ppsspp/Core/CoreTiming.cpp

747 lines
16 KiB
C++
Raw Normal View History

2012-11-01 15:19:01 +00:00
// Copyright (c) 2012- PPSSPP Project / Dolphin Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
2012-11-01 15:19:01 +00:00
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include <atomic>
#include <climits>
#include <cstdio>
#include <cstring>
#include <mutex>
#include <set>
#include <vector>
2012-11-01 15:19:01 +00:00
2020-10-04 08:04:01 +00:00
#include "Common/Profiler/Profiler.h"
#include "Common/Serialize/Serializer.h"
#include "Common/Serialize/SerializeList.h"
#include "Core/CoreTiming.h"
#include "Core/Core.h"
#include "Core/Config.h"
#include "Core/HLE/sceKernelThread.h"
#include "Core/MIPS/MIPS.h"
2012-11-01 15:19:01 +00:00
static const int initialHz = 222000000;
2012-11-01 15:19:01 +00:00
int CPU_HZ = 222000000;
// is this really necessary?
#define INITIAL_SLICE_LENGTH 20000
#define MAX_SLICE_LENGTH 100000000
namespace CoreTiming
{
struct EventType {
2012-11-01 15:19:01 +00:00
TimedCallback callback;
const char *name;
};
static std::vector<EventType> event_types;
// Only used during restore.
static std::set<int> usedEventTypes;
static std::set<int> restoredEventTypes;
static int nextEventTypeRestoreId = -1;
2012-11-01 15:19:01 +00:00
struct BaseEvent {
2012-11-01 15:19:01 +00:00
s64 time;
u64 userdata;
int type;
};
typedef LinkedListItem<BaseEvent> Event;
Event *first;
Event *tsFirst;
Event *tsLast;
// event pools
Event *eventPool = 0;
Event *eventTsPool = 0;
int allocatedTsEvents = 0;
// Optimization to skip MoveEvents when possible.
std::atomic<u32> hasTsEvents;
2012-11-01 15:19:01 +00:00
// Downcount has been moved to currentMIPS, to save a couple of clocks in every ARM JIT block
// as we can already reach that structure through a register.
int slicelength;
2012-11-01 15:19:01 +00:00
alignas(16) s64 globalTimer;
2012-11-01 15:19:01 +00:00
s64 idledCycles;
s64 lastGlobalTimeTicks;
s64 lastGlobalTimeUs;
2012-11-01 15:19:01 +00:00
static std::mutex externalEventLock;
2012-11-01 15:19:01 +00:00
std::vector<MHzChangeCallback> mhzChangeCallbacks;
2012-11-01 15:19:01 +00:00
void FireMhzChange() {
for (MHzChangeCallback cb : mhzChangeCallbacks) {
cb();
}
}
void SetClockFrequencyHz(int cpuHz) {
2020-07-13 07:17:42 +00:00
if (cpuHz <= 0) {
// Paranoid check, protecting against division by zero and similar nonsense.
return;
}
// When the mhz changes, we keep track of what "time" it was before hand.
// This way, time always moves forward, even if mhz is changed.
lastGlobalTimeUs = GetGlobalTimeUs();
lastGlobalTimeTicks = GetTicks();
CPU_HZ = cpuHz;
2012-12-21 09:18:52 +00:00
// TODO: Rescale times of scheduled events?
FireMhzChange();
2012-11-01 15:19:01 +00:00
}
int GetClockFrequencyHz() {
return CPU_HZ;
2012-11-01 15:19:01 +00:00
}
u64 GetGlobalTimeUsScaled() {
return GetGlobalTimeUs();
2013-11-20 02:55:56 +00:00
}
u64 GetGlobalTimeUs() {
2013-11-20 02:55:56 +00:00
s64 ticksSinceLast = GetTicks() - lastGlobalTimeTicks;
int freq = GetClockFrequencyHz();
s64 usSinceLast = ticksSinceLast * 1000000 / freq;
if (ticksSinceLast > UINT_MAX) {
// Adjust the calculated value to avoid overflow errors.
lastGlobalTimeUs += usSinceLast;
lastGlobalTimeTicks = GetTicks();
usSinceLast = 0;
}
2013-11-20 02:55:56 +00:00
return lastGlobalTimeUs + usSinceLast;
}
2012-11-01 15:19:01 +00:00
Event* GetNewEvent()
{
if(!eventPool)
return new Event;
Event* ev = eventPool;
eventPool = ev->next;
return ev;
}
Event* GetNewTsEvent()
{
allocatedTsEvents++;
if(!eventTsPool)
return new Event;
Event* ev = eventTsPool;
eventTsPool = ev->next;
return ev;
}
void FreeEvent(Event* ev)
{
ev->next = eventPool;
eventPool = ev;
}
void FreeTsEvent(Event* ev)
{
ev->next = eventTsPool;
eventTsPool = ev;
allocatedTsEvents--;
}
int RegisterEvent(const char *name, TimedCallback callback) {
for (const auto &ty : event_types) {
if (!strcmp(ty.name, name)) {
_assert_msg_(false, "Event type %s already registered", name);
// Try to make sure it doesn't work so we notice for sure.
return -1;
}
}
int id = (int)event_types.size();
event_types.push_back(EventType{ callback, name });
usedEventTypes.insert(id);
return id;
2012-11-01 15:19:01 +00:00
}
void AntiCrashCallback(u64 userdata, int cyclesLate) {
ERROR_LOG(SAVESTATE, "Savestate broken: an unregistered event was called.");
Core_EnableStepping(true, "savestate.crash", 0);
}
void RestoreRegisterEvent(int &event_type, const char *name, TimedCallback callback) {
// Some old states have a duplicate restore, do our best to fix...
if (restoredEventTypes.count(event_type) != 0)
event_type = -1;
if (event_type == -1)
event_type = nextEventTypeRestoreId++;
if (event_type >= (int)event_types.size()) {
// Give it any unused event id starting from the end.
// Older save states with messed up ids have gaps near the end.
for (int i = (int)event_types.size() - 1; i >= 0; --i) {
if (usedEventTypes.count(i) == 0) {
event_type = i;
break;
}
}
}
_assert_msg_(event_type >= 0 && event_type < (int)event_types.size(), "Invalid event type %d", event_type);
event_types[event_type] = EventType{ callback, name };
usedEventTypes.insert(event_type);
restoredEventTypes.insert(event_type);
}
void UnregisterAllEvents() {
_dbg_assert_msg_(first == nullptr, "Unregistering events with events pending - this isn't good.");
2012-11-01 15:19:01 +00:00
event_types.clear();
usedEventTypes.clear();
restoredEventTypes.clear();
2012-11-01 15:19:01 +00:00
}
void Init()
{
currentMIPS->downcount = INITIAL_SLICE_LENGTH;
2012-11-01 15:19:01 +00:00
slicelength = INITIAL_SLICE_LENGTH;
globalTimer = 0;
idledCycles = 0;
lastGlobalTimeTicks = 0;
lastGlobalTimeUs = 0;
hasTsEvents = 0;
mhzChangeCallbacks.clear();
CPU_HZ = initialHz;
2012-11-01 15:19:01 +00:00
}
void Shutdown()
{
MoveEvents();
ClearPendingEvents();
UnregisterAllEvents();
while (eventPool) {
2012-11-01 15:19:01 +00:00
Event *ev = eventPool;
eventPool = ev->next;
delete ev;
}
std::lock_guard<std::mutex> lk(externalEventLock);
while (eventTsPool) {
2012-11-01 15:19:01 +00:00
Event *ev = eventTsPool;
eventTsPool = ev->next;
delete ev;
}
}
2023-05-01 11:48:04 +00:00
2012-11-01 15:19:01 +00:00
u64 GetTicks()
{
if (currentMIPS) {
return (u64)globalTimer + slicelength - currentMIPS->downcount;
} else {
// Reporting can actually end up here during weird task switching sequences on Android
return false;
}
2012-11-01 15:19:01 +00:00
}
u64 GetIdleTicks()
{
return (u64)idledCycles;
}
// This is to be called when outside threads, such as the graphics thread, wants to
// schedule things to be executed on the main thread.
2013-01-05 21:44:30 +00:00
void ScheduleEvent_Threadsafe(s64 cyclesIntoFuture, int event_type, u64 userdata)
2012-11-01 15:19:01 +00:00
{
std::lock_guard<std::mutex> lk(externalEventLock);
2012-11-01 15:19:01 +00:00
Event *ne = GetNewTsEvent();
ne->time = GetTicks() + cyclesIntoFuture;
2012-11-01 15:19:01 +00:00
ne->type = event_type;
ne->next = 0;
ne->userdata = userdata;
if(!tsFirst)
tsFirst = ne;
if(tsLast)
tsLast->next = ne;
tsLast = ne;
hasTsEvents.store(1, std::memory_order::memory_order_release);
2012-11-01 15:19:01 +00:00
}
// Same as ScheduleEvent_Threadsafe(0, ...) EXCEPT if we are already on the CPU thread
// in which case the event will get handled immediately, before returning.
void ScheduleEvent_Threadsafe_Immediate(int event_type, u64 userdata)
{
if(false) //Core::IsCPUThread())
{
std::lock_guard<std::mutex> lk(externalEventLock);
2012-11-01 15:19:01 +00:00
event_types[event_type].callback(userdata, 0);
}
else
ScheduleEvent_Threadsafe(0, event_type, userdata);
}
void ClearPendingEvents()
{
while (first)
{
Event *e = first->next;
FreeEvent(first);
first = e;
}
}
void AddEventToQueue(Event* ne)
{
Event* prev = NULL;
Event** pNext = &first;
for(;;)
{
Event*& next = *pNext;
if(!next || ne->time < next->time)
{
ne->next = next;
next = ne;
break;
}
prev = next;
pNext = &prev->next;
}
}
// This must be run ONLY from within the cpu thread
// cyclesIntoFuture may be VERY inaccurate if called from anything else
2016-08-27 18:38:05 +00:00
// than Advance
2013-01-05 21:44:30 +00:00
void ScheduleEvent(s64 cyclesIntoFuture, int event_type, u64 userdata)
2012-11-01 15:19:01 +00:00
{
Event *ne = GetNewEvent();
ne->userdata = userdata;
ne->type = event_type;
ne->time = GetTicks() + cyclesIntoFuture;
2012-11-01 15:19:01 +00:00
AddEventToQueue(ne);
}
2012-11-19 03:13:39 +00:00
// Returns cycles left in timer.
s64 UnscheduleEvent(int event_type, u64 userdata)
{
s64 result = 0;
if (!first)
2012-11-19 03:13:39 +00:00
return result;
while(first)
{
if (first->type == event_type && first->userdata == userdata)
{
result = first->time - GetTicks();
2012-11-19 03:13:39 +00:00
Event *next = first->next;
FreeEvent(first);
first = next;
}
else
{
break;
}
}
if (!first)
2012-11-19 03:13:39 +00:00
return result;
Event *prev = first;
Event *ptr = prev->next;
while (ptr)
{
if (ptr->type == event_type && ptr->userdata == userdata)
{
result = ptr->time - GetTicks();
2012-11-19 03:13:39 +00:00
prev->next = ptr->next;
FreeEvent(ptr);
ptr = prev->next;
}
else
{
prev = ptr;
ptr = ptr->next;
}
}
2012-11-19 03:13:39 +00:00
return result;
}
s64 UnscheduleThreadsafeEvent(int event_type, u64 userdata)
{
s64 result = 0;
std::lock_guard<std::mutex> lk(externalEventLock);
if (!tsFirst)
return result;
while(tsFirst)
{
if (tsFirst->type == event_type && tsFirst->userdata == userdata)
{
result = tsFirst->time - GetTicks();
Event *next = tsFirst->next;
FreeTsEvent(tsFirst);
tsFirst = next;
}
else
{
break;
}
}
if (!tsFirst)
2013-08-05 07:22:47 +00:00
{
tsLast = NULL;
return result;
2013-08-05 07:22:47 +00:00
}
Event *prev = tsFirst;
Event *ptr = prev->next;
while (ptr)
{
if (ptr->type == event_type && ptr->userdata == userdata)
{
result = ptr->time - GetTicks();
prev->next = ptr->next;
2013-08-05 07:22:47 +00:00
if (ptr == tsLast)
tsLast = prev;
FreeTsEvent(ptr);
ptr = prev->next;
}
else
{
prev = ptr;
ptr = ptr->next;
}
}
return result;
}
void RegisterMHzChangeCallback(MHzChangeCallback callback) {
mhzChangeCallbacks.push_back(callback);
}
2016-08-27 18:38:05 +00:00
bool IsScheduled(int event_type)
2012-11-01 15:19:01 +00:00
{
if (!first)
return false;
Event *e = first;
while (e) {
if (e->type == event_type)
return true;
e = e->next;
}
return false;
}
void RemoveEvent(int event_type)
{
if (!first)
return;
while(first)
{
if (first->type == event_type)
{
Event *next = first->next;
FreeEvent(first);
first = next;
}
else
{
break;
}
}
if (!first)
return;
Event *prev = first;
Event *ptr = prev->next;
while (ptr)
{
if (ptr->type == event_type)
{
prev->next = ptr->next;
FreeEvent(ptr);
ptr = prev->next;
}
else
{
prev = ptr;
ptr = ptr->next;
}
}
}
void RemoveThreadsafeEvent(int event_type)
{
std::lock_guard<std::mutex> lk(externalEventLock);
2012-11-01 15:19:01 +00:00
if (!tsFirst)
{
return;
}
while(tsFirst)
{
if (tsFirst->type == event_type)
{
Event *next = tsFirst->next;
FreeTsEvent(tsFirst);
tsFirst = next;
}
else
{
break;
}
}
if (!tsFirst)
{
2013-08-05 07:22:47 +00:00
tsLast = NULL;
2012-11-01 15:19:01 +00:00
return;
}
Event *prev = tsFirst;
Event *ptr = prev->next;
while (ptr)
{
if (ptr->type == event_type)
2016-08-27 18:38:05 +00:00
{
2012-11-01 15:19:01 +00:00
prev->next = ptr->next;
2013-08-05 07:22:47 +00:00
if (ptr == tsLast)
tsLast = prev;
2012-11-01 15:19:01 +00:00
FreeTsEvent(ptr);
ptr = prev->next;
}
else
{
prev = ptr;
ptr = ptr->next;
}
}
}
void RemoveAllEvents(int event_type)
2013-08-05 07:22:47 +00:00
{
2012-11-01 15:19:01 +00:00
RemoveThreadsafeEvent(event_type);
RemoveEvent(event_type);
}
//This raise only the events required while the fifo is processing data
void ProcessFifoWaitEvents()
{
while (first)
{
if (first->time <= (s64)GetTicks())
2012-11-01 15:19:01 +00:00
{
// LOG(CPU, "[Scheduler] %s (%lld, %lld) ",
// first->name ? first->name : "?", (u64)GetTicks(), (u64)first->time);
2012-11-01 15:19:01 +00:00
Event* evt = first;
first = first->next;
event_types[evt->type].callback(evt->userdata, (int)(GetTicks() - evt->time));
2012-11-01 15:19:01 +00:00
FreeEvent(evt);
}
else
{
break;
}
}
2012-11-01 15:19:01 +00:00
}
void MoveEvents()
{
hasTsEvents.store(0, std::memory_order::memory_order_release);
std::lock_guard<std::mutex> lk(externalEventLock);
2013-08-05 07:22:47 +00:00
// Move events from async queue into main queue
2012-11-01 15:19:01 +00:00
while (tsFirst)
{
Event *next = tsFirst->next;
AddEventToQueue(tsFirst);
tsFirst = next;
}
tsLast = NULL;
// Move free events to threadsafe pool
while(allocatedTsEvents > 0 && eventPool)
{
2012-11-01 15:19:01 +00:00
Event *ev = eventPool;
eventPool = ev->next;
ev->next = eventTsPool;
eventTsPool = ev;
allocatedTsEvents--;
}
}
void ForceCheck()
{
2016-05-13 19:02:23 +00:00
int cyclesExecuted = slicelength - currentMIPS->downcount;
globalTimer += cyclesExecuted;
// This will cause us to check for new events immediately.
currentMIPS->downcount = -1;
2013-09-22 00:04:05 +00:00
// But let's not eat a bunch more time in Advance() because of this.
slicelength = -1;
2017-06-05 03:08:17 +00:00
#ifdef _DEBUG
_dbg_assert_msg_( cyclesExecuted >= 0, "Shouldn't have a negative cyclesExecuted");
2017-06-05 03:08:17 +00:00
#endif
}
void Advance() {
PROFILE_THIS_SCOPE("advance");
int cyclesExecuted = slicelength - currentMIPS->downcount;
2012-11-01 15:19:01 +00:00
globalTimer += cyclesExecuted;
currentMIPS->downcount = slicelength;
2012-11-01 15:19:01 +00:00
if (hasTsEvents.load(std::memory_order_acquire))
MoveEvents();
2013-02-24 18:23:31 +00:00
ProcessFifoWaitEvents();
if (!first) {
// This should never happen in PPSSPP.
if (slicelength < 10000) {
slicelength += 10000;
currentMIPS->downcount += 10000;
}
} else {
// Note that events can eat cycles as well.
int target = (int)(first->time - globalTimer);
if (target > MAX_SLICE_LENGTH)
target = MAX_SLICE_LENGTH;
const int diff = target - slicelength;
slicelength += diff;
currentMIPS->downcount += diff;
2012-11-01 15:19:01 +00:00
}
}
void LogPendingEvents() {
2012-11-01 15:19:01 +00:00
Event *ptr = first;
while (ptr) {
2017-06-05 03:08:17 +00:00
//INFO_LOG(CPU, "PENDING: Now: %lld Pending: %lld Type: %d", globalTimer, ptr->time, ptr->type);
2012-11-01 15:19:01 +00:00
ptr = ptr->next;
}
}
void Idle(int maxIdle) {
int cyclesDown = currentMIPS->downcount;
2012-11-01 15:19:01 +00:00
if (maxIdle != 0 && cyclesDown > maxIdle)
cyclesDown = maxIdle;
if (first && cyclesDown > 0) {
int cyclesExecuted = slicelength - currentMIPS->downcount;
int cyclesNextEvent = (int) (first->time - globalTimer);
if (cyclesNextEvent < cyclesExecuted + cyclesDown)
cyclesDown = cyclesNextEvent - cyclesExecuted;
}
// Now, now... no time machines, please.
if (cyclesDown < 0)
cyclesDown = 0;
// VERBOSE_LOG(CPU, "Idle for %i cycles! (%f ms)", cyclesDown, cyclesDown / (float)(CPU_HZ * 0.001f));
2012-11-01 15:19:01 +00:00
idledCycles += cyclesDown;
currentMIPS->downcount -= cyclesDown;
if (currentMIPS->downcount == 0)
currentMIPS->downcount = -1;
2012-11-01 15:19:01 +00:00
}
std::string GetScheduledEventsSummary() {
2012-11-01 15:19:01 +00:00
Event *ptr = first;
std::string text = "Scheduled events\n";
text.reserve(1000);
while (ptr) {
2012-11-01 15:19:01 +00:00
unsigned int t = ptr->type;
if (t >= event_types.size()) {
_dbg_assert_msg_(false, "Invalid event type %d", t);
ptr = ptr->next;
continue;
}
const char *name = event_types[t].name;
2012-11-01 15:19:01 +00:00
if (!name)
name = "[unknown]";
char temp[512];
snprintf(temp, sizeof(temp), "%s : %i %08x%08x\n", name, (int)ptr->time, (u32)(ptr->userdata >> 32), (u32)(ptr->userdata));
2012-11-01 15:19:01 +00:00
text += temp;
ptr = ptr->next;
}
return text;
}
void Event_DoState(PointerWrap &p, BaseEvent *ev)
{
// There may be padding, so do each one individually.
Do(p, ev->time);
Do(p, ev->userdata);
Do(p, ev->type);
usedEventTypes.insert(ev->type);
}
void Event_DoStateOld(PointerWrap &p, BaseEvent *ev)
{
Do(p, *ev);
usedEventTypes.insert(ev->type);
}
void DoState(PointerWrap &p) {
std::lock_guard<std::mutex> lk(externalEventLock);
auto s = p.Section("CoreTiming", 1, 3);
if (!s)
return;
int n = (int)event_types.size();
int current = n;
Do(p, n);
if (n > current) {
WARN_LOG(SAVESTATE, "Savestate failure: more events than current (can't ever remove an event)");
p.SetError(p.ERROR_FAILURE);
return;
}
// These (should) be filled in later by the modules.
for (int i = 0; i < current; ++i) {
event_types[i].callback = AntiCrashCallback;
event_types[i].name = "INVALID EVENT";
}
nextEventTypeRestoreId = n - 1;
usedEventTypes.clear();
restoredEventTypes.clear();
if (s >= 3) {
DoLinkedList<BaseEvent, GetNewEvent, FreeEvent, Event_DoState>(p, first, (Event **) NULL);
DoLinkedList<BaseEvent, GetNewTsEvent, FreeTsEvent, Event_DoState>(p, tsFirst, &tsLast);
} else {
DoLinkedList<BaseEvent, GetNewEvent, FreeEvent, Event_DoStateOld>(p, first, (Event **) NULL);
DoLinkedList<BaseEvent, GetNewTsEvent, FreeTsEvent, Event_DoStateOld>(p, tsFirst, &tsLast);
}
Do(p, CPU_HZ);
Do(p, slicelength);
Do(p, globalTimer);
Do(p, idledCycles);
if (s >= 2) {
Do(p, lastGlobalTimeTicks);
Do(p, lastGlobalTimeUs);
} else {
lastGlobalTimeTicks = 0;
lastGlobalTimeUs = 0;
}
FireMhzChange();
}
2012-11-01 15:19:01 +00:00
} // namespace