mirror of
https://github.com/hrydgard/ppsspp.git
synced 2024-11-26 23:10:38 +00:00
Update ext/jpge
From aeb7d3b463
Fixes #14012
Also now comes with SSE2 SIMD
This commit is contained in:
parent
c251d69eab
commit
5a09bc3d30
25
ext/jpge/README.md
Normal file
25
ext/jpge/README.md
Normal file
@ -0,0 +1,25 @@
|
||||
# jpeg-compressor
|
||||
|
||||
This directory contains code from
|
||||
https://github.com/richgel999/jpeg-compressor/tree/aeb7d3b463aa8228b87a28013c15ee50a7e6fcf3
|
||||
with the following patches:
|
||||
|
||||
* https://github.com/richgel999/jpeg-compressor/pull/18
|
||||
|
||||
## License
|
||||
|
||||
The license of jpgd.cpp/.h and jpge.cpp/.h is either Public Domain or Apache 2.0. Choose whatever you want.
|
||||
|
||||
The license for the optional file jpgd_idct.h (and ONLY this file) is Copyright 2009 Intel Corporation:
|
||||
|
||||
Permission is granted to use, copy, distribute and prepare derivative works of
|
||||
this software for any purpose and without fee, provided, that the above
|
||||
copyright notice and this statement appear in all copies. Intel makes no
|
||||
representations about the suitability of this software for any purpose. THIS
|
||||
SOFTWARE IS PROVIDED "AS IS." INTEL SPECIFICALLY DISCLAIMS ALL WARRANTIES,
|
||||
EXPRESS OR IMPLIED, AND ALL LIABILITY, INCLUDING CONSEQUENTIAL AND OTHER
|
||||
INDIRECT DAMAGES, FOR THE USE OF THIS SOFTWARE, INCLUDING LIABILITY FOR
|
||||
INFRINGEMENT OF ANY PROPRIETARY RIGHTS, AND INCLUDING THE WARRANTIES OF
|
||||
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Intel does not assume any
|
||||
responsibility for any errors which may appear in this software nor any
|
||||
responsibility to update it.
|
6139
ext/jpge/jpgd.cpp
6139
ext/jpge/jpgd.cpp
File diff suppressed because it is too large
Load Diff
580
ext/jpge/jpgd.h
580
ext/jpge/jpgd.h
@ -1,319 +1,351 @@
|
||||
// jpgd.h - C++ class for JPEG decompression.
|
||||
// Public domain, Rich Geldreich <richgel99@gmail.com>
|
||||
// Richard Geldreich <richgel99@gmail.com>
|
||||
// See jpgd.cpp for license (Public Domain or Apache 2.0).
|
||||
#ifndef JPEG_DECODER_H
|
||||
#define JPEG_DECODER_H
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
#include <setjmp.h>
|
||||
#include <assert.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#ifdef _MSC_VER
|
||||
#define JPGD_NORETURN __declspec(noreturn)
|
||||
#define JPGD_NORETURN __declspec(noreturn)
|
||||
#elif defined(__GNUC__)
|
||||
#define JPGD_NORETURN __attribute__ ((noreturn))
|
||||
#define JPGD_NORETURN __attribute__ ((noreturn))
|
||||
#else
|
||||
#define JPGD_NORETURN
|
||||
#define JPGD_NORETURN
|
||||
#endif
|
||||
|
||||
#define JPGD_HUFF_TREE_MAX_LENGTH 512
|
||||
#define JPGD_HUFF_CODE_SIZE_MAX_LENGTH 256
|
||||
|
||||
namespace jpgd
|
||||
{
|
||||
typedef unsigned char uint8;
|
||||
typedef signed short int16;
|
||||
typedef unsigned short uint16;
|
||||
typedef unsigned int uint;
|
||||
typedef signed int int32;
|
||||
typedef unsigned char uint8;
|
||||
typedef signed short int16;
|
||||
typedef unsigned short uint16;
|
||||
typedef unsigned int uint;
|
||||
typedef signed int int32;
|
||||
|
||||
// Loads a JPEG image from a memory buffer or a file.
|
||||
// req_comps can be 1 (grayscale), 3 (RGB), or 4 (RGBA).
|
||||
// On return, width/height will be set to the image's dimensions, and actual_comps will be set to the either 1 (grayscale) or 3 (RGB).
|
||||
// Notes: For more control over where and how the source data is read, see the decompress_jpeg_image_from_stream() function below, or call the jpeg_decoder class directly.
|
||||
// Requesting a 8 or 32bpp image is currently a little faster than 24bpp because the jpeg_decoder class itself currently always unpacks to either 8 or 32bpp.
|
||||
unsigned char *decompress_jpeg_image_from_memory(const unsigned char *pSrc_data, int src_data_size, int *width, int *height, int *actual_comps, int req_comps);
|
||||
unsigned char *decompress_jpeg_image_from_file(const char *pSrc_filename, int *width, int *height, int *actual_comps, int req_comps);
|
||||
// Loads a JPEG image from a memory buffer or a file.
|
||||
// req_comps can be 1 (grayscale), 3 (RGB), or 4 (RGBA).
|
||||
// On return, width/height will be set to the image's dimensions, and actual_comps will be set to the either 1 (grayscale) or 3 (RGB).
|
||||
// Notes: For more control over where and how the source data is read, see the decompress_jpeg_image_from_stream() function below, or call the jpeg_decoder class directly.
|
||||
// Requesting a 8 or 32bpp image is currently a little faster than 24bpp because the jpeg_decoder class itself currently always unpacks to either 8 or 32bpp.
|
||||
unsigned char* decompress_jpeg_image_from_memory(const unsigned char* pSrc_data, int src_data_size, int* width, int* height, int* actual_comps, int req_comps, uint32_t flags = 0);
|
||||
unsigned char* decompress_jpeg_image_from_file(const char* pSrc_filename, int* width, int* height, int* actual_comps, int req_comps, uint32_t flags = 0);
|
||||
|
||||
// Success/failure error codes.
|
||||
enum jpgd_status
|
||||
{
|
||||
JPGD_SUCCESS = 0, JPGD_FAILED = -1, JPGD_DONE = 1,
|
||||
JPGD_BAD_DHT_COUNTS = -256, JPGD_BAD_DHT_INDEX, JPGD_BAD_DHT_MARKER, JPGD_BAD_DQT_MARKER, JPGD_BAD_DQT_TABLE,
|
||||
JPGD_BAD_PRECISION, JPGD_BAD_HEIGHT, JPGD_BAD_WIDTH, JPGD_TOO_MANY_COMPONENTS,
|
||||
JPGD_BAD_SOF_LENGTH, JPGD_BAD_VARIABLE_MARKER, JPGD_BAD_DRI_LENGTH, JPGD_BAD_SOS_LENGTH,
|
||||
JPGD_BAD_SOS_COMP_ID, JPGD_W_EXTRA_BYTES_BEFORE_MARKER, JPGD_NO_ARITHMITIC_SUPPORT, JPGD_UNEXPECTED_MARKER,
|
||||
JPGD_NOT_JPEG, JPGD_UNSUPPORTED_MARKER, JPGD_BAD_DQT_LENGTH, JPGD_TOO_MANY_BLOCKS,
|
||||
JPGD_UNDEFINED_QUANT_TABLE, JPGD_UNDEFINED_HUFF_TABLE, JPGD_NOT_SINGLE_SCAN, JPGD_UNSUPPORTED_COLORSPACE,
|
||||
JPGD_UNSUPPORTED_SAMP_FACTORS, JPGD_DECODE_ERROR, JPGD_BAD_RESTART_MARKER, JPGD_ASSERTION_ERROR,
|
||||
JPGD_BAD_SOS_SPECTRAL, JPGD_BAD_SOS_SUCCESSIVE, JPGD_STREAM_READ, JPGD_NOTENOUGHMEM
|
||||
};
|
||||
|
||||
// Input stream interface.
|
||||
// Derive from this class to read input data from sources other than files or memory. Set m_eof_flag to true when no more data is available.
|
||||
// The decoder is rather greedy: it will keep on calling this method until its internal input buffer is full, or until the EOF flag is set.
|
||||
// It the input stream contains data after the JPEG stream's EOI (end of image) marker it will probably be pulled into the internal buffer.
|
||||
// Call the get_total_bytes_read() method to determine the actual size of the JPEG stream after successful decoding.
|
||||
class jpeg_decoder_stream
|
||||
{
|
||||
public:
|
||||
jpeg_decoder_stream() { }
|
||||
virtual ~jpeg_decoder_stream() { }
|
||||
// Success/failure error codes.
|
||||
enum jpgd_status
|
||||
{
|
||||
JPGD_SUCCESS = 0, JPGD_FAILED = -1, JPGD_DONE = 1,
|
||||
JPGD_BAD_DHT_COUNTS = -256, JPGD_BAD_DHT_INDEX, JPGD_BAD_DHT_MARKER, JPGD_BAD_DQT_MARKER, JPGD_BAD_DQT_TABLE,
|
||||
JPGD_BAD_PRECISION, JPGD_BAD_HEIGHT, JPGD_BAD_WIDTH, JPGD_TOO_MANY_COMPONENTS,
|
||||
JPGD_BAD_SOF_LENGTH, JPGD_BAD_VARIABLE_MARKER, JPGD_BAD_DRI_LENGTH, JPGD_BAD_SOS_LENGTH,
|
||||
JPGD_BAD_SOS_COMP_ID, JPGD_W_EXTRA_BYTES_BEFORE_MARKER, JPGD_NO_ARITHMITIC_SUPPORT, JPGD_UNEXPECTED_MARKER,
|
||||
JPGD_NOT_JPEG, JPGD_UNSUPPORTED_MARKER, JPGD_BAD_DQT_LENGTH, JPGD_TOO_MANY_BLOCKS,
|
||||
JPGD_UNDEFINED_QUANT_TABLE, JPGD_UNDEFINED_HUFF_TABLE, JPGD_NOT_SINGLE_SCAN, JPGD_UNSUPPORTED_COLORSPACE,
|
||||
JPGD_UNSUPPORTED_SAMP_FACTORS, JPGD_DECODE_ERROR, JPGD_BAD_RESTART_MARKER,
|
||||
JPGD_BAD_SOS_SPECTRAL, JPGD_BAD_SOS_SUCCESSIVE, JPGD_STREAM_READ, JPGD_NOTENOUGHMEM, JPGD_TOO_MANY_SCANS
|
||||
};
|
||||
|
||||
// The read() method is called when the internal input buffer is empty.
|
||||
// Parameters:
|
||||
// pBuf - input buffer
|
||||
// max_bytes_to_read - maximum bytes that can be written to pBuf
|
||||
// pEOF_flag - set this to true if at end of stream (no more bytes remaining)
|
||||
// Returns -1 on error, otherwise return the number of bytes actually written to the buffer (which may be 0).
|
||||
// Notes: This method will be called in a loop until you set *pEOF_flag to true or the internal buffer is full.
|
||||
virtual int read(uint8 *pBuf, int max_bytes_to_read, bool *pEOF_flag) = 0;
|
||||
};
|
||||
// Input stream interface.
|
||||
// Derive from this class to read input data from sources other than files or memory. Set m_eof_flag to true when no more data is available.
|
||||
// The decoder is rather greedy: it will keep on calling this method until its internal input buffer is full, or until the EOF flag is set.
|
||||
// It the input stream contains data after the JPEG stream's EOI (end of image) marker it will probably be pulled into the internal buffer.
|
||||
// Call the get_total_bytes_read() method to determine the actual size of the JPEG stream after successful decoding.
|
||||
class jpeg_decoder_stream
|
||||
{
|
||||
public:
|
||||
jpeg_decoder_stream() { }
|
||||
virtual ~jpeg_decoder_stream() { }
|
||||
|
||||
// stdio FILE stream class.
|
||||
class jpeg_decoder_file_stream : public jpeg_decoder_stream
|
||||
{
|
||||
jpeg_decoder_file_stream(const jpeg_decoder_file_stream &);
|
||||
jpeg_decoder_file_stream &operator =(const jpeg_decoder_file_stream &);
|
||||
// The read() method is called when the internal input buffer is empty.
|
||||
// Parameters:
|
||||
// pBuf - input buffer
|
||||
// max_bytes_to_read - maximum bytes that can be written to pBuf
|
||||
// pEOF_flag - set this to true if at end of stream (no more bytes remaining)
|
||||
// Returns -1 on error, otherwise return the number of bytes actually written to the buffer (which may be 0).
|
||||
// Notes: This method will be called in a loop until you set *pEOF_flag to true or the internal buffer is full.
|
||||
virtual int read(uint8* pBuf, int max_bytes_to_read, bool* pEOF_flag) = 0;
|
||||
};
|
||||
|
||||
FILE *m_pFile;
|
||||
bool m_eof_flag, m_error_flag;
|
||||
// stdio FILE stream class.
|
||||
class jpeg_decoder_file_stream : public jpeg_decoder_stream
|
||||
{
|
||||
jpeg_decoder_file_stream(const jpeg_decoder_file_stream&);
|
||||
jpeg_decoder_file_stream& operator =(const jpeg_decoder_file_stream&);
|
||||
|
||||
public:
|
||||
jpeg_decoder_file_stream();
|
||||
virtual ~jpeg_decoder_file_stream();
|
||||
|
||||
bool open(const char *Pfilename);
|
||||
void close();
|
||||
FILE* m_pFile;
|
||||
bool m_eof_flag, m_error_flag;
|
||||
|
||||
virtual int read(uint8 *pBuf, int max_bytes_to_read, bool *pEOF_flag);
|
||||
};
|
||||
public:
|
||||
jpeg_decoder_file_stream();
|
||||
virtual ~jpeg_decoder_file_stream();
|
||||
|
||||
// Memory stream class.
|
||||
class jpeg_decoder_mem_stream : public jpeg_decoder_stream
|
||||
{
|
||||
const uint8 *m_pSrc_data;
|
||||
uint m_ofs, m_size;
|
||||
bool open(const char* Pfilename);
|
||||
void close();
|
||||
|
||||
public:
|
||||
jpeg_decoder_mem_stream() : m_pSrc_data(NULL), m_ofs(0), m_size(0) { }
|
||||
jpeg_decoder_mem_stream(const uint8 *pSrc_data, uint size) : m_pSrc_data(pSrc_data), m_ofs(0), m_size(size) { }
|
||||
virtual int read(uint8* pBuf, int max_bytes_to_read, bool* pEOF_flag);
|
||||
};
|
||||
|
||||
virtual ~jpeg_decoder_mem_stream() { }
|
||||
// Memory stream class.
|
||||
class jpeg_decoder_mem_stream : public jpeg_decoder_stream
|
||||
{
|
||||
const uint8* m_pSrc_data;
|
||||
uint m_ofs, m_size;
|
||||
|
||||
bool open(const uint8 *pSrc_data, uint size);
|
||||
void close() { m_pSrc_data = NULL; m_ofs = 0; m_size = 0; }
|
||||
|
||||
virtual int read(uint8 *pBuf, int max_bytes_to_read, bool *pEOF_flag);
|
||||
};
|
||||
public:
|
||||
jpeg_decoder_mem_stream() : m_pSrc_data(NULL), m_ofs(0), m_size(0) { }
|
||||
jpeg_decoder_mem_stream(const uint8* pSrc_data, uint size) : m_pSrc_data(pSrc_data), m_ofs(0), m_size(size) { }
|
||||
|
||||
// Loads JPEG file from a jpeg_decoder_stream.
|
||||
unsigned char *decompress_jpeg_image_from_stream(jpeg_decoder_stream *pStream, int *width, int *height, int *actual_comps, int req_comps);
|
||||
virtual ~jpeg_decoder_mem_stream() { }
|
||||
|
||||
enum
|
||||
{
|
||||
JPGD_IN_BUF_SIZE = 8192, JPGD_MAX_BLOCKS_PER_MCU = 10, JPGD_MAX_HUFF_TABLES = 8, JPGD_MAX_QUANT_TABLES = 4,
|
||||
JPGD_MAX_COMPONENTS = 4, JPGD_MAX_COMPS_IN_SCAN = 4, JPGD_MAX_BLOCKS_PER_ROW = 8192, JPGD_MAX_HEIGHT = 16384, JPGD_MAX_WIDTH = 16384
|
||||
};
|
||||
|
||||
typedef int16 jpgd_quant_t;
|
||||
typedef int16 jpgd_block_t;
|
||||
bool open(const uint8* pSrc_data, uint size);
|
||||
void close() { m_pSrc_data = NULL; m_ofs = 0; m_size = 0; }
|
||||
|
||||
class jpeg_decoder
|
||||
{
|
||||
public:
|
||||
// Call get_error_code() after constructing to determine if the stream is valid or not. You may call the get_width(), get_height(), etc.
|
||||
// methods after the constructor is called. You may then either destruct the object, or begin decoding the image by calling begin_decoding(), then decode() on each scanline.
|
||||
jpeg_decoder(jpeg_decoder_stream *pStream);
|
||||
virtual int read(uint8* pBuf, int max_bytes_to_read, bool* pEOF_flag);
|
||||
};
|
||||
|
||||
~jpeg_decoder();
|
||||
// Loads JPEG file from a jpeg_decoder_stream.
|
||||
unsigned char* decompress_jpeg_image_from_stream(jpeg_decoder_stream* pStream, int* width, int* height, int* actual_comps, int req_comps, uint32_t flags = 0);
|
||||
|
||||
// Call this method after constructing the object to begin decompression.
|
||||
// If JPGD_SUCCESS is returned you may then call decode() on each scanline.
|
||||
int begin_decoding();
|
||||
enum
|
||||
{
|
||||
JPGD_IN_BUF_SIZE = 8192, JPGD_MAX_BLOCKS_PER_MCU = 10, JPGD_MAX_HUFF_TABLES = 8, JPGD_MAX_QUANT_TABLES = 4,
|
||||
JPGD_MAX_COMPONENTS = 4, JPGD_MAX_COMPS_IN_SCAN = 4, JPGD_MAX_BLOCKS_PER_ROW = 16384, JPGD_MAX_HEIGHT = 32768, JPGD_MAX_WIDTH = 32768
|
||||
};
|
||||
|
||||
// Returns the next scan line.
|
||||
// For grayscale images, pScan_line will point to a buffer containing 8-bit pixels (get_bytes_per_pixel() will return 1).
|
||||
// Otherwise, it will always point to a buffer containing 32-bit RGBA pixels (A will always be 255, and get_bytes_per_pixel() will return 4).
|
||||
// Returns JPGD_SUCCESS if a scan line has been returned.
|
||||
// Returns JPGD_DONE if all scan lines have been returned.
|
||||
// Returns JPGD_FAILED if an error occurred. Call get_error_code() for a more info.
|
||||
int decode(const void** pScan_line, uint* pScan_line_len);
|
||||
|
||||
inline jpgd_status get_error_code() const { return m_error_code; }
|
||||
typedef int16 jpgd_quant_t;
|
||||
typedef int16 jpgd_block_coeff_t;
|
||||
|
||||
inline int get_width() const { return m_image_x_size; }
|
||||
inline int get_height() const { return m_image_y_size; }
|
||||
class jpeg_decoder
|
||||
{
|
||||
public:
|
||||
enum
|
||||
{
|
||||
cFlagBoxChromaFiltering = 1,
|
||||
cFlagDisableSIMD = 2
|
||||
};
|
||||
|
||||
inline int get_num_components() const { return m_comps_in_frame; }
|
||||
// Call get_error_code() after constructing to determine if the stream is valid or not. You may call the get_width(), get_height(), etc.
|
||||
// methods after the constructor is called. You may then either destruct the object, or begin decoding the image by calling begin_decoding(), then decode() on each scanline.
|
||||
jpeg_decoder(jpeg_decoder_stream* pStream, uint32_t flags = 0);
|
||||
|
||||
inline int get_bytes_per_pixel() const { return m_dest_bytes_per_pixel; }
|
||||
inline int get_bytes_per_scan_line() const { return m_image_x_size * get_bytes_per_pixel(); }
|
||||
~jpeg_decoder();
|
||||
|
||||
// Returns the total number of bytes actually consumed by the decoder (which should equal the actual size of the JPEG file).
|
||||
inline int get_total_bytes_read() const { return m_total_bytes_read; }
|
||||
|
||||
private:
|
||||
jpeg_decoder(const jpeg_decoder &);
|
||||
jpeg_decoder &operator =(const jpeg_decoder &);
|
||||
// Call this method after constructing the object to begin decompression.
|
||||
// If JPGD_SUCCESS is returned you may then call decode() on each scanline.
|
||||
|
||||
typedef void (*pDecode_block_func)(jpeg_decoder *, int, int, int);
|
||||
int begin_decoding();
|
||||
|
||||
struct huff_tables
|
||||
{
|
||||
bool ac_table;
|
||||
uint look_up[256];
|
||||
uint look_up2[256];
|
||||
uint8 code_size[256];
|
||||
uint tree[512];
|
||||
};
|
||||
// Returns the next scan line.
|
||||
// For grayscale images, pScan_line will point to a buffer containing 8-bit pixels (get_bytes_per_pixel() will return 1).
|
||||
// Otherwise, it will always point to a buffer containing 32-bit RGBA pixels (A will always be 255, and get_bytes_per_pixel() will return 4).
|
||||
// Returns JPGD_SUCCESS if a scan line has been returned.
|
||||
// Returns JPGD_DONE if all scan lines have been returned.
|
||||
// Returns JPGD_FAILED if an error occurred. Call get_error_code() for a more info.
|
||||
int decode(const void** pScan_line, uint* pScan_line_len);
|
||||
|
||||
struct coeff_buf
|
||||
{
|
||||
uint8 *pData;
|
||||
int block_num_x, block_num_y;
|
||||
int block_len_x, block_len_y;
|
||||
int block_size;
|
||||
};
|
||||
inline jpgd_status get_error_code() const { return m_error_code; }
|
||||
|
||||
struct mem_block
|
||||
{
|
||||
mem_block *m_pNext;
|
||||
size_t m_used_count;
|
||||
size_t m_size;
|
||||
char m_data[1];
|
||||
};
|
||||
inline int get_width() const { return m_image_x_size; }
|
||||
inline int get_height() const { return m_image_y_size; }
|
||||
|
||||
jmp_buf m_jmp_state;
|
||||
mem_block *m_pMem_blocks;
|
||||
int m_image_x_size;
|
||||
int m_image_y_size;
|
||||
jpeg_decoder_stream *m_pStream;
|
||||
int m_progressive_flag;
|
||||
uint8 m_huff_ac[JPGD_MAX_HUFF_TABLES];
|
||||
uint8* m_huff_num[JPGD_MAX_HUFF_TABLES]; // pointer to number of Huffman codes per bit size
|
||||
uint8* m_huff_val[JPGD_MAX_HUFF_TABLES]; // pointer to Huffman codes per bit size
|
||||
jpgd_quant_t* m_quant[JPGD_MAX_QUANT_TABLES]; // pointer to quantization tables
|
||||
int m_scan_type; // Gray, Yh1v1, Yh1v2, Yh2v1, Yh2v2 (CMYK111, CMYK4114 no longer supported)
|
||||
int m_comps_in_frame; // # of components in frame
|
||||
int m_comp_h_samp[JPGD_MAX_COMPONENTS]; // component's horizontal sampling factor
|
||||
int m_comp_v_samp[JPGD_MAX_COMPONENTS]; // component's vertical sampling factor
|
||||
int m_comp_quant[JPGD_MAX_COMPONENTS]; // component's quantization table selector
|
||||
int m_comp_ident[JPGD_MAX_COMPONENTS]; // component's ID
|
||||
int m_comp_h_blocks[JPGD_MAX_COMPONENTS];
|
||||
int m_comp_v_blocks[JPGD_MAX_COMPONENTS];
|
||||
int m_comps_in_scan; // # of components in scan
|
||||
int m_comp_list[JPGD_MAX_COMPS_IN_SCAN]; // components in this scan
|
||||
int m_comp_dc_tab[JPGD_MAX_COMPONENTS]; // component's DC Huffman coding table selector
|
||||
int m_comp_ac_tab[JPGD_MAX_COMPONENTS]; // component's AC Huffman coding table selector
|
||||
int m_spectral_start; // spectral selection start
|
||||
int m_spectral_end; // spectral selection end
|
||||
int m_successive_low; // successive approximation low
|
||||
int m_successive_high; // successive approximation high
|
||||
int m_max_mcu_x_size; // MCU's max. X size in pixels
|
||||
int m_max_mcu_y_size; // MCU's max. Y size in pixels
|
||||
int m_blocks_per_mcu;
|
||||
int m_max_blocks_per_row;
|
||||
int m_mcus_per_row, m_mcus_per_col;
|
||||
int m_mcu_org[JPGD_MAX_BLOCKS_PER_MCU];
|
||||
int m_total_lines_left; // total # lines left in image
|
||||
int m_mcu_lines_left; // total # lines left in this MCU
|
||||
int m_real_dest_bytes_per_scan_line;
|
||||
int m_dest_bytes_per_scan_line; // rounded up
|
||||
int m_dest_bytes_per_pixel; // 4 (RGB) or 1 (Y)
|
||||
huff_tables* m_pHuff_tabs[JPGD_MAX_HUFF_TABLES];
|
||||
coeff_buf* m_dc_coeffs[JPGD_MAX_COMPONENTS];
|
||||
coeff_buf* m_ac_coeffs[JPGD_MAX_COMPONENTS];
|
||||
int m_eob_run;
|
||||
int m_block_y_mcu[JPGD_MAX_COMPONENTS];
|
||||
uint8* m_pIn_buf_ofs;
|
||||
int m_in_buf_left;
|
||||
int m_tem_flag;
|
||||
bool m_eof_flag;
|
||||
uint8 m_in_buf_pad_start[128];
|
||||
uint8 m_in_buf[JPGD_IN_BUF_SIZE + 128];
|
||||
uint8 m_in_buf_pad_end[128];
|
||||
int m_bits_left;
|
||||
uint m_bit_buf;
|
||||
int m_restart_interval;
|
||||
int m_restarts_left;
|
||||
int m_next_restart_num;
|
||||
int m_max_mcus_per_row;
|
||||
int m_max_blocks_per_mcu;
|
||||
int m_expanded_blocks_per_mcu;
|
||||
int m_expanded_blocks_per_row;
|
||||
int m_expanded_blocks_per_component;
|
||||
bool m_freq_domain_chroma_upsample;
|
||||
int m_max_mcus_per_col;
|
||||
uint m_last_dc_val[JPGD_MAX_COMPONENTS];
|
||||
jpgd_block_t* m_pMCU_coefficients;
|
||||
int m_mcu_block_max_zag[JPGD_MAX_BLOCKS_PER_MCU];
|
||||
uint8* m_pSample_buf;
|
||||
int m_crr[256];
|
||||
int m_cbb[256];
|
||||
int m_crg[256];
|
||||
int m_cbg[256];
|
||||
uint8* m_pScan_line_0;
|
||||
uint8* m_pScan_line_1;
|
||||
jpgd_status m_error_code;
|
||||
bool m_ready_flag;
|
||||
int m_total_bytes_read;
|
||||
inline int get_num_components() const { return m_comps_in_frame; }
|
||||
|
||||
inline int get_bytes_per_pixel() const { return m_dest_bytes_per_pixel; }
|
||||
inline int get_bytes_per_scan_line() const { return m_image_x_size * get_bytes_per_pixel(); }
|
||||
|
||||
// Returns the total number of bytes actually consumed by the decoder (which should equal the actual size of the JPEG file).
|
||||
inline int get_total_bytes_read() const { return m_total_bytes_read; }
|
||||
|
||||
private:
|
||||
jpeg_decoder(const jpeg_decoder&);
|
||||
jpeg_decoder& operator =(const jpeg_decoder&);
|
||||
|
||||
typedef void (*pDecode_block_func)(jpeg_decoder*, int, int, int);
|
||||
|
||||
struct huff_tables
|
||||
{
|
||||
bool ac_table;
|
||||
uint look_up[256];
|
||||
uint look_up2[256];
|
||||
uint8 code_size[JPGD_HUFF_CODE_SIZE_MAX_LENGTH];
|
||||
uint tree[JPGD_HUFF_TREE_MAX_LENGTH];
|
||||
};
|
||||
|
||||
struct coeff_buf
|
||||
{
|
||||
uint8* pData;
|
||||
int block_num_x, block_num_y;
|
||||
int block_len_x, block_len_y;
|
||||
int block_size;
|
||||
};
|
||||
|
||||
struct mem_block
|
||||
{
|
||||
mem_block* m_pNext;
|
||||
size_t m_used_count;
|
||||
size_t m_size;
|
||||
char m_data[1];
|
||||
};
|
||||
|
||||
jmp_buf m_jmp_state;
|
||||
uint32_t m_flags;
|
||||
mem_block* m_pMem_blocks;
|
||||
int m_image_x_size;
|
||||
int m_image_y_size;
|
||||
jpeg_decoder_stream* m_pStream;
|
||||
|
||||
int m_progressive_flag;
|
||||
|
||||
uint8 m_huff_ac[JPGD_MAX_HUFF_TABLES];
|
||||
uint8* m_huff_num[JPGD_MAX_HUFF_TABLES]; // pointer to number of Huffman codes per bit size
|
||||
uint8* m_huff_val[JPGD_MAX_HUFF_TABLES]; // pointer to Huffman codes per bit size
|
||||
jpgd_quant_t* m_quant[JPGD_MAX_QUANT_TABLES]; // pointer to quantization tables
|
||||
int m_scan_type; // Gray, Yh1v1, Yh1v2, Yh2v1, Yh2v2 (CMYK111, CMYK4114 no longer supported)
|
||||
int m_comps_in_frame; // # of components in frame
|
||||
int m_comp_h_samp[JPGD_MAX_COMPONENTS]; // component's horizontal sampling factor
|
||||
int m_comp_v_samp[JPGD_MAX_COMPONENTS]; // component's vertical sampling factor
|
||||
int m_comp_quant[JPGD_MAX_COMPONENTS]; // component's quantization table selector
|
||||
int m_comp_ident[JPGD_MAX_COMPONENTS]; // component's ID
|
||||
int m_comp_h_blocks[JPGD_MAX_COMPONENTS];
|
||||
int m_comp_v_blocks[JPGD_MAX_COMPONENTS];
|
||||
int m_comps_in_scan; // # of components in scan
|
||||
int m_comp_list[JPGD_MAX_COMPS_IN_SCAN]; // components in this scan
|
||||
int m_comp_dc_tab[JPGD_MAX_COMPONENTS]; // component's DC Huffman coding table selector
|
||||
int m_comp_ac_tab[JPGD_MAX_COMPONENTS]; // component's AC Huffman coding table selector
|
||||
int m_spectral_start; // spectral selection start
|
||||
int m_spectral_end; // spectral selection end
|
||||
int m_successive_low; // successive approximation low
|
||||
int m_successive_high; // successive approximation high
|
||||
int m_max_mcu_x_size; // MCU's max. X size in pixels
|
||||
int m_max_mcu_y_size; // MCU's max. Y size in pixels
|
||||
int m_blocks_per_mcu;
|
||||
int m_max_blocks_per_row;
|
||||
int m_mcus_per_row, m_mcus_per_col;
|
||||
int m_mcu_org[JPGD_MAX_BLOCKS_PER_MCU];
|
||||
int m_total_lines_left; // total # lines left in image
|
||||
int m_mcu_lines_left; // total # lines left in this MCU
|
||||
int m_num_buffered_scanlines;
|
||||
int m_real_dest_bytes_per_scan_line;
|
||||
int m_dest_bytes_per_scan_line; // rounded up
|
||||
int m_dest_bytes_per_pixel; // 4 (RGB) or 1 (Y)
|
||||
huff_tables* m_pHuff_tabs[JPGD_MAX_HUFF_TABLES];
|
||||
coeff_buf* m_dc_coeffs[JPGD_MAX_COMPONENTS];
|
||||
coeff_buf* m_ac_coeffs[JPGD_MAX_COMPONENTS];
|
||||
int m_eob_run;
|
||||
int m_block_y_mcu[JPGD_MAX_COMPONENTS];
|
||||
uint8* m_pIn_buf_ofs;
|
||||
int m_in_buf_left;
|
||||
int m_tem_flag;
|
||||
|
||||
uint8 m_in_buf_pad_start[64];
|
||||
uint8 m_in_buf[JPGD_IN_BUF_SIZE + 128];
|
||||
uint8 m_in_buf_pad_end[64];
|
||||
|
||||
int m_bits_left;
|
||||
uint m_bit_buf;
|
||||
int m_restart_interval;
|
||||
int m_restarts_left;
|
||||
int m_next_restart_num;
|
||||
int m_max_mcus_per_row;
|
||||
int m_max_blocks_per_mcu;
|
||||
|
||||
int m_max_mcus_per_col;
|
||||
uint m_last_dc_val[JPGD_MAX_COMPONENTS];
|
||||
jpgd_block_coeff_t* m_pMCU_coefficients;
|
||||
int m_mcu_block_max_zag[JPGD_MAX_BLOCKS_PER_MCU];
|
||||
uint8* m_pSample_buf;
|
||||
uint8* m_pSample_buf_prev;
|
||||
int m_crr[256];
|
||||
int m_cbb[256];
|
||||
int m_crg[256];
|
||||
int m_cbg[256];
|
||||
uint8* m_pScan_line_0;
|
||||
uint8* m_pScan_line_1;
|
||||
jpgd_status m_error_code;
|
||||
int m_total_bytes_read;
|
||||
|
||||
bool m_ready_flag;
|
||||
bool m_eof_flag;
|
||||
bool m_sample_buf_prev_valid;
|
||||
bool m_has_sse2;
|
||||
|
||||
inline int check_sample_buf_ofs(int ofs) const { assert(ofs >= 0); assert(ofs < m_max_blocks_per_row * 64); return ofs; }
|
||||
void free_all_blocks();
|
||||
JPGD_NORETURN void stop_decoding(jpgd_status status);
|
||||
void* alloc(size_t n, bool zero = false);
|
||||
void* alloc_aligned(size_t nSize, uint32_t align = 16, bool zero = false);
|
||||
void word_clear(void* p, uint16 c, uint n);
|
||||
void prep_in_buffer();
|
||||
void read_dht_marker();
|
||||
void read_dqt_marker();
|
||||
void read_sof_marker();
|
||||
void skip_variable_marker();
|
||||
void read_dri_marker();
|
||||
void read_sos_marker();
|
||||
int next_marker();
|
||||
int process_markers();
|
||||
void locate_soi_marker();
|
||||
void locate_sof_marker();
|
||||
int locate_sos_marker();
|
||||
void init(jpeg_decoder_stream* pStream, uint32_t flags);
|
||||
void create_look_ups();
|
||||
void fix_in_buffer();
|
||||
void transform_mcu(int mcu_row);
|
||||
coeff_buf* coeff_buf_open(int block_num_x, int block_num_y, int block_len_x, int block_len_y);
|
||||
inline jpgd_block_coeff_t* coeff_buf_getp(coeff_buf* cb, int block_x, int block_y);
|
||||
void load_next_row();
|
||||
void decode_next_row();
|
||||
void make_huff_table(int index, huff_tables* pH);
|
||||
void check_quant_tables();
|
||||
void check_huff_tables();
|
||||
bool calc_mcu_block_order();
|
||||
int init_scan();
|
||||
void init_frame();
|
||||
void process_restart();
|
||||
void decode_scan(pDecode_block_func decode_block_func);
|
||||
void init_progressive();
|
||||
void init_sequential();
|
||||
void decode_start();
|
||||
void decode_init(jpeg_decoder_stream* pStream, uint32_t flags);
|
||||
void H2V2Convert();
|
||||
uint32_t H2V2ConvertFiltered();
|
||||
void H2V1Convert();
|
||||
void H2V1ConvertFiltered();
|
||||
void H1V2Convert();
|
||||
void H1V2ConvertFiltered();
|
||||
void H1V1Convert();
|
||||
void gray_convert();
|
||||
void find_eoi();
|
||||
inline uint get_char();
|
||||
inline uint get_char(bool* pPadding_flag);
|
||||
inline void stuff_char(uint8 q);
|
||||
inline uint8 get_octet();
|
||||
inline uint get_bits(int num_bits);
|
||||
inline uint get_bits_no_markers(int numbits);
|
||||
inline int huff_decode(huff_tables* pH);
|
||||
inline int huff_decode(huff_tables* pH, int& extrabits);
|
||||
|
||||
// Clamps a value between 0-255.
|
||||
static inline uint8 clamp(int i)
|
||||
{
|
||||
if (static_cast<uint>(i) > 255)
|
||||
i = (((~i) >> 31) & 0xFF);
|
||||
return static_cast<uint8>(i);
|
||||
}
|
||||
int decode_next_mcu_row();
|
||||
|
||||
static void decode_block_dc_first(jpeg_decoder* pD, int component_id, int block_x, int block_y);
|
||||
static void decode_block_dc_refine(jpeg_decoder* pD, int component_id, int block_x, int block_y);
|
||||
static void decode_block_ac_first(jpeg_decoder* pD, int component_id, int block_x, int block_y);
|
||||
static void decode_block_ac_refine(jpeg_decoder* pD, int component_id, int block_x, int block_y);
|
||||
};
|
||||
|
||||
void free_all_blocks();
|
||||
JPGD_NORETURN void stop_decoding(jpgd_status status);
|
||||
void *alloc(size_t n, bool zero = false);
|
||||
void word_clear(void *p, uint16 c, uint n);
|
||||
void prep_in_buffer();
|
||||
void read_dht_marker();
|
||||
void read_dqt_marker();
|
||||
void read_sof_marker();
|
||||
void skip_variable_marker();
|
||||
void read_dri_marker();
|
||||
void read_sos_marker();
|
||||
int next_marker();
|
||||
int process_markers();
|
||||
void locate_soi_marker();
|
||||
void locate_sof_marker();
|
||||
int locate_sos_marker();
|
||||
void init(jpeg_decoder_stream * pStream);
|
||||
void create_look_ups();
|
||||
void fix_in_buffer();
|
||||
void transform_mcu(int mcu_row);
|
||||
void transform_mcu_expand(int mcu_row);
|
||||
coeff_buf* coeff_buf_open(int block_num_x, int block_num_y, int block_len_x, int block_len_y);
|
||||
inline jpgd_block_t *coeff_buf_getp(coeff_buf *cb, int block_x, int block_y);
|
||||
void load_next_row();
|
||||
void decode_next_row();
|
||||
void make_huff_table(int index, huff_tables *pH);
|
||||
void check_quant_tables();
|
||||
void check_huff_tables();
|
||||
void calc_mcu_block_order();
|
||||
int init_scan();
|
||||
void init_frame();
|
||||
void process_restart();
|
||||
void decode_scan(pDecode_block_func decode_block_func);
|
||||
void init_progressive();
|
||||
void init_sequential();
|
||||
void decode_start();
|
||||
void decode_init(jpeg_decoder_stream * pStream);
|
||||
void H2V2Convert();
|
||||
void H2V1Convert();
|
||||
void H1V2Convert();
|
||||
void H1V1Convert();
|
||||
void gray_convert();
|
||||
void expanded_convert();
|
||||
void find_eoi();
|
||||
inline uint get_char();
|
||||
inline uint get_char(bool *pPadding_flag);
|
||||
inline void stuff_char(uint8 q);
|
||||
inline uint8 get_octet();
|
||||
inline uint get_bits(int num_bits);
|
||||
inline uint get_bits_no_markers(int numbits);
|
||||
inline int huff_decode(huff_tables *pH);
|
||||
inline int huff_decode(huff_tables *pH, int& extrabits);
|
||||
static inline uint8 clamp(int i);
|
||||
static void decode_block_dc_first(jpeg_decoder *pD, int component_id, int block_x, int block_y);
|
||||
static void decode_block_dc_refine(jpeg_decoder *pD, int component_id, int block_x, int block_y);
|
||||
static void decode_block_ac_first(jpeg_decoder *pD, int component_id, int block_x, int block_y);
|
||||
static void decode_block_ac_refine(jpeg_decoder *pD, int component_id, int block_x, int block_y);
|
||||
};
|
||||
|
||||
} // namespace jpgd
|
||||
|
||||
#endif // JPEG_DECODER_H
|
||||
|
462
ext/jpge/jpgd_idct.h
Normal file
462
ext/jpge/jpgd_idct.h
Normal file
@ -0,0 +1,462 @@
|
||||
// Copyright 2009 Intel Corporation
|
||||
// All Rights Reserved
|
||||
//
|
||||
// Permission is granted to use, copy, distribute and prepare derivative works of this
|
||||
// software for any purpose and without fee, provided, that the above copyright notice
|
||||
// and this statement appear in all copies. Intel makes no representations about the
|
||||
// suitability of this software for any purpose. THIS SOFTWARE IS PROVIDED "AS IS."
|
||||
// INTEL SPECIFICALLY DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, AND ALL LIABILITY,
|
||||
// INCLUDING CONSEQUENTIAL AND OTHER INDIRECT DAMAGES, FOR THE USE OF THIS SOFTWARE,
|
||||
// INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PROPRIETARY RIGHTS, AND INCLUDING THE
|
||||
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Intel does not
|
||||
// assume any responsibility for any errors which may appear in this software nor any
|
||||
// responsibility to update it.
|
||||
//
|
||||
// From:
|
||||
// https://software.intel.com/sites/default/files/m/d/4/1/d/8/UsingIntelAVXToImplementIDCT-r1_5.pdf
|
||||
// https://software.intel.com/file/29048
|
||||
//
|
||||
// Requires SSE
|
||||
//
|
||||
#ifdef _MSC_VER
|
||||
#include <intrin.h>
|
||||
#endif
|
||||
#include <immintrin.h>
|
||||
|
||||
#ifdef _MSC_VER
|
||||
#define JPGD_SIMD_ALIGN(type, name) __declspec(align(16)) type name
|
||||
#else
|
||||
#define JPGD_SIMD_ALIGN(type, name) type name __attribute__((aligned(16)))
|
||||
#endif
|
||||
|
||||
#define BITS_INV_ACC 4
|
||||
#define SHIFT_INV_ROW 16 - BITS_INV_ACC
|
||||
#define SHIFT_INV_COL 1 + BITS_INV_ACC
|
||||
const short IRND_INV_ROW = 1024 * (6 - BITS_INV_ACC); //1 << (SHIFT_INV_ROW-1)
|
||||
const short IRND_INV_COL = 16 * (BITS_INV_ACC - 3); // 1 << (SHIFT_INV_COL-1)
|
||||
const short IRND_INV_CORR = IRND_INV_COL - 1; // correction -1.0 and round
|
||||
|
||||
JPGD_SIMD_ALIGN(short, shortM128_one_corr[8]) = {1, 1, 1, 1, 1, 1, 1, 1};
|
||||
JPGD_SIMD_ALIGN(short, shortM128_round_inv_row[8]) = {IRND_INV_ROW, 0, IRND_INV_ROW, 0, IRND_INV_ROW, 0, IRND_INV_ROW, 0};
|
||||
JPGD_SIMD_ALIGN(short, shortM128_round_inv_col[8]) = {IRND_INV_COL, IRND_INV_COL, IRND_INV_COL, IRND_INV_COL, IRND_INV_COL, IRND_INV_COL, IRND_INV_COL, IRND_INV_COL};
|
||||
JPGD_SIMD_ALIGN(short, shortM128_round_inv_corr[8])= {IRND_INV_CORR, IRND_INV_CORR, IRND_INV_CORR, IRND_INV_CORR, IRND_INV_CORR, IRND_INV_CORR, IRND_INV_CORR, IRND_INV_CORR};
|
||||
JPGD_SIMD_ALIGN(short, shortM128_tg_1_16[8]) = {13036, 13036, 13036, 13036, 13036, 13036, 13036, 13036}; // tg * (2<<16) + 0.5
|
||||
JPGD_SIMD_ALIGN(short, shortM128_tg_2_16[8]) = {27146, 27146, 27146, 27146, 27146, 27146, 27146, 27146}; // tg * (2<<16) + 0.5
|
||||
JPGD_SIMD_ALIGN(short, shortM128_tg_3_16[8]) = {-21746, -21746, -21746, -21746, -21746, -21746, -21746, -21746}; // tg * (2<<16) + 0.5
|
||||
JPGD_SIMD_ALIGN(short, shortM128_cos_4_16[8]) = {-19195, -19195, -19195, -19195, -19195, -19195, -19195, -19195};// cos * (2<<16) + 0.5
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
// Table for rows 0,4 - constants are multiplied on cos_4_16
|
||||
// w15 w14 w11 w10 w07 w06 w03 w02
|
||||
// w29 w28 w25 w24 w21 w20 w17 w16
|
||||
// w31 w30 w27 w26 w23 w22 w19 w18
|
||||
//movq -> w05 w04 w01 w00
|
||||
JPGD_SIMD_ALIGN(short, shortM128_tab_i_04[]) = {
|
||||
16384, 21407, 16384, 8867,
|
||||
16384, -8867, 16384, -21407, // w13 w12 w09 w08
|
||||
16384, 8867, -16384, -21407, // w07 w06 w03 w02
|
||||
-16384, 21407, 16384, -8867, // w15 w14 w11 w10
|
||||
22725, 19266, 19266, -4520, // w21 w20 w17 w16
|
||||
12873, -22725, 4520, -12873, // w29 w28 w25 w24
|
||||
12873, 4520, -22725, -12873, // w23 w22 w19 w18
|
||||
4520, 19266, 19266, -22725}; // w31 w30 w27 w26
|
||||
|
||||
// Table for rows 1,7 - constants are multiplied on cos_1_16
|
||||
//movq -> w05 w04 w01 w00
|
||||
JPGD_SIMD_ALIGN(short, shortM128_tab_i_17[]) = {
|
||||
22725, 29692, 22725, 12299,
|
||||
22725, -12299, 22725, -29692, // w13 w12 w09 w08
|
||||
22725, 12299, -22725, -29692, // w07 w06 w03 w02
|
||||
-22725, 29692, 22725, -12299, // w15 w14 w11 w10
|
||||
31521, 26722, 26722, -6270, // w21 w20 w17 w16
|
||||
17855, -31521, 6270, -17855, // w29 w28 w25 w24
|
||||
17855, 6270, -31521, -17855, // w23 w22 w19 w18
|
||||
6270, 26722, 26722, -31521}; // w31 w30 w27 w26
|
||||
|
||||
// Table for rows 2,6 - constants are multiplied on cos_2_16
|
||||
//movq -> w05 w04 w01 w00
|
||||
JPGD_SIMD_ALIGN(short, shortM128_tab_i_26[]) = {
|
||||
21407, 27969, 21407, 11585,
|
||||
21407, -11585, 21407, -27969, // w13 w12 w09 w08
|
||||
21407, 11585, -21407, -27969, // w07 w06 w03 w02
|
||||
-21407, 27969, 21407, -11585, // w15 w14 w11 w10
|
||||
29692, 25172, 25172, -5906, // w21 w20 w17 w16
|
||||
16819, -29692, 5906, -16819, // w29 w28 w25 w24
|
||||
16819, 5906, -29692, -16819, // w23 w22 w19 w18
|
||||
5906, 25172, 25172, -29692}; // w31 w30 w27 w26
|
||||
// Table for rows 3,5 - constants are multiplied on cos_3_16
|
||||
//movq -> w05 w04 w01 w00
|
||||
JPGD_SIMD_ALIGN(short, shortM128_tab_i_35[]) = {
|
||||
19266, 25172, 19266, 10426,
|
||||
19266, -10426, 19266, -25172, // w13 w12 w09 w08
|
||||
19266, 10426, -19266, -25172, // w07 w06 w03 w02
|
||||
-19266, 25172, 19266, -10426, // w15 w14 w11 w10
|
||||
26722, 22654, 22654, -5315, // w21 w20 w17 w16
|
||||
15137, -26722, 5315, -15137, // w29 w28 w25 w24
|
||||
15137, 5315, -26722, -15137, // w23 w22 w19 w18
|
||||
5315, 22654, 22654, -26722}; // w31 w30 w27 w26
|
||||
|
||||
JPGD_SIMD_ALIGN(short, shortM128_128[8]) = { 128, 128, 128, 128, 128, 128, 128, 128 };
|
||||
|
||||
void idctSSEShortU8(const short *pInput, uint8_t * pOutputUB)
|
||||
{
|
||||
__m128i r_xmm0, r_xmm4;
|
||||
__m128i r_xmm1, r_xmm2, r_xmm3, r_xmm5, r_xmm6, r_xmm7;
|
||||
__m128i row0, row1, row2, row3, row4, row5, row6, row7;
|
||||
short * pTab_i_04 = shortM128_tab_i_04;
|
||||
short * pTab_i_26 = shortM128_tab_i_26;
|
||||
|
||||
//Get pointers for this input and output
|
||||
pTab_i_04 = shortM128_tab_i_04;
|
||||
pTab_i_26 = shortM128_tab_i_26;
|
||||
|
||||
//Row 1 and Row 3
|
||||
r_xmm0 = _mm_load_si128((__m128i *) pInput);
|
||||
r_xmm4 = _mm_load_si128((__m128i *) (&pInput[2*8]));
|
||||
|
||||
// *** Work on the data in xmm0
|
||||
//low shuffle mask = 0xd8 = 11 01 10 00
|
||||
//get short 2 and short 0 into ls 32-bits
|
||||
r_xmm0 = _mm_shufflelo_epi16(r_xmm0, 0xd8);
|
||||
|
||||
// copy short 2 and short 0 to all locations
|
||||
r_xmm1 = _mm_shuffle_epi32(r_xmm0, 0);
|
||||
|
||||
// add to those copies
|
||||
r_xmm1 = _mm_madd_epi16(r_xmm1, *((__m128i *) pTab_i_04));
|
||||
|
||||
// shuffle mask = 0x55 = 01 01 01 01
|
||||
// copy short 3 and short 1 to all locations
|
||||
r_xmm3 = _mm_shuffle_epi32(r_xmm0, 0x55);
|
||||
|
||||
// high shuffle mask = 0xd8 = 11 01 10 00
|
||||
// get short 6 and short 4 into bit positions 64-95
|
||||
// get short 7 and short 5 into bit positions 96-127
|
||||
r_xmm0 = _mm_shufflehi_epi16(r_xmm0, 0xd8);
|
||||
|
||||
// add to short 3 and short 1
|
||||
r_xmm3 = _mm_madd_epi16(r_xmm3, *((__m128i *) &pTab_i_04[16]));
|
||||
|
||||
// shuffle mask = 0xaa = 10 10 10 10
|
||||
// copy short 6 and short 4 to all locations
|
||||
r_xmm2 = _mm_shuffle_epi32(r_xmm0, 0xaa);
|
||||
|
||||
// shuffle mask = 0xaa = 11 11 11 11
|
||||
// copy short 7 and short 5 to all locations
|
||||
r_xmm0 = _mm_shuffle_epi32(r_xmm0, 0xff);
|
||||
|
||||
// add to short 6 and short 4
|
||||
r_xmm2 = _mm_madd_epi16(r_xmm2, *((__m128i *) &pTab_i_04[8]));
|
||||
|
||||
// *** Work on the data in xmm4
|
||||
// high shuffle mask = 0xd8 11 01 10 00
|
||||
// get short 6 and short 4 into bit positions 64-95
|
||||
// get short 7 and short 5 into bit positions 96-127
|
||||
r_xmm4 = _mm_shufflehi_epi16(r_xmm4, 0xd8);
|
||||
|
||||
// (xmm0 short 2 and short 0 plus pSi) + some constants
|
||||
r_xmm1 = _mm_add_epi32(r_xmm1, *((__m128i *) shortM128_round_inv_row));
|
||||
r_xmm4 = _mm_shufflelo_epi16(r_xmm4, 0xd8);
|
||||
r_xmm0 = _mm_madd_epi16(r_xmm0, *((__m128i *) &pTab_i_04[24]));
|
||||
r_xmm5 = _mm_shuffle_epi32(r_xmm4, 0);
|
||||
r_xmm6 = _mm_shuffle_epi32(r_xmm4, 0xaa);
|
||||
r_xmm5 = _mm_madd_epi16(r_xmm5, *((__m128i *) &shortM128_tab_i_26[0]));
|
||||
r_xmm1 = _mm_add_epi32(r_xmm1, r_xmm2);
|
||||
r_xmm2 = r_xmm1;
|
||||
r_xmm7 = _mm_shuffle_epi32(r_xmm4, 0x55);
|
||||
r_xmm6 = _mm_madd_epi16(r_xmm6, *((__m128i *) &shortM128_tab_i_26[8]));
|
||||
r_xmm0 = _mm_add_epi32(r_xmm0, r_xmm3);
|
||||
r_xmm4 = _mm_shuffle_epi32(r_xmm4, 0xff);
|
||||
r_xmm2 = _mm_sub_epi32(r_xmm2, r_xmm0);
|
||||
r_xmm7 = _mm_madd_epi16(r_xmm7, *((__m128i *) &shortM128_tab_i_26[16]));
|
||||
r_xmm0 = _mm_add_epi32(r_xmm0, r_xmm1);
|
||||
r_xmm2 = _mm_srai_epi32(r_xmm2, 12);
|
||||
r_xmm5 = _mm_add_epi32(r_xmm5, *((__m128i *) shortM128_round_inv_row));
|
||||
r_xmm4 = _mm_madd_epi16(r_xmm4, *((__m128i *) &shortM128_tab_i_26[24]));
|
||||
r_xmm5 = _mm_add_epi32(r_xmm5, r_xmm6);
|
||||
r_xmm6 = r_xmm5;
|
||||
r_xmm0 = _mm_srai_epi32(r_xmm0, 12);
|
||||
r_xmm2 = _mm_shuffle_epi32(r_xmm2, 0x1b);
|
||||
row0 = _mm_packs_epi32(r_xmm0, r_xmm2);
|
||||
r_xmm4 = _mm_add_epi32(r_xmm4, r_xmm7);
|
||||
r_xmm6 = _mm_sub_epi32(r_xmm6, r_xmm4);
|
||||
r_xmm4 = _mm_add_epi32(r_xmm4, r_xmm5);
|
||||
r_xmm6 = _mm_srai_epi32(r_xmm6, 12);
|
||||
r_xmm4 = _mm_srai_epi32(r_xmm4, 12);
|
||||
r_xmm6 = _mm_shuffle_epi32(r_xmm6, 0x1b);
|
||||
row2 = _mm_packs_epi32(r_xmm4, r_xmm6);
|
||||
|
||||
//Row 5 and row 7
|
||||
r_xmm0 = _mm_load_si128((__m128i *) (&pInput[4*8]));
|
||||
r_xmm4 = _mm_load_si128((__m128i *) (&pInput[6*8]));
|
||||
|
||||
r_xmm0 = _mm_shufflelo_epi16(r_xmm0, 0xd8);
|
||||
r_xmm1 = _mm_shuffle_epi32(r_xmm0, 0);
|
||||
r_xmm1 = _mm_madd_epi16(r_xmm1, *((__m128i *) pTab_i_04));
|
||||
r_xmm3 = _mm_shuffle_epi32(r_xmm0, 0x55);
|
||||
r_xmm0 = _mm_shufflehi_epi16(r_xmm0, 0xd8);
|
||||
r_xmm3 = _mm_madd_epi16(r_xmm3, *((__m128i *) &pTab_i_04[16]));
|
||||
r_xmm2 = _mm_shuffle_epi32(r_xmm0, 0xaa);
|
||||
r_xmm0 = _mm_shuffle_epi32(r_xmm0, 0xff);
|
||||
r_xmm2 = _mm_madd_epi16(r_xmm2, *((__m128i *) &pTab_i_04[8]));
|
||||
r_xmm4 = _mm_shufflehi_epi16(r_xmm4, 0xd8);
|
||||
r_xmm1 = _mm_add_epi32(r_xmm1, *((__m128i *) shortM128_round_inv_row));
|
||||
r_xmm4 = _mm_shufflelo_epi16(r_xmm4, 0xd8);
|
||||
r_xmm0 = _mm_madd_epi16(r_xmm0, *((__m128i *) &pTab_i_04[24]));
|
||||
r_xmm5 = _mm_shuffle_epi32(r_xmm4, 0);
|
||||
r_xmm6 = _mm_shuffle_epi32(r_xmm4, 0xaa);
|
||||
r_xmm5 = _mm_madd_epi16(r_xmm5, *((__m128i *) &shortM128_tab_i_26[0]));
|
||||
r_xmm1 = _mm_add_epi32(r_xmm1, r_xmm2);
|
||||
r_xmm2 = r_xmm1;
|
||||
r_xmm7 = _mm_shuffle_epi32(r_xmm4, 0x55);
|
||||
r_xmm6 = _mm_madd_epi16(r_xmm6, *((__m128i *) &shortM128_tab_i_26[8]));
|
||||
r_xmm0 = _mm_add_epi32(r_xmm0, r_xmm3);
|
||||
r_xmm4 = _mm_shuffle_epi32(r_xmm4, 0xff);
|
||||
r_xmm2 = _mm_sub_epi32(r_xmm2, r_xmm0);
|
||||
r_xmm7 = _mm_madd_epi16(r_xmm7, *((__m128i *) &shortM128_tab_i_26[16]));
|
||||
r_xmm0 = _mm_add_epi32(r_xmm0, r_xmm1);
|
||||
r_xmm2 = _mm_srai_epi32(r_xmm2, 12);
|
||||
r_xmm5 = _mm_add_epi32(r_xmm5, *((__m128i *) shortM128_round_inv_row));
|
||||
r_xmm4 = _mm_madd_epi16(r_xmm4, *((__m128i *) &shortM128_tab_i_26[24]));
|
||||
r_xmm5 = _mm_add_epi32(r_xmm5, r_xmm6);
|
||||
r_xmm6 = r_xmm5;
|
||||
r_xmm0 = _mm_srai_epi32(r_xmm0, 12);
|
||||
r_xmm2 = _mm_shuffle_epi32(r_xmm2, 0x1b);
|
||||
row4 = _mm_packs_epi32(r_xmm0, r_xmm2);
|
||||
r_xmm4 = _mm_add_epi32(r_xmm4, r_xmm7);
|
||||
r_xmm6 = _mm_sub_epi32(r_xmm6, r_xmm4);
|
||||
r_xmm4 = _mm_add_epi32(r_xmm4, r_xmm5);
|
||||
r_xmm6 = _mm_srai_epi32(r_xmm6, 12);
|
||||
r_xmm4 = _mm_srai_epi32(r_xmm4, 12);
|
||||
r_xmm6 = _mm_shuffle_epi32(r_xmm6, 0x1b);
|
||||
row6 = _mm_packs_epi32(r_xmm4, r_xmm6);
|
||||
|
||||
//Row 4 and row 2
|
||||
pTab_i_04 = shortM128_tab_i_35;
|
||||
pTab_i_26 = shortM128_tab_i_17;
|
||||
r_xmm0 = _mm_load_si128((__m128i *) (&pInput[3*8]));
|
||||
r_xmm4 = _mm_load_si128((__m128i *) (&pInput[1*8]));
|
||||
|
||||
r_xmm0 = _mm_shufflelo_epi16(r_xmm0, 0xd8);
|
||||
r_xmm1 = _mm_shuffle_epi32(r_xmm0, 0);
|
||||
r_xmm1 = _mm_madd_epi16(r_xmm1, *((__m128i *) pTab_i_04));
|
||||
r_xmm3 = _mm_shuffle_epi32(r_xmm0, 0x55);
|
||||
r_xmm0 = _mm_shufflehi_epi16(r_xmm0, 0xd8);
|
||||
r_xmm3 = _mm_madd_epi16(r_xmm3, *((__m128i *) &pTab_i_04[16]));
|
||||
r_xmm2 = _mm_shuffle_epi32(r_xmm0, 0xaa);
|
||||
r_xmm0 = _mm_shuffle_epi32(r_xmm0, 0xff);
|
||||
r_xmm2 = _mm_madd_epi16(r_xmm2, *((__m128i *) &pTab_i_04[8]));
|
||||
r_xmm4 = _mm_shufflehi_epi16(r_xmm4, 0xd8);
|
||||
r_xmm1 = _mm_add_epi32(r_xmm1, *((__m128i *) shortM128_round_inv_row));
|
||||
r_xmm4 = _mm_shufflelo_epi16(r_xmm4, 0xd8);
|
||||
r_xmm0 = _mm_madd_epi16(r_xmm0, *((__m128i *) &pTab_i_04[24]));
|
||||
r_xmm5 = _mm_shuffle_epi32(r_xmm4, 0);
|
||||
r_xmm6 = _mm_shuffle_epi32(r_xmm4, 0xaa);
|
||||
r_xmm5 = _mm_madd_epi16(r_xmm5, *((__m128i *) &pTab_i_26[0]));
|
||||
r_xmm1 = _mm_add_epi32(r_xmm1, r_xmm2);
|
||||
r_xmm2 = r_xmm1;
|
||||
r_xmm7 = _mm_shuffle_epi32(r_xmm4, 0x55);
|
||||
r_xmm6 = _mm_madd_epi16(r_xmm6, *((__m128i *) &pTab_i_26[8]));
|
||||
r_xmm0 = _mm_add_epi32(r_xmm0, r_xmm3);
|
||||
r_xmm4 = _mm_shuffle_epi32(r_xmm4, 0xff);
|
||||
r_xmm2 = _mm_sub_epi32(r_xmm2, r_xmm0);
|
||||
r_xmm7 = _mm_madd_epi16(r_xmm7, *((__m128i *) &pTab_i_26[16]));
|
||||
r_xmm0 = _mm_add_epi32(r_xmm0, r_xmm1);
|
||||
r_xmm2 = _mm_srai_epi32(r_xmm2, 12);
|
||||
r_xmm5 = _mm_add_epi32(r_xmm5, *((__m128i *) shortM128_round_inv_row));
|
||||
r_xmm4 = _mm_madd_epi16(r_xmm4, *((__m128i *) &pTab_i_26[24]));
|
||||
r_xmm5 = _mm_add_epi32(r_xmm5, r_xmm6);
|
||||
r_xmm6 = r_xmm5;
|
||||
r_xmm0 = _mm_srai_epi32(r_xmm0, 12);
|
||||
r_xmm2 = _mm_shuffle_epi32(r_xmm2, 0x1b);
|
||||
row3 = _mm_packs_epi32(r_xmm0, r_xmm2);
|
||||
r_xmm4 = _mm_add_epi32(r_xmm4, r_xmm7);
|
||||
r_xmm6 = _mm_sub_epi32(r_xmm6, r_xmm4);
|
||||
r_xmm4 = _mm_add_epi32(r_xmm4, r_xmm5);
|
||||
r_xmm6 = _mm_srai_epi32(r_xmm6, 12);
|
||||
r_xmm4 = _mm_srai_epi32(r_xmm4, 12);
|
||||
r_xmm6 = _mm_shuffle_epi32(r_xmm6, 0x1b);
|
||||
row1 = _mm_packs_epi32(r_xmm4, r_xmm6);
|
||||
|
||||
//Row 6 and row 8
|
||||
r_xmm0 = _mm_load_si128((__m128i *) (&pInput[5*8]));
|
||||
r_xmm4 = _mm_load_si128((__m128i *) (&pInput[7*8]));
|
||||
|
||||
r_xmm0 = _mm_shufflelo_epi16(r_xmm0, 0xd8);
|
||||
r_xmm1 = _mm_shuffle_epi32(r_xmm0, 0);
|
||||
r_xmm1 = _mm_madd_epi16(r_xmm1, *((__m128i *) pTab_i_04));
|
||||
r_xmm3 = _mm_shuffle_epi32(r_xmm0, 0x55);
|
||||
r_xmm0 = _mm_shufflehi_epi16(r_xmm0, 0xd8);
|
||||
r_xmm3 = _mm_madd_epi16(r_xmm3, *((__m128i *) &pTab_i_04[16]));
|
||||
r_xmm2 = _mm_shuffle_epi32(r_xmm0, 0xaa);
|
||||
r_xmm0 = _mm_shuffle_epi32(r_xmm0, 0xff);
|
||||
r_xmm2 = _mm_madd_epi16(r_xmm2, *((__m128i *) &pTab_i_04[8]));
|
||||
r_xmm4 = _mm_shufflehi_epi16(r_xmm4, 0xd8);
|
||||
r_xmm1 = _mm_add_epi32(r_xmm1, *((__m128i *) shortM128_round_inv_row));
|
||||
r_xmm4 = _mm_shufflelo_epi16(r_xmm4, 0xd8);
|
||||
r_xmm0 = _mm_madd_epi16(r_xmm0, *((__m128i *) &pTab_i_04[24]));
|
||||
r_xmm5 = _mm_shuffle_epi32(r_xmm4, 0);
|
||||
r_xmm6 = _mm_shuffle_epi32(r_xmm4, 0xaa);
|
||||
r_xmm5 = _mm_madd_epi16(r_xmm5, *((__m128i *) &pTab_i_26[0]));
|
||||
r_xmm1 = _mm_add_epi32(r_xmm1, r_xmm2);
|
||||
r_xmm2 = r_xmm1;
|
||||
r_xmm7 = _mm_shuffle_epi32(r_xmm4, 0x55);
|
||||
r_xmm6 = _mm_madd_epi16(r_xmm6, *((__m128i *) &pTab_i_26[8]));
|
||||
r_xmm0 = _mm_add_epi32(r_xmm0, r_xmm3);
|
||||
r_xmm4 = _mm_shuffle_epi32(r_xmm4, 0xff);
|
||||
r_xmm2 = _mm_sub_epi32(r_xmm2, r_xmm0);
|
||||
r_xmm7 = _mm_madd_epi16(r_xmm7, *((__m128i *) &pTab_i_26[16]));
|
||||
r_xmm0 = _mm_add_epi32(r_xmm0, r_xmm1);
|
||||
r_xmm2 = _mm_srai_epi32(r_xmm2, 12);
|
||||
r_xmm5 = _mm_add_epi32(r_xmm5, *((__m128i *) shortM128_round_inv_row));
|
||||
r_xmm4 = _mm_madd_epi16(r_xmm4, *((__m128i *) &pTab_i_26[24]));
|
||||
r_xmm5 = _mm_add_epi32(r_xmm5, r_xmm6);
|
||||
r_xmm6 = r_xmm5;
|
||||
r_xmm0 = _mm_srai_epi32(r_xmm0, 12);
|
||||
r_xmm2 = _mm_shuffle_epi32(r_xmm2, 0x1b);
|
||||
row5 = _mm_packs_epi32(r_xmm0, r_xmm2);
|
||||
r_xmm4 = _mm_add_epi32(r_xmm4, r_xmm7);
|
||||
r_xmm6 = _mm_sub_epi32(r_xmm6, r_xmm4);
|
||||
r_xmm4 = _mm_add_epi32(r_xmm4, r_xmm5);
|
||||
r_xmm6 = _mm_srai_epi32(r_xmm6, 12);
|
||||
r_xmm4 = _mm_srai_epi32(r_xmm4, 12);
|
||||
r_xmm6 = _mm_shuffle_epi32(r_xmm6, 0x1b);
|
||||
row7 = _mm_packs_epi32(r_xmm4, r_xmm6);
|
||||
|
||||
r_xmm1 = _mm_load_si128((__m128i *) shortM128_tg_3_16);
|
||||
r_xmm2 = row5;
|
||||
r_xmm3 = row3;
|
||||
r_xmm0 = _mm_mulhi_epi16(row5, r_xmm1);
|
||||
|
||||
r_xmm1 = _mm_mulhi_epi16(r_xmm1, r_xmm3);
|
||||
r_xmm5 = _mm_load_si128((__m128i *) shortM128_tg_1_16);
|
||||
r_xmm6 = row7;
|
||||
r_xmm4 = _mm_mulhi_epi16(row7, r_xmm5);
|
||||
|
||||
r_xmm0 = _mm_adds_epi16(r_xmm0, r_xmm2);
|
||||
r_xmm5 = _mm_mulhi_epi16(r_xmm5, row1);
|
||||
r_xmm1 = _mm_adds_epi16(r_xmm1, r_xmm3);
|
||||
r_xmm7 = row6;
|
||||
|
||||
r_xmm0 = _mm_adds_epi16(r_xmm0, r_xmm3);
|
||||
r_xmm3 = _mm_load_si128((__m128i *) shortM128_tg_2_16);
|
||||
r_xmm2 = _mm_subs_epi16(r_xmm2, r_xmm1);
|
||||
r_xmm7 = _mm_mulhi_epi16(r_xmm7, r_xmm3);
|
||||
r_xmm1 = r_xmm0;
|
||||
r_xmm3 = _mm_mulhi_epi16(r_xmm3, row2);
|
||||
r_xmm5 = _mm_subs_epi16(r_xmm5, r_xmm6);
|
||||
r_xmm4 = _mm_adds_epi16(r_xmm4, row1);
|
||||
r_xmm0 = _mm_adds_epi16(r_xmm0, r_xmm4);
|
||||
r_xmm0 = _mm_adds_epi16(r_xmm0, *((__m128i *) shortM128_one_corr));
|
||||
r_xmm4 = _mm_subs_epi16(r_xmm4, r_xmm1);
|
||||
r_xmm6 = r_xmm5;
|
||||
r_xmm5 = _mm_subs_epi16(r_xmm5, r_xmm2);
|
||||
r_xmm5 = _mm_adds_epi16(r_xmm5, *((__m128i *) shortM128_one_corr));
|
||||
r_xmm6 = _mm_adds_epi16(r_xmm6, r_xmm2);
|
||||
|
||||
//Intermediate results, needed later
|
||||
__m128i temp3, temp7;
|
||||
temp7 = r_xmm0;
|
||||
|
||||
r_xmm1 = r_xmm4;
|
||||
r_xmm0 = _mm_load_si128((__m128i *) shortM128_cos_4_16);
|
||||
r_xmm4 = _mm_adds_epi16(r_xmm4, r_xmm5);
|
||||
r_xmm2 = _mm_load_si128((__m128i *) shortM128_cos_4_16);
|
||||
r_xmm2 = _mm_mulhi_epi16(r_xmm2, r_xmm4);
|
||||
|
||||
//Intermediate results, needed later
|
||||
temp3 = r_xmm6;
|
||||
|
||||
r_xmm1 = _mm_subs_epi16(r_xmm1, r_xmm5);
|
||||
r_xmm7 = _mm_adds_epi16(r_xmm7, row2);
|
||||
r_xmm3 = _mm_subs_epi16(r_xmm3, row6);
|
||||
r_xmm6 = row0;
|
||||
r_xmm0 = _mm_mulhi_epi16(r_xmm0, r_xmm1);
|
||||
r_xmm5 = row4;
|
||||
r_xmm5 = _mm_adds_epi16(r_xmm5, r_xmm6);
|
||||
r_xmm6 = _mm_subs_epi16(r_xmm6, row4);
|
||||
r_xmm4 = _mm_adds_epi16(r_xmm4, r_xmm2);
|
||||
|
||||
r_xmm4 = _mm_or_si128(r_xmm4, *((__m128i *) shortM128_one_corr));
|
||||
r_xmm0 = _mm_adds_epi16(r_xmm0, r_xmm1);
|
||||
r_xmm0 = _mm_or_si128(r_xmm0, *((__m128i *) shortM128_one_corr));
|
||||
|
||||
r_xmm2 = r_xmm5;
|
||||
r_xmm5 = _mm_adds_epi16(r_xmm5, r_xmm7);
|
||||
r_xmm1 = r_xmm6;
|
||||
r_xmm5 = _mm_adds_epi16(r_xmm5, *((__m128i *) shortM128_round_inv_col));
|
||||
r_xmm2 = _mm_subs_epi16(r_xmm2, r_xmm7);
|
||||
r_xmm7 = temp7;
|
||||
r_xmm6 = _mm_adds_epi16(r_xmm6, r_xmm3);
|
||||
r_xmm6 = _mm_adds_epi16(r_xmm6, *((__m128i *) shortM128_round_inv_col));
|
||||
r_xmm7 = _mm_adds_epi16(r_xmm7, r_xmm5);
|
||||
r_xmm7 = _mm_srai_epi16(r_xmm7, SHIFT_INV_COL);
|
||||
r_xmm1 = _mm_subs_epi16(r_xmm1, r_xmm3);
|
||||
r_xmm1 = _mm_adds_epi16(r_xmm1, *((__m128i *) shortM128_round_inv_corr));
|
||||
r_xmm3 = r_xmm6;
|
||||
r_xmm2 = _mm_adds_epi16(r_xmm2, *((__m128i *) shortM128_round_inv_corr));
|
||||
r_xmm6 = _mm_adds_epi16(r_xmm6, r_xmm4);
|
||||
|
||||
//Store results for row 0
|
||||
//_mm_store_si128((__m128i *) pOutput, r_xmm7);
|
||||
__m128i r0 = r_xmm7;
|
||||
|
||||
r_xmm6 = _mm_srai_epi16(r_xmm6, SHIFT_INV_COL);
|
||||
r_xmm7 = r_xmm1;
|
||||
r_xmm1 = _mm_adds_epi16(r_xmm1, r_xmm0);
|
||||
|
||||
//Store results for row 1
|
||||
//_mm_store_si128((__m128i *) (&pOutput[1*8]), r_xmm6);
|
||||
__m128i r1 = r_xmm6;
|
||||
|
||||
r_xmm1 = _mm_srai_epi16(r_xmm1, SHIFT_INV_COL);
|
||||
r_xmm6 = temp3;
|
||||
r_xmm7 = _mm_subs_epi16(r_xmm7, r_xmm0);
|
||||
r_xmm7 = _mm_srai_epi16(r_xmm7, SHIFT_INV_COL);
|
||||
|
||||
//Store results for row 2
|
||||
//_mm_store_si128((__m128i *) (&pOutput[2*8]), r_xmm1);
|
||||
__m128i r2 = r_xmm1;
|
||||
|
||||
r_xmm5 = _mm_subs_epi16(r_xmm5, temp7);
|
||||
r_xmm5 = _mm_srai_epi16(r_xmm5, SHIFT_INV_COL);
|
||||
|
||||
//Store results for row 7
|
||||
//_mm_store_si128((__m128i *) (&pOutput[7*8]), r_xmm5);
|
||||
__m128i r7 = r_xmm5;
|
||||
|
||||
r_xmm3 = _mm_subs_epi16(r_xmm3, r_xmm4);
|
||||
r_xmm6 = _mm_adds_epi16(r_xmm6, r_xmm2);
|
||||
r_xmm2 = _mm_subs_epi16(r_xmm2, temp3);
|
||||
r_xmm6 = _mm_srai_epi16(r_xmm6, SHIFT_INV_COL);
|
||||
r_xmm2 = _mm_srai_epi16(r_xmm2, SHIFT_INV_COL);
|
||||
|
||||
//Store results for row 3
|
||||
//_mm_store_si128((__m128i *) (&pOutput[3*8]), r_xmm6);
|
||||
__m128i r3 = r_xmm6;
|
||||
|
||||
r_xmm3 = _mm_srai_epi16(r_xmm3, SHIFT_INV_COL);
|
||||
|
||||
//Store results for rows 4, 5, and 6
|
||||
//_mm_store_si128((__m128i *) (&pOutput[4*8]), r_xmm2);
|
||||
//_mm_store_si128((__m128i *) (&pOutput[5*8]), r_xmm7);
|
||||
//_mm_store_si128((__m128i *) (&pOutput[6*8]), r_xmm3);
|
||||
|
||||
__m128i r4 = r_xmm2;
|
||||
__m128i r5 = r_xmm7;
|
||||
__m128i r6 = r_xmm3;
|
||||
|
||||
r0 = _mm_add_epi16(*(const __m128i *)shortM128_128, r0);
|
||||
r1 = _mm_add_epi16(*(const __m128i *)shortM128_128, r1);
|
||||
r2 = _mm_add_epi16(*(const __m128i *)shortM128_128, r2);
|
||||
r3 = _mm_add_epi16(*(const __m128i *)shortM128_128, r3);
|
||||
r4 = _mm_add_epi16(*(const __m128i *)shortM128_128, r4);
|
||||
r5 = _mm_add_epi16(*(const __m128i *)shortM128_128, r5);
|
||||
r6 = _mm_add_epi16(*(const __m128i *)shortM128_128, r6);
|
||||
r7 = _mm_add_epi16(*(const __m128i *)shortM128_128, r7);
|
||||
|
||||
((__m128i *)pOutputUB)[0] = _mm_packus_epi16(r0, r1);
|
||||
((__m128i *)pOutputUB)[1] = _mm_packus_epi16(r2, r3);
|
||||
((__m128i *)pOutputUB)[2] = _mm_packus_epi16(r4, r5);
|
||||
((__m128i *)pOutputUB)[3] = _mm_packus_epi16(r6, r7);
|
||||
}
|
1939
ext/jpge/jpge.cpp
1939
ext/jpge/jpge.cpp
File diff suppressed because it is too large
Load Diff
298
ext/jpge/jpge.h
298
ext/jpge/jpge.h
@ -1,168 +1,172 @@
|
||||
// jpge.h - C++ class for JPEG compression.
|
||||
// Public domain, Rich Geldreich <richgel99@gmail.com>
|
||||
// Public Domain or Apache 2.0, Richard Geldreich <richgel99@gmail.com>
|
||||
// Alex Evans: Added RGBA support, linear memory allocator.
|
||||
#ifndef JPEG_ENCODER_H
|
||||
#define JPEG_ENCODER_H
|
||||
|
||||
namespace jpge
|
||||
{
|
||||
typedef unsigned char uint8;
|
||||
typedef signed short int16;
|
||||
typedef signed int int32;
|
||||
typedef unsigned short uint16;
|
||||
typedef unsigned int uint32;
|
||||
typedef unsigned int uint;
|
||||
|
||||
// JPEG chroma subsampling factors. Y_ONLY (grayscale images) and H2V2 (color images) are the most common.
|
||||
enum subsampling_t { Y_ONLY = 0, H1V1 = 1, H2V1 = 2, H2V2 = 3 };
|
||||
typedef unsigned char uint8;
|
||||
typedef signed short int16;
|
||||
typedef signed int int32;
|
||||
typedef unsigned short uint16;
|
||||
typedef unsigned int uint32;
|
||||
typedef unsigned int uint;
|
||||
|
||||
// JPEG compression parameters structure.
|
||||
struct params
|
||||
{
|
||||
inline params() : m_quality(85), m_subsampling(H2V2), m_no_chroma_discrim_flag(false), m_two_pass_flag(false) { }
|
||||
// JPEG chroma subsampling factors. Y_ONLY (grayscale images) and H2V2 (color images) are the most common.
|
||||
enum subsampling_t { Y_ONLY = 0, H1V1 = 1, H2V1 = 2, H2V2 = 3 };
|
||||
|
||||
inline bool check() const
|
||||
{
|
||||
if ((m_quality < 1) || (m_quality > 100)) return false;
|
||||
if ((uint)m_subsampling > (uint)H2V2) return false;
|
||||
return true;
|
||||
}
|
||||
// JPEG compression parameters structure.
|
||||
struct params
|
||||
{
|
||||
inline params() : m_quality(85), m_subsampling(H2V2), m_no_chroma_discrim_flag(false), m_two_pass_flag(false), m_use_std_tables(false) { }
|
||||
|
||||
// Quality: 1-100, higher is better. Typical values are around 50-95.
|
||||
int m_quality;
|
||||
inline bool check() const
|
||||
{
|
||||
if ((m_quality < 1) || (m_quality > 100)) return false;
|
||||
if ((uint)m_subsampling > (uint)H2V2) return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
// m_subsampling:
|
||||
// 0 = Y (grayscale) only
|
||||
// 1 = YCbCr, no subsampling (H1V1, YCbCr 1x1x1, 3 blocks per MCU)
|
||||
// 2 = YCbCr, H2V1 subsampling (YCbCr 2x1x1, 4 blocks per MCU)
|
||||
// 3 = YCbCr, H2V2 subsampling (YCbCr 4x1x1, 6 blocks per MCU-- very common)
|
||||
subsampling_t m_subsampling;
|
||||
// Quality: 1-100, higher is better. Typical values are around 50-95.
|
||||
int m_quality;
|
||||
|
||||
// Disables CbCr discrimination - only intended for testing.
|
||||
// If true, the Y quantization table is also used for the CbCr channels.
|
||||
bool m_no_chroma_discrim_flag;
|
||||
// m_subsampling:
|
||||
// 0 = Y (grayscale) only
|
||||
// 1 = YCbCr, no subsampling (H1V1, YCbCr 1x1x1, 3 blocks per MCU)
|
||||
// 2 = YCbCr, H2V1 subsampling (YCbCr 2x1x1, 4 blocks per MCU)
|
||||
// 3 = YCbCr, H2V2 subsampling (YCbCr 4x1x1, 6 blocks per MCU-- very common)
|
||||
subsampling_t m_subsampling;
|
||||
|
||||
bool m_two_pass_flag;
|
||||
};
|
||||
|
||||
// Writes JPEG image to a file.
|
||||
// num_channels must be 1 (Y) or 3 (RGB), image pitch must be width*num_channels.
|
||||
bool compress_image_to_jpeg_file(const char *pFilename, int width, int height, int num_channels, const uint8 *pImage_data, const params &comp_params = params());
|
||||
// Disables CbCr discrimination - only intended for testing.
|
||||
// If true, the Y quantization table is also used for the CbCr channels.
|
||||
bool m_no_chroma_discrim_flag;
|
||||
|
||||
// Writes JPEG image to memory buffer.
|
||||
// On entry, buf_size is the size of the output buffer pointed at by pBuf, which should be at least ~1024 bytes.
|
||||
// If return value is true, buf_size will be set to the size of the compressed data.
|
||||
bool compress_image_to_jpeg_file_in_memory(void *pBuf, int &buf_size, int width, int height, int num_channels, const uint8 *pImage_data, const params &comp_params = params());
|
||||
|
||||
// Output stream abstract class - used by the jpeg_encoder class to write to the output stream.
|
||||
// put_buf() is generally called with len==JPGE_OUT_BUF_SIZE bytes, but for headers it'll be called with smaller amounts.
|
||||
class output_stream
|
||||
{
|
||||
public:
|
||||
virtual ~output_stream() { };
|
||||
virtual bool put_buf(const void* Pbuf, int len) = 0;
|
||||
template<class T> inline bool put_obj(const T& obj) { return put_buf(&obj, sizeof(T)); }
|
||||
};
|
||||
|
||||
// Lower level jpeg_encoder class - useful if more control is needed than the above helper functions.
|
||||
class jpeg_encoder
|
||||
{
|
||||
public:
|
||||
jpeg_encoder();
|
||||
~jpeg_encoder();
|
||||
bool m_two_pass_flag;
|
||||
|
||||
// Initializes the compressor.
|
||||
// pStream: The stream object to use for writing compressed data.
|
||||
// params - Compression parameters structure, defined above.
|
||||
// width, height - Image dimensions.
|
||||
// channels - May be 1, or 3. 1 indicates grayscale, 3 indicates RGB source data.
|
||||
// Returns false on out of memory or if a stream write fails.
|
||||
bool init(output_stream *pStream, int width, int height, int src_channels, const params &comp_params = params());
|
||||
|
||||
const params &get_params() const { return m_params; }
|
||||
|
||||
// Deinitializes the compressor, freeing any allocated memory. May be called at any time.
|
||||
void deinit();
|
||||
// By default we use the same quantization tables as mozjpeg's default.
|
||||
// Set to true to use the traditional tables from JPEG Annex K.
|
||||
bool m_use_std_tables;
|
||||
};
|
||||
|
||||
uint get_total_passes() const { return m_params.m_two_pass_flag ? 2 : 1; }
|
||||
inline uint get_cur_pass() { return m_pass_num; }
|
||||
// Writes JPEG image to a file.
|
||||
// num_channels must be 1 (Y) or 3 (RGB), image pitch must be width*num_channels.
|
||||
bool compress_image_to_jpeg_file(const char* pFilename, int width, int height, int num_channels, const uint8* pImage_data, const params& comp_params = params());
|
||||
|
||||
// Call this method with each source scanline.
|
||||
// width * src_channels bytes per scanline is expected (RGB or Y format).
|
||||
// You must call with NULL after all scanlines are processed to finish compression.
|
||||
// Returns false on out of memory or if a stream write fails.
|
||||
bool process_scanline(const void* pScanline);
|
||||
|
||||
private:
|
||||
jpeg_encoder(const jpeg_encoder &);
|
||||
jpeg_encoder &operator =(const jpeg_encoder &);
|
||||
// Writes JPEG image to memory buffer.
|
||||
// On entry, buf_size is the size of the output buffer pointed at by pBuf, which should be at least ~1024 bytes.
|
||||
// If return value is true, buf_size will be set to the size of the compressed data.
|
||||
bool compress_image_to_jpeg_file_in_memory(void* pBuf, int& buf_size, int width, int height, int num_channels, const uint8* pImage_data, const params& comp_params = params());
|
||||
|
||||
typedef int32 sample_array_t;
|
||||
|
||||
output_stream *m_pStream;
|
||||
params m_params;
|
||||
uint8 m_num_components;
|
||||
uint8 m_comp_h_samp[3], m_comp_v_samp[3];
|
||||
int m_image_x, m_image_y, m_image_bpp, m_image_bpl;
|
||||
int m_image_x_mcu, m_image_y_mcu;
|
||||
int m_image_bpl_xlt, m_image_bpl_mcu;
|
||||
int m_mcus_per_row;
|
||||
int m_mcu_x, m_mcu_y;
|
||||
uint8 *m_mcu_lines[16];
|
||||
uint8 m_mcu_y_ofs;
|
||||
sample_array_t m_sample_array[64];
|
||||
int16 m_coefficient_array[64];
|
||||
int32 m_quantization_tables[2][64];
|
||||
uint m_huff_codes[4][256];
|
||||
uint8 m_huff_code_sizes[4][256];
|
||||
uint8 m_huff_bits[4][17];
|
||||
uint8 m_huff_val[4][256];
|
||||
uint32 m_huff_count[4][256];
|
||||
int m_last_dc_val[3];
|
||||
enum { JPGE_OUT_BUF_SIZE = 2048 };
|
||||
uint8 m_out_buf[JPGE_OUT_BUF_SIZE];
|
||||
uint8 *m_pOut_buf;
|
||||
uint m_out_buf_left;
|
||||
uint32 m_bit_buffer;
|
||||
uint m_bits_in;
|
||||
uint8 m_pass_num;
|
||||
bool m_all_stream_writes_succeeded;
|
||||
|
||||
void optimize_huffman_table(int table_num, int table_len);
|
||||
void emit_byte(uint8 i);
|
||||
void emit_word(uint i);
|
||||
void emit_marker(int marker);
|
||||
void emit_jfif_app0();
|
||||
void emit_dqt();
|
||||
void emit_sof();
|
||||
void emit_dht(uint8 *bits, uint8 *val, int index, bool ac_flag);
|
||||
void emit_dhts();
|
||||
void emit_sos();
|
||||
void emit_markers();
|
||||
void compute_huffman_table(uint *codes, uint8 *code_sizes, uint8 *bits, uint8 *val);
|
||||
void compute_quant_table(int32 *dst, int16 *src);
|
||||
void adjust_quant_table(int32 *dst, int32 *src);
|
||||
void first_pass_init();
|
||||
bool second_pass_init();
|
||||
bool jpg_open(int p_x_res, int p_y_res, int src_channels);
|
||||
void load_block_8_8_grey(int x);
|
||||
void load_block_8_8(int x, int y, int c);
|
||||
void load_block_16_8(int x, int c);
|
||||
void load_block_16_8_8(int x, int c);
|
||||
void load_quantized_coefficients(int component_num);
|
||||
void flush_output_buffer();
|
||||
void put_bits(uint bits, uint len);
|
||||
void code_coefficients_pass_one(int component_num);
|
||||
void code_coefficients_pass_two(int component_num);
|
||||
void code_block(int component_num);
|
||||
void process_mcu_row();
|
||||
bool terminate_pass_one();
|
||||
bool terminate_pass_two();
|
||||
bool process_end_of_image();
|
||||
void load_mcu(const void* src);
|
||||
void clear();
|
||||
void init();
|
||||
};
|
||||
// Output stream abstract class - used by the jpeg_encoder class to write to the output stream.
|
||||
// put_buf() is generally called with len==JPGE_OUT_BUF_SIZE bytes, but for headers it'll be called with smaller amounts.
|
||||
class output_stream
|
||||
{
|
||||
public:
|
||||
virtual ~output_stream() { };
|
||||
virtual bool put_buf(const void* Pbuf, int len) = 0;
|
||||
template<class T> inline bool put_obj(const T& obj) { return put_buf(&obj, sizeof(T)); }
|
||||
};
|
||||
|
||||
// Lower level jpeg_encoder class - useful if more control is needed than the above helper functions.
|
||||
class jpeg_encoder
|
||||
{
|
||||
public:
|
||||
jpeg_encoder();
|
||||
~jpeg_encoder();
|
||||
|
||||
// Initializes the compressor.
|
||||
// pStream: The stream object to use for writing compressed data.
|
||||
// params - Compression parameters structure, defined above.
|
||||
// width, height - Image dimensions.
|
||||
// channels - May be 1, or 3. 1 indicates grayscale, 3 indicates RGB source data.
|
||||
// Returns false on out of memory or if a stream write fails.
|
||||
bool init(output_stream* pStream, int width, int height, int src_channels, const params& comp_params = params());
|
||||
|
||||
const params& get_params() const { return m_params; }
|
||||
|
||||
// Deinitializes the compressor, freeing any allocated memory. May be called at any time.
|
||||
void deinit();
|
||||
|
||||
uint get_total_passes() const { return m_params.m_two_pass_flag ? 2 : 1; }
|
||||
inline uint get_cur_pass() { return m_pass_num; }
|
||||
|
||||
// Call this method with each source scanline.
|
||||
// width * src_channels bytes per scanline is expected (RGB or Y format).
|
||||
// You must call with NULL after all scanlines are processed to finish compression.
|
||||
// Returns false on out of memory or if a stream write fails.
|
||||
bool process_scanline(const void* pScanline);
|
||||
|
||||
private:
|
||||
jpeg_encoder(const jpeg_encoder&);
|
||||
jpeg_encoder& operator =(const jpeg_encoder&);
|
||||
|
||||
typedef int32 sample_array_t;
|
||||
|
||||
output_stream* m_pStream;
|
||||
params m_params;
|
||||
uint8 m_num_components;
|
||||
uint8 m_comp_h_samp[3], m_comp_v_samp[3];
|
||||
int m_image_x, m_image_y, m_image_bpp, m_image_bpl;
|
||||
int m_image_x_mcu, m_image_y_mcu;
|
||||
int m_image_bpl_xlt, m_image_bpl_mcu;
|
||||
int m_mcus_per_row;
|
||||
int m_mcu_x, m_mcu_y;
|
||||
uint8* m_mcu_lines[16];
|
||||
uint8 m_mcu_y_ofs;
|
||||
sample_array_t m_sample_array[64];
|
||||
int16 m_coefficient_array[64];
|
||||
int32 m_quantization_tables[2][64];
|
||||
uint m_huff_codes[4][256];
|
||||
uint8 m_huff_code_sizes[4][256];
|
||||
uint8 m_huff_bits[4][17];
|
||||
uint8 m_huff_val[4][256];
|
||||
uint32 m_huff_count[4][256];
|
||||
int m_last_dc_val[3];
|
||||
enum { JPGE_OUT_BUF_SIZE = 2048 };
|
||||
uint8 m_out_buf[JPGE_OUT_BUF_SIZE];
|
||||
uint8* m_pOut_buf;
|
||||
uint m_out_buf_left;
|
||||
uint32 m_bit_buffer;
|
||||
uint m_bits_in;
|
||||
uint8 m_pass_num;
|
||||
bool m_all_stream_writes_succeeded;
|
||||
|
||||
void optimize_huffman_table(int table_num, int table_len);
|
||||
void emit_byte(uint8 i);
|
||||
void emit_word(uint i);
|
||||
void emit_marker(int marker);
|
||||
void emit_jfif_app0();
|
||||
void emit_dqt();
|
||||
void emit_sof();
|
||||
void emit_dht(uint8* bits, uint8* val, int index, bool ac_flag);
|
||||
void emit_dhts();
|
||||
void emit_sos();
|
||||
void emit_markers();
|
||||
void compute_huffman_table(uint* codes, uint8* code_sizes, uint8* bits, uint8* val);
|
||||
void compute_quant_table(int32* dst, int16* src);
|
||||
void adjust_quant_table(int32* dst, int32* src);
|
||||
void first_pass_init();
|
||||
bool second_pass_init();
|
||||
bool jpg_open(int p_x_res, int p_y_res, int src_channels);
|
||||
void load_block_8_8_grey(int x);
|
||||
void load_block_8_8(int x, int y, int c);
|
||||
void load_block_16_8(int x, int c);
|
||||
void load_block_16_8_8(int x, int c);
|
||||
void load_quantized_coefficients(int component_num);
|
||||
void flush_output_buffer();
|
||||
void put_bits(uint bits, uint len);
|
||||
void code_coefficients_pass_one(int component_num);
|
||||
void code_coefficients_pass_two(int component_num);
|
||||
void code_block(int component_num);
|
||||
void process_mcu_row();
|
||||
bool terminate_pass_one();
|
||||
bool terminate_pass_two();
|
||||
bool process_end_of_image();
|
||||
void load_mcu(const void* src);
|
||||
void clear();
|
||||
void init();
|
||||
};
|
||||
|
||||
} // namespace jpge
|
||||
|
||||
|
@ -1 +0,0 @@
|
||||
This is https://code.google.com/p/jpeg-compressor/ , public domain code.
|
Loading…
Reference in New Issue
Block a user