Removed some unused content from Common

This commit is contained in:
adrian17 2013-09-27 17:35:06 +02:00
parent db6ed6f399
commit d8adf95b24
4 changed files with 0 additions and 454 deletions

View File

@ -17,12 +17,6 @@
#pragma once
#ifdef _WIN32
#define SLEEP(x) Sleep(x)
#else
#include <unistd.h>
#define SLEEP(x) usleep(x*1000)
#endif
#if defined(IOS) || defined(MIPS)
#include <signal.h>
@ -31,13 +25,6 @@
template <bool> struct CompileTimeAssert;
template<> struct CompileTimeAssert<true> {};
#define b2(x) ( (x) | ( (x) >> 1) )
#define b4(x) ( b2(x) | ( b2(x) >> 2) )
#define b8(x) ( b4(x) | ( b4(x) >> 4) )
#define b16(x) ( b8(x) | ( b8(x) >> 8) )
#define b32(x) (b16(x) | (b16(x) >>16) )
#define ROUND_UP_POW2(x) (b32(x - 1) + 1)
#ifndef _WIN32
#include <errno.h>

View File

@ -72,8 +72,6 @@
#define JAP_DIR "JAP"
// Subdirs in the User dir returned by GetUserPath(D_USER_IDX)
#define GC_USER_DIR "GC"
#define WII_USER_DIR "Wii"
#define CONFIG_DIR "Config"
#define GAMECONFIG_DIR "GameConfig"
#define MAPS_DIR "Maps"
@ -111,8 +109,4 @@
#define DSP_IROM "dsp_rom.bin"
#define DSP_COEF "dsp_coef.bin"
// Subdirs in Sys
#define GC_SYS_DIR "GC"
#define WII_SYS_DIR "Wii"
#endif // _COMMON_PATHS_H_

View File

@ -15,257 +15,8 @@
// Official SVN repository and contact information can be found at
// http://code.google.com/p/dolphin-emu/
#include "Common.h"
#include "MathUtil.h"
#include <cmath>
#include <numeric>
namespace {
#ifdef USE_SSE
static u32 saved_sse_state = _mm_getcsr();
static const u32 default_sse_state = _mm_getcsr();
#endif
}
namespace MathUtil
{
u32 ClassifyDouble(double dvalue)
{
// TODO: Optimize the below to be as fast as possible.
IntDouble value;
value.d = dvalue;
u64 sign = value.i & DOUBLE_SIGN;
u64 exp = value.i & DOUBLE_EXP;
if (exp > DOUBLE_ZERO && exp < DOUBLE_EXP)
{
// Nice normalized number.
return sign ? PPC_FPCLASS_NN : PPC_FPCLASS_PN;
}
else
{
u64 mantissa = value.i & DOUBLE_FRAC;
if (mantissa)
{
if (exp)
{
return PPC_FPCLASS_QNAN;
}
else
{
// Denormalized number.
return sign ? PPC_FPCLASS_ND : PPC_FPCLASS_PD;
}
}
else if (exp)
{
//Infinite
return sign ? PPC_FPCLASS_NINF : PPC_FPCLASS_PINF;
}
else
{
//Zero
return sign ? PPC_FPCLASS_NZ : PPC_FPCLASS_PZ;
}
}
}
u32 ClassifyFloat(float fvalue)
{
// TODO: Optimize the below to be as fast as possible.
IntFloat value;
value.f = fvalue;
u32 sign = value.i & FLOAT_SIGN;
u32 exp = value.i & FLOAT_EXP;
if (exp > FLOAT_ZERO && exp < FLOAT_EXP)
{
// Nice normalized number.
return sign ? PPC_FPCLASS_NN : PPC_FPCLASS_PN;
}
else
{
u32 mantissa = value.i & FLOAT_FRAC;
if (mantissa)
{
if (exp)
{
return PPC_FPCLASS_QNAN; // Quiet NAN
}
else
{
// Denormalized number.
return sign ? PPC_FPCLASS_ND : PPC_FPCLASS_PD;
}
}
else if (exp)
{
// Infinite
return sign ? PPC_FPCLASS_NINF : PPC_FPCLASS_PINF;
}
else
{
//Zero
return sign ? PPC_FPCLASS_NZ : PPC_FPCLASS_PZ;
}
}
}
} // namespace
void LoadDefaultSSEState()
{
#ifdef USE_SSE
_mm_setcsr(default_sse_state);
#endif
}
void LoadSSEState()
{
#ifdef USE_SSE
_mm_setcsr(saved_sse_state);
#endif
}
void SaveSSEState()
{
#ifdef USE_SSE
saved_sse_state = _mm_getcsr();
#endif
}
inline void MatrixMul(int n, const float *a, const float *b, float *result)
{
for (int i = 0; i < n; ++i)
{
for (int j = 0; j < n; ++j)
{
float temp = 0;
for (int k = 0; k < n; ++k)
{
temp += a[i * n + k] * b[k * n + j];
}
result[i * n + j] = temp;
}
}
}
// Calculate sum of a float list
float MathFloatVectorSum(const std::vector<float>& Vec)
{
return std::accumulate(Vec.begin(), Vec.end(), 0.0f);
}
void Matrix33::LoadIdentity(Matrix33 &mtx)
{
memset(mtx.data, 0, sizeof(mtx.data));
mtx.data[0] = 1.0f;
mtx.data[4] = 1.0f;
mtx.data[8] = 1.0f;
}
void Matrix33::RotateX(Matrix33 &mtx, float rad)
{
float s = sin(rad);
float c = cos(rad);
memset(mtx.data, 0, sizeof(mtx.data));
mtx.data[0] = 1;
mtx.data[4] = c;
mtx.data[5] = -s;
mtx.data[7] = s;
mtx.data[8] = c;
}
void Matrix33::RotateY(Matrix33 &mtx, float rad)
{
float s = sin(rad);
float c = cos(rad);
memset(mtx.data, 0, sizeof(mtx.data));
mtx.data[0] = c;
mtx.data[2] = s;
mtx.data[4] = 1;
mtx.data[6] = -s;
mtx.data[8] = c;
}
void Matrix33::Multiply(const Matrix33 &a, const Matrix33 &b, Matrix33 &result)
{
MatrixMul(3, a.data, b.data, result.data);
}
void Matrix33::Multiply(const Matrix33 &a, const float vec[3], float result[3])
{
for (int i = 0; i < 3; ++i) {
result[i] = 0;
for (int k = 0; k < 3; ++k) {
result[i] += a.data[i * 3 + k] * vec[k];
}
}
}
void Matrix44::LoadIdentity(Matrix44 &mtx)
{
memset(mtx.data, 0, sizeof(mtx.data));
mtx.data[0] = 1.0f;
mtx.data[5] = 1.0f;
mtx.data[10] = 1.0f;
mtx.data[15] = 1.0f;
}
void Matrix44::LoadMatrix33(Matrix44 &mtx, const Matrix33 &m33)
{
for (int i = 0; i < 3; ++i)
{
for (int j = 0; j < 3; ++j)
{
mtx.data[i * 4 + j] = m33.data[i * 3 + j];
}
}
for (int i = 0; i < 3; ++i)
{
mtx.data[i * 4 + 3] = 0;
mtx.data[i + 12] = 0;
}
mtx.data[15] = 1.0f;
}
void Matrix44::Set(Matrix44 &mtx, const float mtxArray[16])
{
for(int i = 0; i < 16; ++i)
{
mtx.data[i] = mtxArray[i];
}
}
void Matrix44::Translate(Matrix44 &mtx, const float vec[3])
{
LoadIdentity(mtx);
mtx.data[3] = vec[0];
mtx.data[7] = vec[1];
mtx.data[11] = vec[2];
}
void Matrix44::Multiply(const Matrix44 &a, const Matrix44 &b, Matrix44 &result)
{
MatrixMul(4, a.data, b.data, result.data);
}
int Pow2roundup(int x)
{
if (x < 0)
return 0;
--x;
x |= x >> 1;
x |= x >> 2;
x |= x >> 4;
x |= x >> 8;
x |= x >> 16;
return x+1;
}
int GetPow2(int x)
{
int ret = 0;

View File

@ -18,192 +18,6 @@
#ifndef _MATH_UTIL_H_
#define _MATH_UTIL_H_
#include "Common.h"
#if !defined(ARM) && !defined(MIPS)
#define USE_SSE
#endif
#ifdef USE_SSE
#include <xmmintrin.h>
#endif
#include <vector>
namespace MathUtil
{
static const u64 DOUBLE_SIGN = 0x8000000000000000ULL,
DOUBLE_EXP = 0x7FF0000000000000ULL,
DOUBLE_FRAC = 0x000FFFFFFFFFFFFFULL,
DOUBLE_ZERO = 0x0000000000000000ULL;
static const u32 FLOAT_SIGN = 0x80000000,
FLOAT_EXP = 0x7F800000,
FLOAT_FRAC = 0x007FFFFF,
FLOAT_ZERO = 0x00000000;
union IntDouble {
double d;
u64 i;
};
union IntFloat {
float f;
u32 i;
};
inline bool IsNAN(double d)
{
IntDouble x; x.d = d;
return ( ((x.i & DOUBLE_EXP) == DOUBLE_EXP) &&
((x.i & DOUBLE_FRAC) != DOUBLE_ZERO) );
}
inline bool IsQNAN(double d)
{
IntDouble x; x.d = d;
return ( ((x.i & DOUBLE_EXP) == DOUBLE_EXP) &&
((x.i & 0x0007fffffffffffULL) == 0x000000000000000ULL) &&
((x.i & 0x000800000000000ULL) == 0x000800000000000ULL) );
}
inline bool IsSNAN(double d)
{
IntDouble x; x.d = d;
return( ((x.i & DOUBLE_EXP) == DOUBLE_EXP) &&
((x.i & DOUBLE_FRAC) != DOUBLE_ZERO) &&
((x.i & 0x0008000000000000ULL) == DOUBLE_ZERO) );
}
inline float FlushToZero(float f)
{
IntFloat x; x.f = f;
if ((x.i & FLOAT_EXP) == 0)
x.i &= FLOAT_SIGN; // turn into signed zero
return x.f;
}
inline double FlushToZeroAsFloat(double d)
{
IntDouble x; x.d = d;
if ((x.i & DOUBLE_EXP) < 0x3800000000000000ULL)
x.i &= DOUBLE_SIGN; // turn into signed zero
return x.d;
}
enum PPCFpClass
{
PPC_FPCLASS_QNAN = 0x11,
PPC_FPCLASS_NINF = 0x9,
PPC_FPCLASS_NN = 0x8,
PPC_FPCLASS_ND = 0x18,
PPC_FPCLASS_NZ = 0x12,
PPC_FPCLASS_PZ = 0x2,
PPC_FPCLASS_PD = 0x14,
PPC_FPCLASS_PN = 0x4,
PPC_FPCLASS_PINF = 0x5,
};
// Uses PowerPC conventions for the return value, so it can be easily
// used directly in CPU emulation.
u32 ClassifyDouble(double dvalue);
// More efficient float version.
u32 ClassifyFloat(float fvalue);
template<class T>
struct Rectangle
{
T left;
T top;
T right;
T bottom;
Rectangle()
{ }
Rectangle(T theLeft, T theTop, T theRight, T theBottom)
: left(theLeft), top(theTop), right(theRight), bottom(theBottom)
{ }
T GetWidth() const { return abs(right - left); }
T GetHeight() const { return abs(bottom - top); }
// If the rectangle is in a coordinate system with a lower-left origin, use
// this Clamp.
void ClampLL(T x1, T y1, T x2, T y2)
{
if (left < x1) left = x1;
if (right > x2) right = x2;
if (top > y1) top = y1;
if (bottom < y2) bottom = y2;
}
// If the rectangle is in a coordinate system with an upper-left origin,
// use this Clamp.
void ClampUL(T x1, T y1, T x2, T y2)
{
if (left < x1) left = x1;
if (right > x2) right = x2;
if (top < y1) top = y1;
if (bottom > y2) bottom = y2;
}
};
} // namespace MathUtil
inline float pow2f(float x) {return x * x;}
inline double pow2(double x) {return x * x;}
int Pow2roundup(int x);
int GetPow2(int x);
/*
There are two different flavors of float to int conversion:
_mm_cvtps_epi32() and _mm_cvttps_epi32(). The first rounds
according to the MXCSR rounding bits. The second one always
uses round towards zero.
*/
void SaveSSEState();
void LoadSSEState();
void LoadDefaultSSEState();
float MathFloatVectorSum(const std::vector<float>&);
#define ROUND_UP(x, a) (((x) + (a) - 1) & ~((a) - 1))
#define ROUND_DOWN(x, a) ((x) & ~((a) - 1))
// Tiny matrix/vector library.
// Used for things like Free-Look in the gfx backend.
class Matrix33
{
public:
static void LoadIdentity(Matrix33 &mtx);
// set mtx to be a rotation matrix around the x axis
static void RotateX(Matrix33 &mtx, float rad);
// set mtx to be a rotation matrix around the y axis
static void RotateY(Matrix33 &mtx, float rad);
// set result = a x b
static void Multiply(const Matrix33 &a, const Matrix33 &b, Matrix33 &result);
static void Multiply(const Matrix33 &a, const float vec[3], float result[3]);
float data[9];
};
class Matrix44
{
public:
static void LoadIdentity(Matrix44 &mtx);
static void LoadMatrix33(Matrix44 &mtx, const Matrix33 &m33);
static void Set(Matrix44 &mtx, const float mtxArray[16]);
static void Translate(Matrix44 &mtx, const float vec[3]);
static void Multiply(const Matrix44 &a, const Matrix44 &b, Matrix44 &result);
float data[16];
};
#endif // _MATH_UTIL_H_