ppsspp/GPU/Common/SplineCommon.cpp

645 lines
22 KiB
C++
Raw Normal View History

// Copyright (c) 2013- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#include <string.h>
#include <algorithm>
#include "profiler/profiler.h"
#include "Common/CPUDetect.h"
#include "Common/MemoryUtil.h"
#include "GPU/Common/GPUStateUtils.h"
#include "GPU/Common/SplineCommon.h"
2015-04-08 21:44:54 +02:00
#include "GPU/Common/DrawEngineCommon.h"
#include "GPU/ge_constants.h"
#include "GPU/GPUState.h" // only needed for UVScale stuff
static void CopyQuadIndex(u16 *&indices, GEPatchPrimType type, const int idx0, const int idx1, const int idx2, const int idx3) {
if (type == GE_PATCHPRIM_LINES) {
*(indices++) = idx0;
*(indices++) = idx2;
*(indices++) = idx1;
*(indices++) = idx3;
*(indices++) = idx1;
*(indices++) = idx2;
} else {
*(indices++) = idx0;
*(indices++) = idx2;
*(indices++) = idx1;
*(indices++) = idx1;
*(indices++) = idx2;
*(indices++) = idx3;
}
}
static void BuildIndex(u16 *indices, int &count, int num_u, int num_v, GEPatchPrimType prim_type, int total) {
for (int v = 0; v < num_v; ++v) {
for (int u = 0; u < num_u; ++u) {
int idx0 = v * (num_u + 1) + u + total; // Top left
int idx2 = (v + 1) * (num_u + 1) + u + total; // Bottom left
CopyQuadIndex(indices, prim_type, idx0, idx0 + 1, idx2, idx2 + 1);
count += 6;
}
}
}
class Bezier3DWeight {
private:
void CalcWeights(float t, Weight &w) {
// Bernstein 3D basis polynomial
w.basis[0] = (1 - t) * (1 - t) * (1 - t);
w.basis[1] = 3 * t * (1 - t) * (1 - t);
w.basis[2] = 3 * t * t * (1 - t);
w.basis[3] = t * t * t;
// Derivative
w.deriv[0] = -3 * (1 - t) * (1 - t);
w.deriv[1] = 9 * t * t - 12 * t + 3;
w.deriv[2] = 3 * (2 - 3 * t) * t;
w.deriv[3] = 3 * t * t;
}
public:
Weight *CalcWeightsAll(u32 key) {
int tess = (int)key;
Weight *weights = new Weight[tess + 1];
const float inv_tess = 1.0f / (float)tess;
for (int i = 0; i < tess + 1; ++i) {
const float t = (float)i * inv_tess;
CalcWeights(t, weights[i]);
}
return weights;
}
u32 ToKey(int tess, int count, int type) {
return tess;
}
int CalcSize(int tess, int count) {
return tess + 1;
}
};
class Spline3DWeight {
private:
struct KnotDiv {
float _3_0 = 1.0f / 3.0f;
float _4_1 = 1.0f / 3.0f;
float _5_2 = 1.0f / 3.0f;
float _3_1 = 1.0f / 2.0f;
float _4_2 = 1.0f / 2.0f;
float _3_2 = 1.0f; // Always 1
};
// knot should be an array sized n + 5 (n + 1 + 1 + degree (cubic))
void CalcKnots(int n, int type, float *knots, KnotDiv *divs) {
// Basic theory (-2 to +3), optimized with KnotDiv (-2 to +0)
// for (int i = 0; i < n + 5; ++i) {
for (int i = 0; i < n + 2; ++i) {
knots[i] = (float)i - 2;
}
2018-01-31 20:25:07 +09:00
// The first edge is open
if ((type & 1) != 0) {
knots[0] = 0;
knots[1] = 0;
2018-01-31 20:25:07 +09:00
divs[0]._3_0 = 1.0f;
divs[0]._4_1 = 1.0f / 2.0f;
divs[0]._3_1 = 1.0f;
if (n > 1)
divs[1]._3_0 = 1.0f / 2.0f;
}
// The last edge is open
if ((type & 2) != 0) {
// knots[n + 2] = (float)n; // Got rid of this line optimized with KnotDiv
// knots[n + 3] = (float)n; // Got rid of this line optimized with KnotDiv
// knots[n + 4] = (float)n; // Got rid of this line optimized with KnotDiv
divs[n - 1]._4_1 = 1.0f / 2.0f;
divs[n - 1]._5_2 = 1.0f;
divs[n - 1]._4_2 = 1.0f;
if (n > 1)
divs[n - 2]._5_2 = 1.0f / 2.0f;
}
2018-01-31 20:25:07 +09:00
}
void CalcWeights(float t, const float *knots, const KnotDiv &div, Weight &w) {
#ifdef _M_SSE
const __m128 knot012 = _mm_loadu_ps(knots);
const __m128 t012 = _mm_sub_ps(_mm_set_ps1(t), knot012);
const __m128 f30_41_52 = _mm_mul_ps(t012, _mm_loadu_ps(&div._3_0));
const __m128 f52_31_42 = _mm_mul_ps(t012, _mm_loadu_ps(&div._5_2));
const float &f32 = t012.m128_f32[2];
// Following comments are for explains order of the multiply.
// float a = (1-f30)*(1-f31);
// float c = (1-f41)*(1-f42);
// float b = ( f31 * f41);
// float d = ( f42 * f52);
const __m128 f30_41_31_42 = _mm_shuffle_ps(f30_41_52, f52_31_42, _MM_SHUFFLE(2, 1, 1, 0));
const __m128 f31_42_41_52 = _mm_shuffle_ps(f52_31_42, f30_41_52, _MM_SHUFFLE(2, 1, 2, 1));
const __m128 c1_1_0_0 = { 1, 1, 0, 0 };
const __m128 acbd = _mm_mul_ps(_mm_sub_ps(c1_1_0_0, f30_41_31_42), _mm_sub_ps(c1_1_0_0, f31_42_41_52));
const float &a = acbd.m128_f32[0];
const float &b = acbd.m128_f32[2];
const float &c = acbd.m128_f32[1];
const float &d = acbd.m128_f32[3];
// For derivative
const float &f31 = f30_41_31_42.m128_f32[2];
const float &f42 = f30_41_31_42.m128_f32[3];
#else
// TODO: Maybe compilers could be coaxed into vectorizing this code without the above explicitly...
float t0 = (t - knots[0]);
float t1 = (t - knots[1]);
float t2 = (t - knots[2]);
float f30 = t0 * div._3_0;
float f41 = t1 * div._4_1;
float f52 = t2 * div._5_2;
float f31 = t1 * div._3_1;
float f42 = t2 * div._4_2;
float f32 = t2 * div._3_2;
float a = (1 - f30) * (1 - f31);
float b = (f31 * f41);
float c = (1 - f41) * (1 - f42);
float d = (f42 * f52);
#endif
w.basis[0] = a * (1 - f32); // (1-f30)*(1-f31)*(1-f32)
w.basis[1] = 1 - a - b + ((a + b + c - 1) * f32);
w.basis[2] = b + ((1 - b - c - d) * f32);
w.basis[3] = d * f32; // f32*f42*f52
// Derivative
float i1 = (1 - f31) * (1 - f32);
float i2 = f31 * (1 - f32) + (1 - f42) * f32;
float i3 = f42 * f32;
float f130 = i1 * div._3_0;
float f241 = i2 * div._4_1;
float f352 = i3 * div._5_2;
w.deriv[0] = 3 * (0 - f130);
w.deriv[1] = 3 * (f130 - f241);
w.deriv[2] = 3 * (f241 - f352);
w.deriv[3] = 3 * (f352 - 0);
}
public:
Weight *CalcWeightsAll(u32 key) {
int tess, count, type;
FromKey(key, tess, count, type);
const int num_patches = count - 3;
Weight *weights = new Weight[tess * num_patches + 1];
// float *knots = new float[num_patches + 5];
float *knots = new float[num_patches + 2]; // Optimized with KnotDiv, must use +5 in theory
KnotDiv *divs = new KnotDiv[num_patches];
CalcKnots(num_patches, type, knots, divs);
const float inv_tess = 1.0f / (float)tess;
for (int i = 0; i < num_patches; ++i) {
const int _tess = (i == num_patches - 1) ? (tess + 1) : tess;
for (int j = 0; j < _tess; ++j) {
const int index = i * tess + j;
const float t = (float)index * inv_tess;
CalcWeights(t, knots + i, divs[i], weights[index]);
}
}
delete[] knots;
delete[] divs;
return weights;
}
u32 ToKey(int tess, int count, int type) {
return tess | (count << 8) | (type << 16);
}
void FromKey(u32 key, int &tess, int &count, int &type) {
tess = key & 0xFF; count = (key >> 8) & 0xFF; type = (key >> 16) & 0xFF;
}
int CalcSize(int tess, int count) {
return (count - 3) * tess + 1;
}
};
static WeightCache<Bezier3DWeight> bezierWeightsCache;
static WeightCache<Spline3DWeight> splineWeightsCache;
void DrawEngineCommon::ClearSplineBezierWeights() {
bezierWeightsCache.Clear();
splineWeightsCache.Clear();
}
bool CanUseHardwareTessellation(GEPatchPrimType prim) {
if (g_Config.bHardwareTessellation && !g_Config.bSoftwareRendering) {
return CanUseHardwareTransform(PatchPrimToPrim(prim));
}
return false;
}
// Tessellate single patch (4x4 control points)
template<typename T>
class Tessellator {
private:
const T *const p[4]; // T p[v][u]; 4x4 control points
T u[4]; // Pre-tessellated U lines
public:
Tessellator(const T *p, const int idx[4]) : p{ p + idx[0], p + idx[1], p + idx[2], p + idx[3] } {}
// Linear combination
T Sample(const T p[4], const float w[4]) {
return p[0] * w[0] + p[1] * w[1] + p[2] * w[2] + p[3] * w[3];
}
void SampleEdgeU(int idx) {
u[0] = p[0][idx];
u[1] = p[1][idx];
u[2] = p[2][idx];
u[3] = p[3][idx];
}
void SampleU(const float weights[4]) {
if (weights[0] == 1.0f) { SampleEdgeU(0); return; } // weights = {1,0,0,0}, first edge is open.
if (weights[3] == 1.0f) { SampleEdgeU(3); return; } // weights = {0,0,0,1}, last edge is open.
u[0] = Sample(p[0], weights);
u[1] = Sample(p[1], weights);
u[2] = Sample(p[2], weights);
u[3] = Sample(p[3], weights);
}
T SampleV(const float weights[4]) {
if (weights[0] == 1.0f) return u[0]; // weights = {1,0,0,0}, first edge is open.
if (weights[3] == 1.0f) return u[3]; // weights = {0,0,0,1}, last edge is open.
return Sample(u, weights);
}
};
class SimpleBufferManager {
private:
u8 *buf_;
size_t totalSize, maxSize_;
public:
SimpleBufferManager(u8 *buf, size_t maxSize)
: buf_(buf), totalSize(0), maxSize_(maxSize) {}
u8 *Allocate(size_t size) {
size = (size + 15) & ~15; // Align for 16 bytes
if ((totalSize + size) > maxSize_)
return nullptr; // No more memory
size_t tmp = totalSize;
totalSize += size;
return buf_ + tmp;
}
};
template<class Patch>
class SubdivisionSurface {
private:
Vec3f *pos;
Vec4f *col;
Vec2f *tex;
u32_le defcolor;
const Patch &patch;
const Weight2D &weights;
public:
SubdivisionSurface(SimpleBufferManager &managedBuf, const SimpleVertex *const *points, const Patch &patch, const Weight2D &weights)
: patch(patch), weights(weights)
{
int size = patch.count_u * patch.count_v;
pos = (Vec3f *)managedBuf.Allocate(sizeof(Vec3f) * size);
tex = (Vec2f *)managedBuf.Allocate(sizeof(Vec2f) * size);
col = (Vec4f *)managedBuf.Allocate(sizeof(Vec4f) * size);
for (int idx = 0; idx < size; ++idx) {
pos[idx] = Vec3f(points[idx]->pos);
tex[idx] = Vec2f(points[idx]->uv);
col[idx] = Vec4f::FromRGBA(points[idx]->color_32);
}
defcolor = points[0]->color_32;
}
template <bool sampleNrm, bool sampleCol, bool sampleTex, bool useSSE4>
void Tessellate(SimpleVertex *vertices, u16 *indices, int &count) {
const float inv_u = 1.0f / (float)patch.tess_u;
const float inv_v = 1.0f / (float)patch.tess_v;
for (int patch_u = 0; patch_u < patch.num_patches_u; ++patch_u) {
const int tess_u = patch.GetTessU(patch_u);
for (int patch_v = 0; patch_v < patch.num_patches_v; ++patch_v) {
const int tess_v = patch.GetTessV(patch_v);
// Prepare 4x4 control points to tessellate
const int idx = patch.GetPointIndex(patch_u, patch_v);
const int idx_v[4] = { idx, idx + patch.count_u, idx + patch.count_u * 2, idx + patch.count_u * 3 };
Tessellator<Vec3f> tess_pos(pos, idx_v);
Tessellator<Vec4f> tess_col(col, idx_v);
Tessellator<Vec2f> tess_tex(tex, idx_v);
Tessellator<Vec3f> tess_nrm(pos, idx_v);
for (int tile_u = 0; tile_u < tess_u; ++tile_u) {
const int index_u = patch.GetIndexU(patch_u, tile_u);
const Weight &wu = weights.u[index_u];
// Pre-tessellate U lines
tess_pos.SampleU(wu.basis);
if (sampleCol)
tess_col.SampleU(wu.basis);
if (sampleTex)
tess_tex.SampleU(wu.basis);
if (sampleNrm)
tess_nrm.SampleU(wu.deriv);
for (int tile_v = 0; tile_v < tess_v; ++tile_v) {
const int index_v = patch.GetIndexV(patch_v, tile_v);
const Weight &wv = weights.v[index_v];
SimpleVertex &vert = vertices[patch.GetIndex(index_u, index_v, patch_u, patch_v)];
// Tessellate
vert.pos = tess_pos.SampleV(wv.basis);
if (sampleCol) {
vert.color_32 = tess_col.SampleV(wv.basis).ToRGBA();
} else {
vert.color_32 = defcolor;
}
if (sampleTex) {
tess_tex.SampleV(wv.basis).Write(vert.uv);
} else {
// Generate texcoord
vert.uv[0] = patch_u + tile_u * inv_u;
vert.uv[1] = patch_v + tile_v * inv_v;
}
if (sampleNrm) {
const Vec3f derivU = tess_nrm.SampleV(wv.basis);
const Vec3f derivV = tess_pos.SampleV(wv.deriv);
vert.nrm = Cross(derivU, derivV).Normalized(useSSE4);
if (patch.patchFacing)
vert.nrm *= -1.0f;
} else {
vert.nrm.SetZero();
}
}
}
}
}
patch.BuildIndex(indices, count);
}
// Define class TemplateParameterDispatcherTess
TEMPLATE_PARAMETER_DISPATCHER(Tess, SubdivisionSurface::Tessellate);
void Tessellate(SimpleVertex *vertices, u16 *indices, int &count, u32 origVertType) {
using TessFunc = void(SubdivisionSurface::*)(SimpleVertex *, u16 *, int &);
constexpr int NumParams = 4;
static TemplateParameterDispatcherTess<TessFunc, NumParams> dispatcher; // Initialize only once
const bool params[NumParams] = {
(origVertType & GE_VTYPE_NRM_MASK) != 0,
(origVertType & GE_VTYPE_COL_MASK) != 0,
(origVertType & GE_VTYPE_TC_MASK) != 0,
cpu_info.bSSE4_1,
};
TessFunc func = dispatcher.GetFunc(params);
(this->*func)(vertices, indices, count);
}
};
template<class Patch, class Cache>
static void SoftwareTessellation(SimpleVertex *vertices, u16 *indices, int &count, const Patch &patch, u32 origVertType,
const SimpleVertex *const *points, SimpleBufferManager &managedBuf, Cache &weightsCache) {
u32 key_u = weightsCache.ToKey(patch.tess_u, patch.count_u, patch.type_u);
u32 key_v = weightsCache.ToKey(patch.tess_v, patch.count_v, patch.type_v);
Weight2D weights(weightsCache, key_u, key_v);
SubdivisionSurface<Patch> surface(managedBuf, points, patch, weights);
surface.Tessellate(vertices, indices, count, origVertType);
}
template<class Patch, class Cache>
static void HardwareTessellation(SimpleVertex *vertices, u16 *indices, int &count, const Patch &patch, u32 origVertType,
const SimpleVertex *const *points, Cache &weightsCache, TessellationDataTransfer *tessDataTransfer) {
u32 key_u = weightsCache.ToKey(patch.tess_u, patch.count_u, patch.type_u);
u32 key_v = weightsCache.ToKey(patch.tess_v, patch.count_v, patch.type_v);
Weight2D weights(weightsCache, key_u, key_v);
weights.size_u = weightsCache.CalcSize(patch.tess_u, patch.count_u);
weights.size_v = weightsCache.CalcSize(patch.tess_v, patch.count_v);
tessDataTransfer->SendDataToShader(points, patch.count_u * patch.count_v, origVertType, weights);
// Generating simple input vertices for the spline-computing vertex shader.
float inv_u = 1.0f / (float)patch.tess_u;
float inv_v = 1.0f / (float)patch.tess_v;
for (int tile_v = 0; tile_v <= patch.tess_v; ++tile_v) {
for (int tile_u = 0; tile_u <= patch.tess_u; ++tile_u) {
SimpleVertex &vert = vertices[tile_v * (patch.tess_u + 1) + tile_u];
vert.pos.x = (float)tile_u;
vert.pos.y = (float)tile_v;
// For texcoord generation
vert.nrm.x = (float)tile_u * inv_u;
vert.nrm.y = (float)tile_v * inv_v;
}
}
BuildIndex(indices, count, patch.tess_u, patch.tess_v, patch.primType);
}
void DrawEngineCommon::SubmitSpline(const void *control_points, const void *indices, int tess_u, int tess_v, int count_u, int count_v, int type_u, int type_v, GEPatchPrimType prim_type, bool computeNormals, bool patchFacing, u32 vertType, int *bytesRead) {
PROFILE_THIS_SCOPE("spline");
2015-04-08 21:44:54 +02:00
DispatchFlush();
2018-01-30 11:26:32 +09:00
// Real hardware seems to draw nothing when given < 4 either U or V.
if (count_u < 4 || count_v < 4)
return;
SimpleBufferManager managedBuf(decoded, DECODED_VERTEX_BUFFER_SIZE);
2015-04-08 21:44:54 +02:00
u16 index_lower_bound = 0;
u16 index_upper_bound = count_u * count_v - 1;
IndexConverter ConvertIndex(vertType, indices);
2015-04-08 21:44:54 +02:00
if (indices)
GetIndexBounds(indices, count_u * count_v, vertType, &index_lower_bound, &index_upper_bound);
2015-04-08 21:44:54 +02:00
VertexDecoder *origVDecoder = GetVertexDecoder((vertType & 0xFFFFFF) | (gstate.getUVGenMode() << 24));
*bytesRead = count_u * count_v * origVDecoder->VertexSize();
2015-04-08 21:44:54 +02:00
// Simplify away bones and morph before proceeding
2018-01-30 18:10:11 +09:00
SimpleVertex *simplified_control_points = (SimpleVertex *)managedBuf.Allocate(sizeof(SimpleVertex) * (index_upper_bound + 1));
u8 *temp_buffer = managedBuf.Allocate(sizeof(SimpleVertex) * count_u * count_v);
2015-04-08 21:44:54 +02:00
u32 origVertType = vertType;
vertType = NormalizeVertices((u8 *)simplified_control_points, temp_buffer, (u8 *)control_points, index_lower_bound, index_upper_bound, vertType);
VertexDecoder *vdecoder = GetVertexDecoder(vertType);
int vertexSize = vdecoder->VertexSize();
if (vertexSize != sizeof(SimpleVertex)) {
ERROR_LOG(G3D, "Something went really wrong, vertex size: %i vs %i", vertexSize, (int)sizeof(SimpleVertex));
}
2018-02-02 17:36:02 +09:00
// If specified as 0, uses 1.
if (tess_u < 1) tess_u = 1;
if (tess_v < 1) tess_v = 1;
2015-04-08 21:44:54 +02:00
// Make an array of pointers to the control points, to get rid of indices.
2018-06-27 23:37:21 +09:00
const SimpleVertex **points = (const SimpleVertex **)managedBuf.Allocate(sizeof(SimpleVertex *) * count_u * count_v);
for (int idx = 0; idx < count_u * count_v; idx++)
points[idx] = simplified_control_points + (indices ? ConvertIndex(idx) : idx);
2015-04-08 21:44:54 +02:00
int count = 0;
u8 *dest = splineBuffer;
SplinePatchLocal patch;
patch.tess_u = tess_u;
patch.tess_v = tess_v;
2015-04-08 21:44:54 +02:00
patch.type_u = type_u;
patch.type_v = type_v;
patch.count_u = count_u;
patch.count_v = count_v;
patch.num_patches_u = count_u - 3;
patch.num_patches_v = count_v - 3;
patch.primType = prim_type;
patch.patchFacing = patchFacing;
2015-04-08 21:44:54 +02:00
if (CanUseHardwareTessellation(prim_type)) {
HardwareTessellation((SimpleVertex *)splineBuffer, quadIndices_, count, patch, origVertType, points, splineWeightsCache, tessDataTransfer);
numPatches = patch.num_patches_u * patch.num_patches_v;
} else {
patch.Init(SPLINE_BUFFER_SIZE / vertexSize);
SoftwareTessellation((SimpleVertex *)splineBuffer, quadIndices_, count, patch, origVertType, points, managedBuf, splineWeightsCache);
}
2015-04-08 21:44:54 +02:00
u32 vertTypeWithIndex16 = (vertType & ~GE_VTYPE_IDX_MASK) | GE_VTYPE_IDX_16BIT;
UVScale prevUVScale;
if ((origVertType & GE_VTYPE_TC_MASK) != 0) {
2015-04-08 21:44:54 +02:00
// We scaled during Normalize already so let's turn it off when drawing.
prevUVScale = gstate_c.uv;
gstate_c.uv.uScale = 1.0f;
gstate_c.uv.vScale = 1.0f;
gstate_c.uv.uOff = 0.0f;
gstate_c.uv.vOff = 0.0f;
2015-04-08 21:44:54 +02:00
}
uint32_t vertTypeID = GetVertTypeID(vertTypeWithIndex16, gstate.getUVGenMode());
int generatedBytesRead;
DispatchSubmitPrim(splineBuffer, quadIndices_, PatchPrimToPrim(prim_type), count, vertTypeID, &generatedBytesRead);
2015-04-08 21:44:54 +02:00
DispatchFlush();
if ((origVertType & GE_VTYPE_TC_MASK) != 0) {
2015-04-08 21:44:54 +02:00
gstate_c.uv = prevUVScale;
}
}
void DrawEngineCommon::SubmitBezier(const void *control_points, const void *indices, int tess_u, int tess_v, int count_u, int count_v, GEPatchPrimType prim_type, bool computeNormals, bool patchFacing, u32 vertType, int *bytesRead) {
PROFILE_THIS_SCOPE("bezier");
2015-04-08 21:44:54 +02:00
DispatchFlush();
2018-01-30 11:26:32 +09:00
// Real hardware seems to draw nothing when given < 4 either U or V.
// This would result in num_patches_u / num_patches_v being 0.
if (count_u < 4 || count_v < 4)
return;
SimpleBufferManager managedBuf(decoded, DECODED_VERTEX_BUFFER_SIZE);
2015-04-08 21:44:54 +02:00
u16 index_lower_bound = 0;
u16 index_upper_bound = count_u * count_v - 1;
IndexConverter ConvertIndex(vertType, indices);
2015-04-08 21:44:54 +02:00
if (indices)
GetIndexBounds(indices, count_u*count_v, vertType, &index_lower_bound, &index_upper_bound);
VertexDecoder *origVDecoder = GetVertexDecoder((vertType & 0xFFFFFF) | (gstate.getUVGenMode() << 24));
*bytesRead = count_u * count_v * origVDecoder->VertexSize();
2015-04-08 21:44:54 +02:00
// Simplify away bones and morph before proceeding
// There are normally not a lot of control points so just splitting decoded should be reasonably safe, although not great.
2018-01-30 18:10:11 +09:00
SimpleVertex *simplified_control_points = (SimpleVertex *)managedBuf.Allocate(sizeof(SimpleVertex) * (index_upper_bound + 1));
u8 *temp_buffer = managedBuf.Allocate(sizeof(SimpleVertex) * count_u * count_v);
2015-04-08 21:44:54 +02:00
u32 origVertType = vertType;
vertType = NormalizeVertices((u8 *)simplified_control_points, temp_buffer, (u8 *)control_points, index_lower_bound, index_upper_bound, vertType);
VertexDecoder *vdecoder = GetVertexDecoder(vertType);
int vertexSize = vdecoder->VertexSize();
if (vertexSize != sizeof(SimpleVertex)) {
ERROR_LOG(G3D, "Something went really wrong, vertex size: %i vs %i", vertexSize, (int)sizeof(SimpleVertex));
}
2018-01-30 14:41:39 +09:00
// If specified as 0, uses 1.
if (tess_u < 1) tess_u = 1;
if (tess_v < 1) tess_v = 1;
// Make an array of pointers to the control points, to get rid of indices.
2018-06-27 23:37:21 +09:00
const SimpleVertex **points = (const SimpleVertex **)managedBuf.Allocate(sizeof(SimpleVertex *) * count_u * count_v);
for (int idx = 0; idx < count_u * count_v; idx++)
points[idx] = simplified_control_points + (indices ? ConvertIndex(idx) : idx);
2018-01-30 14:41:39 +09:00
int count = 0;
u8 *dest = splineBuffer;
u16 *inds = quadIndices_;
BezierPatch patch;
patch.tess_u = tess_u;
patch.tess_v = tess_v;
patch.count_u = count_u;
patch.count_v = count_v;
patch.num_patches_u = (count_u - 1) / 3;
patch.num_patches_v = (count_v - 1) / 3;
patch.primType = prim_type;
patch.patchFacing = patchFacing;
if (CanUseHardwareTessellation(prim_type)) {
HardwareTessellation((SimpleVertex *)splineBuffer, quadIndices_, count, patch, origVertType, points, bezierWeightsCache, tessDataTransfer);
numPatches = patch.num_patches_u * patch.num_patches_v;
} else {
patch.Init(SPLINE_BUFFER_SIZE / vertexSize);
SoftwareTessellation((SimpleVertex *)splineBuffer, quadIndices_, count, patch, origVertType, points, managedBuf, bezierWeightsCache);
2015-04-08 21:44:54 +02:00
}
u32 vertTypeWithIndex16 = (vertType & ~GE_VTYPE_IDX_MASK) | GE_VTYPE_IDX_16BIT;
UVScale prevUVScale;
if (origVertType & GE_VTYPE_TC_MASK) {
2015-04-08 21:44:54 +02:00
// We scaled during Normalize already so let's turn it off when drawing.
prevUVScale = gstate_c.uv;
gstate_c.uv.uScale = 1.0f;
gstate_c.uv.vScale = 1.0f;
gstate_c.uv.uOff = 0;
gstate_c.uv.vOff = 0;
}
uint32_t vertTypeID = GetVertTypeID(vertTypeWithIndex16, gstate.getUVGenMode());
int generatedBytesRead;
DispatchSubmitPrim(splineBuffer, quadIndices_, PatchPrimToPrim(prim_type), count, vertTypeID, &generatedBytesRead);
2015-04-08 21:44:54 +02:00
DispatchFlush();
if (origVertType & GE_VTYPE_TC_MASK) {
2015-04-08 21:44:54 +02:00
gstate_c.uv = prevUVScale;
}
}