ppsspp/GPU/Math3D.h

536 lines
12 KiB
C
Raw Normal View History

2012-11-01 15:19:01 +00:00
// Copyright (c) 2012- PPSSPP Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
2012-11-01 15:19:01 +00:00
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official git repository and contact information can be found at
// https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
#pragma once
#include <cmath>
2013-07-25 12:58:40 +00:00
template<typename T>
class Vec2
{
public:
struct
{
T x,y;
};
T* AsArray() { return &x; }
Vec2() {}
Vec2(const T a[2]) : x(a[0]), y(a[1]) {}
Vec2(const T& _x, const T& _y) : x(_x), y(_y) {}
template<typename T2>
Vec2<T2> Cast() const
{
return Vec2<T2>((T2)x, (T2)y);
}
2013-07-25 12:58:40 +00:00
static Vec2 AssignToAll(const T& f)
{
return Vec2<T>(f, f);
}
void Write(T a[2])
{
a[0] = x; a[1] = y;
}
Vec2 operator +(const Vec2& other) const
{
return Vec2(x+other.x, y+other.y);
}
void operator += (const Vec2 &other)
{
x+=other.x; y+=other.y;
}
Vec2 operator -(const Vec2& other) const
{
return Vec2(x-other.x, y-other.y);
}
void operator -= (const Vec2& other)
{
x-=other.x; y-=other.y;
}
Vec2 operator -() const
{
return Vec2(-x,-y);
}
Vec2 operator * (const Vec2& other) const
2013-07-25 12:58:40 +00:00
{
return Vec2(x*other.x, y*other.y);
}
template<typename V>
Vec2 operator * (const V& f) const
{
return Vec2(x*f,y*f);
}
template<typename V>
void operator *= (const V& f)
{
x*=f; y*=f;
}
template<typename V>
Vec2 operator / (const V& f) const
{
return Vec2(x/f,y/f);
}
template<typename V>
void operator /= (const V& f)
{
*this = *this / f;
}
T Length2() const
{
return x*x + y*y;
}
// Only implemented for T=float
float Length() const;
void SetLength(const float l);
Vec2 WithLength(const float l) const;
float Distance2To(Vec2 &other);
Vec2 Normalized() const;
float Normalize(); // returns the previous length, which is often useful
T& operator [] (int i) //allow vector[1] = 3 (vector.y=3)
{
return *((&x) + i);
}
T operator [] (const int i) const
{
return *((&x) + i);
}
Vec2 Lerp(const Vec2 &other, const float t) const
{
return (*this)*(1-t) + other*t;
}
void SetZero()
{
x=0; y=0;
}
// Common aliases: UV (texel coordinates), ST (texture coordinates)
T& u() { return x; }
T& v() { return y; }
T& s() { return x; }
T& t() { return y; }
const T& u() const { return x; }
const T& v() const { return y; }
const T& s() const { return x; }
const T& t() const { return y; }
// swizzlers - create a subvector of specific components
Vec2 yx() const { return Vec2(y, x); }
Vec2 vu() const { return Vec2(y, x); }
Vec2 ts() const { return Vec2(y, x); }
2013-07-25 12:58:40 +00:00
};
template<typename T, typename V>
Vec2<T> operator * (const V& f, const Vec2<T>& vec)
{
return Vec2<T>(f*vec.x,f*vec.y);
}
typedef Vec2<float> Vec2f;
template<typename T>
2012-11-01 15:19:01 +00:00
class Vec3
{
public:
struct
2012-11-01 15:19:01 +00:00
{
T x,y,z;
2012-11-01 15:19:01 +00:00
};
T* AsArray() { return &x; }
2012-11-01 15:19:01 +00:00
Vec3() {}
Vec3(const T a[3]) : x(a[0]), y(a[1]), z(a[2]) {}
Vec3(const T& _x, const T& _y, const T& _z) : x(_x), y(_y), z(_z) {}
template<typename T2>
Vec3<T2> Cast() const
{
return Vec3<T2>((T2)x, (T2)y, (T2)z);
}
// Only implemented for T=int and T=float
static Vec3 FromRGB(unsigned int rgb);
unsigned int ToRGB() const; // alpha bits set to zero
static Vec3 AssignToAll(const T& f)
{
return Vec3<T>(f, f, f);
}
void Write(T a[3])
2012-11-01 15:19:01 +00:00
{
a[0] = x; a[1] = y; a[2] = z;
}
2012-11-01 15:19:01 +00:00
Vec3 operator +(const Vec3 &other) const
{
return Vec3(x+other.x, y+other.y, z+other.z);
}
void operator += (const Vec3 &other)
{
x+=other.x; y+=other.y; z+=other.z;
}
Vec3 operator -(const Vec3 &other) const
{
return Vec3(x-other.x, y-other.y, z-other.z);
}
void operator -= (const Vec3 &other)
{
x-=other.x; y-=other.y; z-=other.z;
}
Vec3 operator -() const
{
return Vec3(-x,-y,-z);
}
Vec3 operator * (const Vec3 &other) const
2012-11-01 15:19:01 +00:00
{
return Vec3(x*other.x, y*other.y, z*other.z);
}
template<typename V>
Vec3 operator * (const V& f) const
2012-11-01 15:19:01 +00:00
{
return Vec3(x*f,y*f,z*f);
}
template<typename V>
void operator *= (const V& f)
2012-11-01 15:19:01 +00:00
{
x*=f; y*=f; z*=f;
}
template<typename V>
Vec3 operator / (const V& f) const
2012-11-01 15:19:01 +00:00
{
return Vec3(x/f,y/f,z/f);
2012-11-01 15:19:01 +00:00
}
template<typename V>
void operator /= (const V& f)
2012-11-01 15:19:01 +00:00
{
*this = *this / f;
}
T Length2() const
2012-11-01 15:19:01 +00:00
{
return x*x + y*y + z*z;
}
// Only implemented for T=float
float Length() const;
void SetLength(const float l);
Vec3 WithLength(const float l) const;
float Distance2To(Vec3 &other);
Vec3 Normalized() const;
float Normalize(); // returns the previous length, which is often useful
T& operator [] (int i) //allow vector[2] = 3 (vector.z=3)
2012-11-01 15:19:01 +00:00
{
return *((&x) + i);
}
T operator [] (const int i) const
2012-11-01 15:19:01 +00:00
{
return *((&x) + i);
}
2013-05-30 12:55:48 +00:00
Vec3 Lerp(const Vec3 &other, const float t) const
2012-11-01 15:19:01 +00:00
{
return (*this)*(1-t) + other*t;
}
2012-11-01 15:19:01 +00:00
void SetZero()
{
x=0; y=0; z=0;
2012-11-01 15:19:01 +00:00
}
// Common aliases: UVW (texel coordinates), RGB (colors), STQ (texture coordinates)
T& u() { return x; }
T& v() { return y; }
T& w() { return z; }
T& r() { return x; }
T& g() { return y; }
T& b() { return z; }
T& s() { return x; }
T& t() { return y; }
T& q() { return z; }
const T& u() const { return x; }
const T& v() const { return y; }
const T& w() const { return z; }
const T& r() const { return x; }
const T& g() const { return y; }
const T& b() const { return z; }
const T& s() const { return x; }
const T& t() const { return y; }
const T& q() const { return z; }
// swizzlers - create a subvector of specific components
// e.g. Vec2 uv() { return Vec2(x,y); }
// _DEFINE_SWIZZLER2 defines a single such function, DEFINE_SWIZZLER2 defines all of them for all component names (x<->r) and permutations (xy<->yx)
#define _DEFINE_SWIZZLER2(a, b, name) Vec2<T> name() const { return Vec2<T>(a, b); }
#define DEFINE_SWIZZLER2(a, b, a2, b2, a3, b3, a4, b4) \
_DEFINE_SWIZZLER2(a, b, a##b); \
_DEFINE_SWIZZLER2(a, b, a2##b2); \
_DEFINE_SWIZZLER2(a, b, a3##b3); \
_DEFINE_SWIZZLER2(a, b, a4##b4); \
_DEFINE_SWIZZLER2(b, a, b##a); \
_DEFINE_SWIZZLER2(b, a, b2##a2); \
_DEFINE_SWIZZLER2(b, a, b3##a3); \
_DEFINE_SWIZZLER2(b, a, b4##a4);
DEFINE_SWIZZLER2(x, y, r, g, u, v, s, t);
DEFINE_SWIZZLER2(x, z, r, b, u, w, s, q);
DEFINE_SWIZZLER2(y, z, g, b, v, w, t, q);
#undef DEFINE_SWIZZLER2
#undef _DEFINE_SWIZZLER2
2012-11-01 15:19:01 +00:00
};
template<typename T, typename V>
Vec3<T> operator * (const V& f, const Vec3<T>& vec)
{
return Vec3<T>(f*vec.x,f*vec.y,f*vec.z);
}
typedef Vec3<float> Vec3f;
2013-07-25 12:54:53 +00:00
template<typename T>
class Vec4
{
public:
struct
{
T x,y,z,w;
};
T* AsArray() { return &x; }
Vec4() {}
Vec4(const T a[4]) : x(a[0]), y(a[1]), z(a[2]), w(a[3]) {}
Vec4(const T& _x, const T& _y, const T& _z, const T& _w) : x(_x), y(_y), z(_z), w(_w) {}
template<typename T2>
Vec4<T2> Cast() const
{
return Vec4<T2>((T2)x, (T2)y, (T2)z, (T2)w);
}
2013-07-25 12:54:53 +00:00
// Only implemented for T=int and T=float
static Vec4 FromRGBA(unsigned int rgba);
unsigned int ToRGBA() const;
2013-07-25 12:54:53 +00:00
static Vec4 AssignToAll(const T& f)
{
return Vec4<T>(f, f, f, f);
}
void Write(T a[4])
{
a[0] = x; a[1] = y; a[2] = z; a[3] = w;
}
Vec4 operator +(const Vec4& other) const
{
return Vec4(x+other.x, y+other.y, z+other.z, w+other.w);
}
void operator += (const Vec4& other)
{
x+=other.x; y+=other.y; z+=other.z; w+=other.w;
}
Vec4 operator -(const Vec4 &other) const
{
return Vec4(x-other.x, y-other.y, z-other.z, w-other.w);
}
void operator -= (const Vec4 &other)
{
x-=other.x; y-=other.y; z-=other.z; w-=other.w;
}
Vec4 operator -() const
{
return Vec4(-x,-y,-z,-w);
}
Vec4 operator * (const Vec4 &other) const
2013-07-25 12:54:53 +00:00
{
return Vec4(x*other.x, y*other.y, z*other.z, w*other.w);
}
template<typename V>
Vec4 operator * (const V& f) const
{
return Vec4(x*f,y*f,z*f,w*f);
}
template<typename V>
void operator *= (const V& f)
{
x*=f; y*=f; z*=f; w*=f;
}
template<typename V>
Vec4 operator / (const V& f) const
{
return Vec4(x/f,y/f,z/f,w/f);
}
template<typename V>
void operator /= (const V& f)
{
*this = *this / f;
}
T Length2() const
{
return x*x + y*y + z*z + w*w;
}
// Only implemented for T=float
float Length() const;
void SetLength(const float l);
Vec4 WithLength(const float l) const;
float Distance2To(Vec4 &other);
Vec4 Normalized() const;
float Normalize(); // returns the previous length, which is often useful
T& operator [] (int i) //allow vector[2] = 3 (vector.z=3)
{
return *((&x) + i);
}
T operator [] (const int i) const
{
return *((&x) + i);
}
Vec4 Lerp(const Vec4 &other, const float t) const
{
return (*this)*(1-t) + other*t;
}
void SetZero()
{
x=0; y=0; z=0;
}
// Common alias: RGBA (colors)
T& r() { return x; }
T& g() { return y; }
T& b() { return z; }
T& a() { return w; }
const T& r() const { return x; }
const T& g() const { return y; }
const T& b() const { return z; }
const T& a() const { return w; }
// swizzlers - create a subvector of specific components
// e.g. Vec2 uv() { return Vec2(x,y); }
// _DEFINE_SWIZZLER2 defines a single such function, DEFINE_SWIZZLER2 defines all of them for all component names (x<->r) and permutations (xy<->yx)
#define _DEFINE_SWIZZLER2(a, b, name) Vec2<T> name() const { return Vec2<T>(a, b); }
#define DEFINE_SWIZZLER2(a, b, a2, b2) \
_DEFINE_SWIZZLER2(a, b, a##b); \
_DEFINE_SWIZZLER2(a, b, a2##b2); \
_DEFINE_SWIZZLER2(b, a, b##a); \
_DEFINE_SWIZZLER2(b, a, b2##a2);
DEFINE_SWIZZLER2(x, y, r, g);
DEFINE_SWIZZLER2(x, z, r, b);
DEFINE_SWIZZLER2(x, w, r, a);
DEFINE_SWIZZLER2(y, z, g, b);
DEFINE_SWIZZLER2(y, w, g, a);
DEFINE_SWIZZLER2(z, w, b, a);
#undef DEFINE_SWIZZLER2
#undef _DEFINE_SWIZZLER2
#define _DEFINE_SWIZZLER3(a, b, c, name) Vec3<T> name() const { return Vec3<T>(a, b, c); }
#define DEFINE_SWIZZLER3(a, b, c, a2, b2, c2) \
_DEFINE_SWIZZLER3(a, b, c, a##b##c); \
_DEFINE_SWIZZLER3(a, c, b, a##c##b); \
_DEFINE_SWIZZLER3(b, a, c, b##a##c); \
_DEFINE_SWIZZLER3(b, c, a, b##c##a); \
_DEFINE_SWIZZLER3(c, a, b, c##a##b); \
_DEFINE_SWIZZLER3(c, b, a, c##b##a); \
_DEFINE_SWIZZLER3(a, b, c, a2##b2##c2); \
_DEFINE_SWIZZLER3(a, c, b, a2##c2##b2); \
_DEFINE_SWIZZLER3(b, a, c, b2##a2##c2); \
_DEFINE_SWIZZLER3(b, c, a, b2##c2##a2); \
_DEFINE_SWIZZLER3(c, a, b, c2##a2##b2); \
_DEFINE_SWIZZLER3(c, b, a, c2##b2##a2);
DEFINE_SWIZZLER3(x, y, z, r, g, b);
DEFINE_SWIZZLER3(x, y, w, r, g, a);
DEFINE_SWIZZLER3(x, z, w, r, b, a);
DEFINE_SWIZZLER3(y, z, w, g, b, a);
#undef DEFINE_SWIZZLER3
#undef _DEFINE_SWIZZLER3
2013-07-25 12:54:53 +00:00
};
template<typename T, typename V>
Vec4<T> operator * (const V& f, const Vec4<T>& vec)
{
return Vec4<T>(f*vec.x,f*vec.y,f*vec.z,f*vec.w);
}
typedef Vec4<float> Vec4f;
2012-11-01 15:19:01 +00:00
inline void Vec3ByMatrix43(float vecOut[3], const float v[3], const float m[12])
{
vecOut[0] = v[0] * m[0] + v[1] * m[3] + v[2] * m[6] + m[9];
vecOut[1] = v[0] * m[1] + v[1] * m[4] + v[2] * m[7] + m[10];
vecOut[2] = v[0] * m[2] + v[1] * m[5] + v[2] * m[8] + m[11];
}
inline void Norm3ByMatrix43(float vecOut[3], const float v[3], const float m[12])
{
vecOut[0] = v[0] * m[0] + v[1] * m[3] + v[2] * m[6];
vecOut[1] = v[0] * m[1] + v[1] * m[4] + v[2] * m[7];
vecOut[2] = v[0] * m[2] + v[1] * m[5] + v[2] * m[8];
}
inline float Vec3Dot(const float v1[3], const float v2[3])
{
return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
}
2013-07-25 12:58:40 +00:00
template<typename T>
inline T Dot(const Vec2<T>& a, const Vec2<T>& b)
{
return a.x*b.x + a.y*b.y;
}
template<typename T>
inline T Dot(const Vec3<T>& a, const Vec3<T>& b)
{
return a.x*b.x + a.y*b.y + a.z*b.z;
}
2013-07-25 12:54:53 +00:00
template<typename T>
inline T Dot(const Vec4<T>& a, const Vec4<T>& b)
{
return a.x*b.x + a.y*b.y + a.z*b.z + a.w*b.w;
}
template<typename T>
inline Vec3<T> Cross(const Vec3<T>& a, const Vec3<T>& b)
{
return Vec3<T>(a.y*b.z-a.z*b.y, a.z*b.x-a.x*b.z, a.x*b.y-a.y*b.x);
}