & 15) + 1) / 2;
int yoff = ((v0.screenpos.y & 15) + 1) / 2;
float dsf = ds * (1.0f / (float)(1 << state.samplerID.width0Shift));
float dtf = dt * (1.0f / (float)(1 << state.samplerID.height0Shift));
float sf_start = s_start * (1.0f / (float)(1 << state.samplerID.width0Shift));
float tf_start = t_start * (1.0f / (float)(1 << state.samplerID.height0Shift));
ParallelRangeLoop(&g_threadManager, [=](int y1, int y2) {
float t = tf_start + (y1 - pos0.y) * dtf;
for (int y = y1; y < y2; y++) {
float s = sf_start;
// Not really that fast but faster than triangle.
for (int x = pos0.x; x < pos1.x; x++) {
Vec4<int> prim_color = state.nearest(s, t, xoff, yoff, ToVec4IntArg(v1.color0), &texptr, &texbufw, 0, 0);
state.drawPixel(x, y, z, 255, ToVec4IntArg(prim_color), pixelID);
s += dsf;
}
t += dtf;
}
}, pos0.y, pos1.y, MIN_LINES_PER_THREAD);
}
} else {
if (pos1.x > scissorBR.x) pos1.x = scissorBR.x + 1;
if (pos1.y > scissorBR.y) pos1.y = scissorBR.y + 1;
if (pos0.x < scissorTL.x) pos0.x = scissorTL.x;
if (pos0.y < scissorTL.y) pos0.y = scissorTL.y;
if (!pixelID.stencilTest &&
pixelID.DepthTestFunc() == GE_COMP_ALWAYS &&
!pixelID.applyLogicOp &&
!pixelID.colorTest &&
!pixelID.dithering &&
// TODO: Safe?
pixelID.AlphaTestFunc() != GE_COMP_ALWAYS &&
pixelID.alphaTestRef == 0 &&
!pixelID.hasAlphaTestMask &&
pixelID.alphaBlend &&
samplerID.useTextureAlpha &&
samplerID.TexFunc() == GE_TEXFUNC_MODULATE &&
!pixelID.applyColorWriteMask &&
pixelID.FBFormat() == GE_FORMAT_5551) {
if (v1.color0.a() == 0)
return;
ParallelRangeLoop(&g_threadManager, [=](int y1, int y2) {
for (int y = y1; y < y2; y++) {
u16 *pixel = fb.Get16Ptr(pos0.x, y, gstate.FrameBufStride());
for (int x = pos0.x; x < pos1.x; x++) {
Vec4<int> prim_color = v1.color0;
DrawSinglePixel5551(pixel, prim_color.ToRGBA(), pixelID);
pixel++;
}
}
}, pos0.y, pos1.y, MIN_LINES_PER_THREAD);
} else {
ParallelRangeLoop(&g_threadManager, [=](int y1, int y2) {
for (int y = y1; y < y2; y++) {
for (int x = pos0.x; x < pos1.x; x++) {
Vec4<int> prim_color = v1.color0;
state.drawPixel(x, y, z, fog, ToVec4IntArg(prim_color), pixelID);
}
}
}, pos0.y, pos1.y, MIN_LINES_PER_THREAD);
}
}
#if defined(SOFTGPU_MEMORY_TAGGING_BASIC) || defined(SOFTGPU_MEMORY_TAGGING_DETAILED)
uint32_t bpp = pixelID.FBFormat() == GE_FORMAT_8888 ? 4 : 2;
std::string tag = StringFromFormat("DisplayListR_%08x", state.listPC);
std::string ztag = StringFromFormat("DisplayListRZ_%08x", state.listPC);
for (int y = pos0.y; y < pos1.y; y++) {
uint32_t row = gstate.getFrameBufAddress() + y * gstate.FrameBufStride() * bpp;
NotifyMemInfo(MemBlockFlags::WRITE, row + pos0.x * bpp, (pos1.x - pos0.x) * bpp, tag.c_str(), tag.size());
if (pixelID.depthWrite) {
uint32_t row = gstate.getDepthBufAddress() + y * gstate.DepthBufStride() * 2;
NotifyMemInfo(MemBlockFlags::WRITE, row + pos0.x * 2, (pos1.x - pos0.x) * 2, ztag.c_str(), ztag.size());
}
}
#endif
}
bool g_needsClearAfterDialog = false;
static inline bool NoClampOrWrap(const Vec2f &tc) {
if (tc.x < 0 || tc.y < 0)
return false;
return tc.x <= gstate.getTextureWidth(0) && tc.y <= gstate.getTextureHeight(0);
}
// Returns true if the normal path should be skipped.
bool RectangleFastPath(const VertexData &v0, const VertexData &v1, const RasterizerState &state) {
g_DarkStalkerStretch = DSStretch::Off;
// Check for 1:1 texture mapping. In that case we can call DrawSprite.
int xdiff = v1.screenpos.x - v0.screenpos.x;
int ydiff = v1.screenpos.y - v0.screenpos.y;
int udiff = (v1.texturecoords.x - v0.texturecoords.x) * 16.0f;
int vdiff = (v1.texturecoords.y - v0.texturecoords.y) * 16.0f;
bool coord_check =
(xdiff == udiff || xdiff == -udiff) &&
(ydiff == vdiff || ydiff == -vdiff);
// Currently only works for TL/BR, which is the most common but not required.
bool orient_check = xdiff >= 0 && ydiff >= 0;
// We already have a fast path for clear in ClearRectangle.
bool state_check = !state.pixelID.clearMode && NoClampOrWrap(v0.texturecoords) && NoClampOrWrap(v1.texturecoords);
// TODO: No mipmap levels? Might be a font at level 1...
if ((coord_check || !state.enableTextures) && orient_check && state_check) {
Rasterizer::DrawSprite(v0, v1, state);
return true;
}
// Eliminate the stretch blit in DarkStalkers.
// We compensate for that when blitting the framebuffer in SoftGpu.cpp.
if (PSP_CoreParameter().compat.flags().DarkStalkersPresentHack && v0.texturecoords.x == 64.0f && v0.texturecoords.y == 16.0f && v1.texturecoords.x == 448.0f && v1.texturecoords.y == 240.0f) {
// check for save/load dialog.
if (!currentDialogActive) {
if (v0.screenpos.x == 0x7100 && v0.screenpos.y == 0x7780 && v1.screenpos.x == 0x8f00 && v1.screenpos.y == 0x8880) {
g_DarkStalkerStretch = DSStretch::Wide;
} else if (v0.screenpos.x == 0x7400 && v0.screenpos.y == 0x7780 && v1.screenpos.x == 0x8C00 && v1.screenpos.y == 0x8880) {
g_DarkStalkerStretch = DSStretch::Normal;
} else {
return false;
}
if (g_needsClearAfterDialog) {
g_needsClearAfterDialog = false;
// Afterwards, we also need to clear the actual destination. Can do a fast rectfill.
gstate.textureMapEnable &= ~1;
VertexData newV1 = v1;
newV1.color0 = Vec4<int>(0, 0, 0, 255);
Rasterizer::DrawSprite(v0, newV1, state);
gstate.textureMapEnable |= 1;
}
return true;
} else {
g_needsClearAfterDialog = true;
}
}
return false;
}
bool DetectRectangleFromThroughModeStrip(const VertexData data[4]) {
// We'll only do this when the color is flat.
if (!(data[0].color0 == data[1].color0))
return false;
if (!(data[1].color0 == data[2].color0))
return false;
if (!(data[2].color0 == data[3].color0))
return false;
2021-11-14 17:10:12 +00:00
// And the depth must also be flat.
if (!(data[0].screenpos.z == data[1].screenpos.z))
return false;
if (!(data[1].screenpos.z == data[2].screenpos.z))
return false;
if (!(data[2].screenpos.z == data[3].screenpos.z))
return false;
// OK, now let's look at data to detect rectangles. There are a few possibilities
// but we focus on Darkstalkers for now.
if (data[0].screenpos.x == data[1].screenpos.x &&
data[0].screenpos.y == data[2].screenpos.y &&
data[2].screenpos.x == data[3].screenpos.x &&
data[1].screenpos.y == data[3].screenpos.y &&
data[1].screenpos.y > data[0].screenpos.y &&
data[2].screenpos.x > data[0].screenpos.x) {
// Okay, this is in the shape of a triangle, but what about rotation/texture?
if (!gstate.isTextureMapEnabled())
return true;
if (data[0].texturecoords.x == data[1].texturecoords.x &&
data[0].texturecoords.y == data[2].texturecoords.y &&
data[2].texturecoords.x == data[3].texturecoords.x &&
data[1].texturecoords.y == data[3].texturecoords.y &&
data[1].texturecoords.y > data[0].texturecoords.y &&
data[2].texturecoords.x > data[0].texturecoords.x) {
// It's a rectangle!
return true;
}
return false;
}
// There's the other vertex order too...
if (data[0].screenpos.x == data[2].screenpos.x &&
data[0].screenpos.y == data[1].screenpos.y &&
data[1].screenpos.x == data[3].screenpos.x &&
data[2].screenpos.y == data[3].screenpos.y &&
data[2].screenpos.y > data[0].screenpos.y &&
data[1].screenpos.x > data[0].screenpos.x) {
// Okay, this is in the shape of a triangle, but what about rotation/texture?
if (!gstate.isTextureMapEnabled())
return true;
if (data[0].texturecoords.x == data[2].texturecoords.x &&
data[0].texturecoords.y == data[1].texturecoords.y &&
data[1].texturecoords.x == data[3].texturecoords.x &&
data[2].texturecoords.y == data[3].texturecoords.y &&
data[2].texturecoords.y > data[0].texturecoords.y &&
data[1].texturecoords.x > data[0].texturecoords.x) {
// It's a rectangle!
return true;
}
return false;
}
return false;
}
bool DetectRectangleFromThroughModeFan(const VertexData *data, int c, int *tlIndex, int *brIndex) {
// Color and Z must be flat.
for (int i = 1; i < c; ++i) {
if (!(data[i].color0 == data[0].color0))
return false;
if (!(data[i].screenpos.z == data[0].screenpos.z))
return false;
}
// Check for the common case: a single TL-TR-BR-BL.
if (c == 4) {
const auto &tl = data[0].screenpos, &tr = data[1].screenpos;
const auto &bl = data[3].screenpos, &br = data[2].screenpos;
if (tl.x == bl.x && tr.x == br.x && tl.y == tr.y && bl.y == br.y) {
// Looking like yes. Set TL/BR based on y order first...
*tlIndex = tl.y > bl.y ? 2 : 0;
*brIndex = tl.y > bl.y ? 0 : 2;
// And if it's horizontally flipped, trade to the actual TL/BR.
if (tl.x > tr.x) {
*tlIndex ^= 1;
*brIndex ^= 1;
}
// Do we need to think about rotation?
if (!gstate.isTextureMapEnabled())
return true;
const auto &textl = data[*tlIndex].texturecoords, &textr = data[*tlIndex ^ 1].texturecoords;
const auto &texbl = data[*brIndex ^ 1].texturecoords, &texbr = data[*brIndex].texturecoords;
if (textl.x == texbl.x && textr.x == texbr.x && textl.y == textr.y && texbl.y == texbr.y) {
// Okay, the texture is also good, but let's avoid rotation issues.
return textl.y < texbr.y && textl.x < texbr.x;
}
}
}
return false;
}
bool DetectRectangleSlices(const VertexData data[4]) {
// Color and Z must be flat.
for (int i = 1; i < 4; ++i) {
if (!(data[i].color0 == data[0].color0))
return false;
if (!(data[i].screenpos.z == data[0].screenpos.z))
return false;
}
// Games very commonly use vertical strips of rectangles. Detect and combine.
const auto &tl1 = data[0].screenpos, &br1 = data[1].screenpos;
const auto &tl2 = data[2].screenpos, &br2 = data[3].screenpos;
if (tl1.y == tl2.y && br1.y == br2.y && br1.y > tl1.y) {
if (br1.x == tl2.x && tl1.x < br1.x && tl2.x < br2.x) {
if (!gstate.isTextureMapEnabled() || gstate.isModeClear())
return true;
const auto &textl1 = data[0].texturecoords, &texbr1 = data[1].texturecoords;
const auto &textl2 = data[2].texturecoords, &texbr2 = data[3].texturecoords;
if (textl1.y != textl2.y || texbr1.y != texbr2.y || textl1.y > texbr1.y)
return false;
if (texbr1.x != textl2.x || textl1.x > texbr1.x || textl2.x > texbr2.x)
return false;
// We might be able to compare ratios, but let's expect 1:1.
int texdiff1 = (texbr1.x - textl1.x) * 16.0f;
int texdiff2 = (texbr2.x - textl2.x) * 16.0f;
int posdiff1 = br1.x - tl1.x;
int posdiff2 = br2.x - tl2.x;
return texdiff1 == posdiff1 && texdiff2 == posdiff2;
}
}
return false;
}
} // namespace Rasterizer