ppsspp/Core/MemMap.h

570 lines
15 KiB
C
Raw Normal View History

2012-11-01 15:19:01 +00:00
// Copyright (C) 2003 Dolphin Project / 2012 PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
2012-11-01 15:19:01 +00:00
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
2012-11-01 15:19:01 +00:00
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official SVN repository and contact information can be found at
// http://code.google.com/p/dolphin-emu/
#pragma once
2012-11-01 15:19:01 +00:00
#include "ppsspp_config.h"
#include <cstring>
2019-02-13 17:00:57 +00:00
#include <cstdint>
#ifndef offsetof
#include <stddef.h>
#endif
2012-11-01 15:19:01 +00:00
#include "Common/CommonTypes.h"
2017-08-31 15:13:18 +00:00
#include "Common/Swap.h"
#include "Core/Opcode.h"
2012-11-01 15:19:01 +00:00
// PPSSPP is very aggressive about trying to do memory accesses directly, for speed.
// This can be a problem when debugging though, as stray memory reads and writes will
// crash the whole emulator.
// If safe memory is enabled and JIT is disabled, all memory access will go through the proper
// memory access functions, and thus won't crash the emu when they go out of bounds.
#if defined(_DEBUG)
//#define SAFE_MEMORY
2012-11-01 15:19:01 +00:00
#endif
2012-11-01 15:19:01 +00:00
// Global declarations
class PointerWrap;
typedef void (*writeFn8 )(const u8, const u32);
typedef void (*writeFn16)(const u16,const u32);
typedef void (*writeFn32)(const u32,const u32);
typedef void (*writeFn64)(const u64,const u32);
typedef void (*readFn8 )(u8&, const u32);
2012-11-01 15:19:01 +00:00
typedef void (*readFn16)(u16&, const u32);
typedef void (*readFn32)(u32&, const u32);
typedef void (*readFn64)(u64&, const u32);
2020-07-04 18:30:33 +00:00
namespace Memory {
2012-11-01 15:19:01 +00:00
// Base is a pointer to the base of the memory map. Yes, some MMU tricks
// are used to set up a full GC or Wii memory map in process memory. on
2012-11-01 15:19:01 +00:00
// 32-bit, you have to mask your offsets with 0x3FFFFFFF. This means that
// some things are mirrored too many times, but eh... it works.
// In 64-bit, this might point to "high memory" (above the 32-bit limit),
// so be sure to load it into a 64-bit register.
extern u8 *base;
// This replaces RAM_NORMAL_SIZE at runtime.
2013-07-17 21:49:57 +00:00
extern u32 g_MemorySize;
extern u32 g_PSPModel;
// UWP has such limited memory management that we need to mask
// even in 64-bit mode. Also, when using the sanitizer, we need to mask as well.
#if PPSSPP_ARCH(32BIT) || PPSSPP_PLATFORM(UWP) || USE_ASAN || PPSSPP_PLATFORM(IOS) || defined(__EMSCRIPTEN__)
#define MASKED_PSP_MEMORY
#endif
2012-11-01 15:19:01 +00:00
enum
{
// This may be adjusted by remaster games.
RAM_NORMAL_SIZE = 0x02000000,
// Used if the PSP model is PSP-2000 (Slim).
RAM_DOUBLE_SIZE = RAM_NORMAL_SIZE * 2,
VRAM_SIZE = 0x00200000,
2012-11-01 15:19:01 +00:00
SCRATCHPAD_SIZE = 0x00004000,
2012-11-01 15:19:01 +00:00
#ifdef MASKED_PSP_MEMORY
// This wraparound should work for PSP too.
MEMVIEW32_MASK = 0x3FFFFFFF,
2012-11-01 15:19:01 +00:00
#endif
};
enum {
MV_MIRROR_PREVIOUS = 1,
MV_IS_PRIMARY_RAM = 0x100,
MV_IS_EXTRA1_RAM = 0x200,
MV_IS_EXTRA2_RAM = 0x400,
MV_KERNEL = 0x800 // Can be skipped on platforms where memory is tight.
};
struct MemoryView
{
u8 **out_ptr;
u32 virtual_address;
u32 size;
u32 flags;
};
// Uses a memory arena to set up an emulator-friendly memory map
bool MemoryMap_Setup(u32 flags);
void MemoryMap_Shutdown(u32 flags);
2012-11-01 15:19:01 +00:00
// Init and Shutdown
bool Init();
2012-11-01 15:19:01 +00:00
void Shutdown();
void DoState(PointerWrap &p);
void Clear();
2016-05-20 04:17:17 +00:00
// False when shutdown has already been called.
bool IsActive();
2012-11-01 15:19:01 +00:00
class MemoryInitedLock {
public:
MemoryInitedLock();
~MemoryInitedLock();
};
// This doesn't lock memory access or anything, it just makes sure memory isn't freed.
// Use it when accessing PSP memory from external threads.
MemoryInitedLock Lock();
// used by JIT to read instructions. Does not resolve replacements.
Opcode Read_Opcode_JIT(const u32 _Address);
// used by JIT. Reads in the "Locked cache" mode
void Write_Opcode_JIT(const u32 _Address, const Opcode& _Value);
2012-11-01 15:19:01 +00:00
// Should be used by analyzers, disassemblers etc. Does resolve replacements.
Opcode Read_Instruction(const u32 _Address, bool resolveReplacements = false);
Opcode ReadUnchecked_Instruction(const u32 _Address, bool resolveReplacements = false);
2012-11-01 15:19:01 +00:00
u8 Read_U8(const u32 _Address);
2012-11-01 15:19:01 +00:00
u16 Read_U16(const u32 _Address);
u32 Read_U32(const u32 _Address);
u64 Read_U64(const u32 _Address);
inline u8* GetPointerWriteUnchecked(const u32 address) {
#ifdef MASKED_PSP_MEMORY
2013-08-10 23:46:21 +00:00
return (u8 *)(base + (address & MEMVIEW32_MASK));
#else
return (u8 *)(base + address);
#endif
}
2012-11-01 15:19:01 +00:00
inline const u8* GetPointerUnchecked(const u32 address) {
#ifdef MASKED_PSP_MEMORY
return (const u8 *)(base + (address & MEMVIEW32_MASK));
#else
return (const u8 *)(base + address);
#endif
}
inline u32 ReadUnchecked_U32(const u32 address) {
#ifdef MASKED_PSP_MEMORY
return *(u32_le *)(base + (address & MEMVIEW32_MASK));
2012-11-01 15:19:01 +00:00
#else
return *(u32_le *)(base + address);
#endif
}
2016-05-08 00:03:11 +00:00
inline float ReadUnchecked_Float(const u32 address) {
#ifdef MASKED_PSP_MEMORY
return *(float_le *)(base + (address & MEMVIEW32_MASK));
2016-05-08 00:03:11 +00:00
#else
return *(float_le *)(base + address);
2016-05-08 00:03:11 +00:00
#endif
}
inline u16 ReadUnchecked_U16(const u32 address) {
#ifdef MASKED_PSP_MEMORY
2013-08-17 06:48:08 +00:00
return *(u16_le *)(base + (address & MEMVIEW32_MASK));
2012-11-01 15:19:01 +00:00
#else
2013-08-17 06:48:08 +00:00
return *(u16_le *)(base + address);
2012-11-01 15:19:01 +00:00
#endif
}
inline u8 ReadUnchecked_U8(const u32 address) {
#ifdef MASKED_PSP_MEMORY
return (*(u8 *)(base + (address & MEMVIEW32_MASK)));
#else
return (*(u8 *)(base + address));
#endif
}
inline void WriteUnchecked_U32(u32 data, u32 address) {
#ifdef MASKED_PSP_MEMORY
2013-08-17 06:48:08 +00:00
*(u32_le *)(base + (address & MEMVIEW32_MASK)) = data;
#else
2013-08-17 06:48:08 +00:00
*(u32_le *)(base + address) = data;
#endif
}
2016-05-08 00:03:11 +00:00
inline void WriteUnchecked_Float(float data, u32 address) {
#ifdef MASKED_PSP_MEMORY
*(float_le *)(base + (address & MEMVIEW32_MASK)) = data;
2016-05-08 00:03:11 +00:00
#else
*(float_le *)(base + address) = data;
2016-05-08 00:03:11 +00:00
#endif
}
inline void WriteUnchecked_U16(u16 data, u32 address) {
#ifdef MASKED_PSP_MEMORY
2013-08-17 06:48:08 +00:00
*(u16_le *)(base + (address & MEMVIEW32_MASK)) = data;
#else
2013-08-17 06:48:08 +00:00
*(u16_le *)(base + address) = data;
#endif
}
inline void WriteUnchecked_U8(u8 data, u32 address) {
#ifdef MASKED_PSP_MEMORY
(*(u8 *)(base + (address & MEMVIEW32_MASK))) = data;
#else
(*(u8 *)(base + address)) = data;
#endif
}
2012-11-01 15:19:01 +00:00
inline float Read_Float(u32 address)
{
u32 ifloat = Read_U32(address);
float f;
memcpy(&f, &ifloat, sizeof(float));
return f;
2012-11-01 15:19:01 +00:00
}
// used by JIT. Return zero-extended 32bit values
u32 Read_U8_ZX(const u32 address);
u32 Read_U16_ZX(const u32 address);
void Write_U8(const u8 data, const u32 address);
void Write_U16(const u16 data, const u32 address);
void Write_U32(const u32 data, const u32 address);
void Write_U64(const u64 data, const u32 address);
inline void Write_Float(float f, u32 address)
{
u32 u;
memcpy(&u, &f, sizeof(float));
Write_U32(u, address);
2012-11-01 15:19:01 +00:00
}
u8* GetPointerWrite(const u32 address);
const u8* GetPointer(const u32 address);
u8 *GetPointerWriteRange(const u32 address, const u32 size);
const u8 *GetPointerRange(const u32 address, const u32 size);
bool IsRAMAddress(const u32 address);
inline bool IsVRAMAddress(const u32 address) {
return ((address & 0x3F800000) == 0x04000000);
}
inline bool IsDepthTexVRAMAddress(const u32 address) {
return ((address & 0x3FE00000) == 0x04200000) || ((address & 0x3FE00000) == 0x04600000);
}
// 0x08000000 -> 0x08800000
inline bool IsKernelAddress(const u32 address) {
return ((address & 0x3F800000) == 0x08000000);
}
// 0x08000000 -> 0x08400000
inline bool IsKernelAndNotVolatileAddress(const u32 address) {
return ((address & 0x3FC00000) == 0x08000000);
}
bool IsScratchpadAddress(const u32 address);
2012-11-01 15:19:01 +00:00
2020-07-04 18:30:33 +00:00
inline void MemcpyUnchecked(void *to_data, const u32 from_address, const u32 len) {
memcpy(to_data, GetPointerUnchecked(from_address), len);
2013-08-10 23:46:21 +00:00
}
2020-07-04 18:30:33 +00:00
inline void MemcpyUnchecked(const u32 to_address, const void *from_data, const u32 len) {
memcpy(GetPointerWriteUnchecked(to_address), from_data, len);
2013-08-10 23:46:21 +00:00
}
2020-07-04 18:30:33 +00:00
inline void MemcpyUnchecked(const u32 to_address, const u32 from_address, const u32 len) {
2023-01-01 19:48:03 +00:00
MemcpyUnchecked(GetPointerWriteUnchecked(to_address), from_address, len);
2013-08-10 23:46:21 +00:00
}
2013-11-11 23:18:49 +00:00
inline bool IsValidAddress(const u32 address) {
if ((address & 0x3E000000) == 0x08000000) {
return true;
} else if ((address & 0x3F800000) == 0x04000000) {
return true;
} else if ((address & 0xBFFFC000) == 0x00010000) {
return true;
} else if ((address & 0x3F000000) >= 0x08000000 && (address & 0x3F000000) < 0x08000000 + g_MemorySize) {
return true;
} else {
return false;
}
}
inline bool IsValid4AlignedAddress(const u32 address) {
if ((address & 0x3E000003) == 0x08000000) {
return true;
} else if ((address & 0x3F800003) == 0x04000000) {
return true;
} else if ((address & 0xBFFFC003) == 0x00010000) {
return true;
} else if ((address & 0x3F000000) >= 0x08000000 && (address & 0x3F000000) < 0x08000000 + g_MemorySize) {
return (address & 3) == 0;
} else {
return false;
}
}
inline u32 MaxSizeAtAddress(const u32 address){
if ((address & 0x3E000000) == 0x08000000) {
return 0x08000000 + g_MemorySize - (address & 0x3FFFFFFF);
} else if ((address & 0x3F800000) == 0x04000000) {
return 0x04800000 - (address & 0x3FFFFFFF);
} else if ((address & 0xBFFFC000) == 0x00010000) {
return 0x00014000 - (address & 0x3FFFFFFF);
} else if ((address & 0x3F000000) >= 0x08000000 && (address & 0x3F000000) < 0x08000000 + g_MemorySize) {
return 0x08000000 + g_MemorySize - (address & 0x3FFFFFFF);
} else {
return 0;
2013-11-11 23:18:49 +00:00
}
}
inline const char *GetCharPointerUnchecked(const u32 address) {
return (const char *)GetPointerUnchecked(address);
}
// NOTE: Unlike the similar IsValidRange/IsValidAddress functions, this one is linear cost vs the size of the string,
// for hopefully-obvious reasons.
inline bool IsValidNullTerminatedString(const u32 address) {
u32 max_size = MaxSizeAtAddress(address);
if (max_size == 0) {
return false;
}
const char *c = GetCharPointerUnchecked(address);
if (memchr(c, '\0', max_size)) {
return true;
}
return false;
}
inline u32 ValidSize(const u32 address, const u32 requested_size) {
u32 max_size = MaxSizeAtAddress(address);
if (requested_size > max_size) {
return max_size;
}
return requested_size;
}
// NOTE: If size == 0, any address will be accepted. This may not be ideal for all cases.
inline bool IsValidRange(const u32 address, const u32 size) {
return ValidSize(address, size) == size;
2013-11-11 23:18:49 +00:00
}
// Used for auto-converted char * parameters, which can sometimes legitimately be null -
// so we don't want to get caught in GetPointer's crash reporting
// TODO: This should use IsValidNullTerminatedString, but may be expensive since this is used so much - needs evaluation.
inline const char *GetCharPointer(const u32 address) {
if (address && IsValidAddress(address)) {
return GetCharPointerUnchecked(address);
} else {
return nullptr;
}
}
2020-07-04 18:30:33 +00:00
} // namespace Memory
2012-11-01 15:19:01 +00:00
// Avoiding a global include for NotifyMemInfo.
void PSPPointerNotifyRW(int rw, uint32_t ptr, uint32_t bytes, const char *tag, size_t tagLen);
template <typename T>
struct PSPPointer
{
u32_le ptr;
inline T &operator*() const
{
#ifdef MASKED_PSP_MEMORY
return *(T *)(Memory::base + (ptr & Memory::MEMVIEW32_MASK));
#else
2013-09-23 19:51:34 +00:00
return *(T *)(Memory::base + ptr);
#endif
}
inline T &operator[](int i) const
{
#ifdef MASKED_PSP_MEMORY
return *((T *)(Memory::base + (ptr & Memory::MEMVIEW32_MASK)) + i);
#else
return *((T *)(Memory::base + ptr) + i);
#endif
}
inline T *operator->() const
{
#ifdef MASKED_PSP_MEMORY
return (T *)(Memory::base + (ptr & Memory::MEMVIEW32_MASK));
#else
return (T *)(Memory::base + ptr);
#endif
}
inline PSPPointer<T> operator+(int i) const
{
PSPPointer other;
other.ptr = ptr + i * sizeof(T);
return other;
}
inline PSPPointer<T> &operator=(u32 p)
{
ptr = p;
return *this;
}
inline PSPPointer<T> &operator+=(int i)
{
ptr = ptr + i * sizeof(T);
return *this;
}
inline PSPPointer<T> operator-(int i) const
{
PSPPointer other;
other.ptr = ptr - i * sizeof(T);
return other;
}
inline PSPPointer<T> &operator-=(int i)
{
ptr = ptr - i * sizeof(T);
return *this;
}
inline PSPPointer<T> &operator++()
{
ptr += sizeof(T);
return *this;
}
inline PSPPointer<T> operator++(int i)
{
PSPPointer<T> other;
other.ptr = ptr;
ptr += sizeof(T);
return other;
}
inline PSPPointer<T> &operator--()
{
ptr -= sizeof(T);
return *this;
}
inline PSPPointer<T> operator--(int i)
{
PSPPointer<T> other;
other.ptr = ptr;
ptr -= sizeof(T);
return other;
}
inline operator T*()
{
#ifdef MASKED_PSP_MEMORY
return (T *)(Memory::base + (ptr & Memory::MEMVIEW32_MASK));
#else
return (T *)(Memory::base + ptr);
#endif
}
inline operator const T*() const
{
#ifdef MASKED_PSP_MEMORY
return (const T *)(Memory::base + (ptr & Memory::MEMVIEW32_MASK));
#else
return (const T *)(Memory::base + ptr);
#endif
}
bool IsValid() const {
return Memory::IsValidRange(ptr, (u32)sizeof(T));
}
T *PtrOrNull() {
if (IsValid())
return (T *)*this;
return nullptr;
}
const T *PtrOrNull() const {
if (IsValid())
return (const T *)*this;
return nullptr;
}
template <size_t tagLen>
void NotifyWrite(const char(&tag)[tagLen]) const {
PSPPointerNotifyRW(1, (uint32_t)ptr, (uint32_t)sizeof(T), tag, tagLen - 1);
}
template <size_t tagLen>
void NotifyRead(const char(&tag)[tagLen]) const {
PSPPointerNotifyRW(2, (uint32_t)ptr, (uint32_t)sizeof(T), tag, tagLen - 1);
}
size_t ElementSize() const
{
return sizeof(T);
}
static PSPPointer<T> Create(u32 ptr) {
PSPPointer<T> p;
p = ptr;
return p;
}
};
constexpr u32 PSP_GetScratchpadMemoryBase() { return 0x00010000;}
constexpr u32 PSP_GetScratchpadMemoryEnd() { return 0x00014000;}
constexpr u32 PSP_GetKernelMemoryBase() { return 0x08000000;}
inline u32 PSP_GetUserMemoryEnd() { return PSP_GetKernelMemoryBase() + Memory::g_MemorySize;}
constexpr u32 PSP_GetKernelMemoryEnd() { return 0x08400000;}
// "Volatile" RAM is between 0x08400000 and 0x08800000, can be requested by the
// game through sceKernelVolatileMemTryLock.
constexpr u32 PSP_GetVolatileMemoryStart() { return 0x08400000; }
constexpr u32 PSP_GetVolatileMemoryEnd() { return 0x08800000; }
constexpr u32 PSP_GetUserMemoryBase() { return 0x08800000; }
constexpr u32 PSP_GetDefaultLoadAddress() { return 0; }
constexpr u32 PSP_GetVidMemBase() { return 0x04000000; }
constexpr u32 PSP_GetVidMemEnd() { return 0x04800000; }
template <typename T>
2020-07-04 18:30:33 +00:00
inline bool operator==(const PSPPointer<T> &lhs, const PSPPointer<T> &rhs) {
return lhs.ptr == rhs.ptr;
}
template <typename T>
2020-07-04 18:30:33 +00:00
inline bool operator!=(const PSPPointer<T> &lhs, const PSPPointer<T> &rhs) {
return lhs.ptr != rhs.ptr;
}
template <typename T>
2020-07-04 18:30:33 +00:00
inline bool operator<(const PSPPointer<T> &lhs, const PSPPointer<T> &rhs) {
return lhs.ptr < rhs.ptr;
}
template <typename T>
2020-07-04 18:30:33 +00:00
inline bool operator>(const PSPPointer<T> &lhs, const PSPPointer<T> &rhs) {
return lhs.ptr > rhs.ptr;
}
template <typename T>
2020-07-04 18:30:33 +00:00
inline bool operator<=(const PSPPointer<T> &lhs, const PSPPointer<T> &rhs) {
return lhs.ptr <= rhs.ptr;
}
template <typename T>
2020-07-04 18:30:33 +00:00
inline bool operator>=(const PSPPointer<T> &lhs, const PSPPointer<T> &rhs) {
return lhs.ptr >= rhs.ptr;
}