// Copyright (c) 2022- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #include "ppsspp_config.h" #include #include #if PPSSPP_ARCH(RISCV64) && PPSSPP_PLATFORM(LINUX) #include #endif #include "Common/BitScan.h" #include "Common/CPUDetect.h" #include "Common/RiscVEmitter.h" namespace RiscVGen { static inline bool SupportsCompressed(char zcx = '\0') { if (!cpu_info.RiscV_C) return false; switch (zcx) { case 'b': return cpu_info.RiscV_Zcb; case '\0': return true; default: return false; } } static inline uint8_t BitsSupported() { return cpu_info.OS64bit ? 64 : 32; } static inline uint8_t FloatBitsSupported() { if (cpu_info.RiscV_D) return 64; if (cpu_info.RiscV_F) return 32; return 0; } static inline bool SupportsMulDiv(bool allowZmmul = false) { // TODO allowZmmul? return cpu_info.RiscV_M; } static inline bool SupportsAtomic() { return cpu_info.RiscV_A; } static inline bool SupportsZicsr() { return cpu_info.RiscV_Zicsr; } static inline bool SupportsVector() { return cpu_info.RiscV_V; } static inline bool SupportsVectorBitmanip(char zvxb) { switch (zvxb) { case 'b': return cpu_info.RiscV_Zvbb; case 'k': return cpu_info.RiscV_Zvkb; default: return false; } } static inline bool SupportsBitmanip(char zbx) { switch (zbx) { case 'a': return cpu_info.RiscV_Zba; case 'b': return cpu_info.RiscV_Zbb; case 'c': return cpu_info.RiscV_Zbc; case 's': return cpu_info.RiscV_Zbs; default: return false; } } static inline bool SupportsIntConditional() { return cpu_info.RiscV_Zicond; } static inline bool SupportsFloatHalf(bool allowMin = false) { return cpu_info.RiscV_Zfh || (cpu_info.RiscV_Zfhmin && allowMin); } static inline bool SupportsFloatExtra() { return cpu_info.RiscV_Zfa; } enum class Opcode32 { // Note: invalid, just used for FixupBranch. ZERO = 0b0000000, LOAD = 0b0000011, LOAD_FP = 0b0000111, MISC_MEM = 0b0001111, OP_IMM = 0b0010011, AUIPC = 0b0010111, OP_IMM_32 = 0b0011011, STORE = 0b0100011, STORE_FP = 0b0100111, AMO = 0b0101111, OP = 0b0110011, LUI = 0b0110111, OP_32 = 0b0111011, FMADD = 0b1000011, FMSUB = 0b1000111, FNMSUB = 0b1001011, FNMADD = 0b1001111, OP_FP = 0b1010011, OP_V = 0b1010111, BRANCH = 0b1100011, JALR = 0b1100111, JAL = 0b1101111, System = 0b1110011, }; enum class Opcode16 { C0 = 0b00, C1 = 0b01, C2 = 0b10, }; enum class Funct3 { // Note: invalid, just used for FixupBranch. ZERO = 0b000, PRIV = 0b000, FENCE = 0b000, FENCE_I = 0b001, BEQ = 0b000, BNE = 0b001, BLT = 0b100, BGE = 0b101, BLTU = 0b110, BGEU = 0b111, LS_B = 0b000, LS_H = 0b001, LS_W = 0b010, LS_D = 0b011, LS_BU = 0b100, LS_HU = 0b101, LS_WU = 0b110, ADD = 0b000, SLL = 0b001, SLT = 0b010, SLTU = 0b011, XOR = 0b100, SRL = 0b101, OR = 0b110, AND = 0b111, MUL = 0b000, MULH = 0b001, MULHSU = 0b010, MULHU = 0b011, DIV = 0b100, DIVU = 0b101, REM = 0b110, REMU = 0b111, FSGNJ = 0b000, FSGNJN = 0b001, FSGNJX = 0b010, FMIN = 0b000, FMAX = 0b001, FMINM = 0b010, FMAXM = 0b011, FMV = 0b000, FCLASS = 0b001, FLE = 0b000, FLT = 0b001, FEQ = 0b010, CSRRW = 0b001, CSRRS = 0b010, CSRRC = 0b011, CSRRWI = 0b101, CSRRSI = 0b110, CSRRCI = 0b111, OPIVV = 0b000, OPFVV = 0b001, OPMVV = 0b010, OPIVI = 0b011, OPIVX = 0b100, OPFVF = 0b101, OPMVX = 0b110, OPCFG = 0b111, VLS_8 = 0b000, VLS_16 = 0b101, VLS_32 = 0b110, VLS_64 = 0b111, CLMUL = 0b001, CLMULR = 0b010, CLMULH = 0b011, MIN = 0b100, MINU = 0b101, MAX = 0b110, MAXU = 0b111, SH1ADD = 0b010, SH2ADD = 0b100, SH3ADD = 0b110, COUNT_SEXT_ROL = 0b001, ZEXT = 0b100, ROR = 0b101, BSET = 0b001, BEXT = 0b101, CZERO_EQZ = 0b101, CZERO_NEZ = 0b111, C_ADDI4SPN = 0b000, C_FLD = 0b001, C_LW = 0b010, C_FLW = 0b011, C_LD = 0b011, C_FSD = 0b101, C_SW = 0b110, C_FSW = 0b111, C_SD = 0b111, C_ADDI = 0b000, C_JAL = 0b001, C_ADDIW = 0b001, C_LI = 0b010, C_LUI = 0b011, C_ARITH = 0b100, C_J = 0b101, C_BEQZ = 0b110, C_BNEZ = 0b111, C_SLLI = 0b000, C_FLDSP = 0b001, C_LWSP = 0b010, C_FLWSP = 0b011, C_LDSP = 0b011, C_ADD = 0b100, C_FSDSP = 0b101, C_SWSP = 0b110, C_FSWSP = 0b111, C_SDSP = 0b111, }; enum class Funct2 { S = 0b00, D = 0b01, H = 0b10, Q = 0b11, C_SRLI = 0b00, C_SRAI = 0b01, C_ANDI = 0b10, C_REGARITH = 0b11, C_SUB = 0b00, C_XOR = 0b01, C_OR = 0b10, C_AND = 0b11, C_SUBW = 0b00, C_ADDW = 0b01, C_MUL = 0b10, }; enum class Funct7 { ZERO = 0b0000000, SUB = 0b0100000, SRA = 0b0100000, MULDIV = 0b0000001, ADDUW_ZEXT = 0b0000100, MINMAX_CLMUL = 0b0000101, CZERO = 0b0000111, SH_ADD = 0b0010000, BSET_ORC = 0b0010100, NOT = 0b0100000, BCLREXT = 0b0100100, COUNT_SEXT_ROT = 0b0110000, BINV_REV = 0b0110100, }; enum class Funct5 { AMOADD = 0b00000, AMOSWAP = 0b00001, LR = 0b00010, SC = 0b00011, AMOXOR = 0b00100, AMOAND = 0b01100, AMOOR = 0b01000, AMOMIN = 0b10000, AMOMAX = 0b10100, AMOMINU = 0b11000, AMOMAXU = 0b11100, FADD = 0b00000, FSUB = 0b00001, FMUL = 0b00010, FDIV = 0b00011, FSGNJ = 0b00100, FMINMAX = 0b00101, FCVT_SZ = 0b01000, FSQRT = 0b01011, FCMP = 0b10100, FCVT_TOX = 0b11000, FCVT_FROMX = 0b11010, FMV_TOX = 0b11100, FMV_FROMX = 0b11110, VZEXT_VF8 = 0b00010, VSEXT_VF8 = 0b00011, VZEXT_VF4 = 0b00100, VSEXT_VF4 = 0b00101, VZEXT_VF2 = 0b00110, VSEXT_VF2 = 0b00111, VFSQRT = 0b00000, VFRSQRT7 = 0b00100, VFREC7 = 0b00101, VFCLASS = 0b10000, VFCVT_XU_F = 0b00000, VFCVT_X_F = 0b00001, VFCVT_F_XU = 0b00010, VFCVT_F_X = 0b00011, VFCVT_RTZ_XU_F = 0b00110, VFCVT_RTZ_X_F = 0b00111, VFWCVT_XU_F = 0b01000, VFWCVT_X_F = 0b01001, VFWCVT_F_XU = 0b01010, VFWCVT_F_X = 0b01011, VFWCVT_F_F = 0b01100, VFWCVT_RTZ_XU_F = 0b01110, VFWCVT_RTZ_X_F = 0b01111, VFNCVT_XU_F = 0b10000, VFNCVT_X_F = 0b10001, VFNCVT_F_XU = 0b10010, VFNCVT_F_X = 0b10011, VFNCVT_F_F = 0b10100, VFNCVT_ROD_F_F = 0b10101, VFNCVT_RTZ_XU_F = 0b10110, VFNCVT_RTZ_X_F = 0b10111, VMV_S = 0b00000, VBREV8 = 0b01000, VREV8 = 0b01001, VBREV = 0b01010, VCLZ = 0b01100, VCTZ = 0b01101, VCPOP_V = 0b01110, VCPOP = 0b10000, VFIRST = 0b10001, VMSBF = 0b00001, VMSOF = 0b00010, VMSIF = 0b00011, VIOTA = 0b10000, VID = 0b10001, CLZ = 0b00000, CTZ = 0b00001, CPOP = 0b00010, SEXT_B = 0b00100, SEXT_H = 0b00101, ORC_B = 0b00111, C_ZEXT_B = 0b11000, C_SEXT_B = 0b11001, C_ZEXT_H = 0b11010, C_SEXT_H = 0b11011, C_ZEXT_W = 0b11100, C_NOT = 0b11101, }; enum class Funct4 { C_JR = 0b1000, C_MV = 0b1000, C_JALR = 0b1001, C_ADD = 0b1001, }; enum class Funct6 { C_OP = 0b100011, C_OP_32 = 0b100111, C_LBU = 0b100000, C_LH = 0b100001, C_SB = 0b100010, C_SH = 0b100011, VADD = 0b000000, VANDN = 0b000001, VSUB = 0b000010, VRSUB = 0b000011, VMINU = 0b000100, VMIN = 0b000101, VMAXU = 0b000110, VMAX = 0b000111, VAND = 0b001001, VOR = 0b001010, VXOR = 0b001011, VRGATHER = 0b001100, VSLIDEUP = 0b001110, VRGATHEREI16 = 0b001110, VSLIDEDOWN = 0b001111, VROR = 0b010100, VROL = 0b010101, VWSLL = 0b110101, VREDSUM = 0b000000, VREDAND = 0b000001, VREDOR = 0b000010, VREDXOR = 0b000011, VAADDU = 0b001000, VAADD = 0b001001, VASUBU = 0b001010, VASUB = 0b001011, VFREDUSUM = 0b000001, VFREDOSUM = 0b000011, VFMIN = 0b000100, VFMAX = 0b000110, VFSGNJ = 0b001000, VFSGNJN = 0b001001, VFSGNJX = 0b001010, VADC = 0b010000, VMADC = 0b010001, VSBC = 0b010010, VMSBC = 0b010011, VMV = 0b010111, VMSEQ = 0b011000, VMSNE = 0b011001, VMSLTU = 0b011010, VMSLT = 0b011011, VMSLEU = 0b011100, VMSLE = 0b011101, VMSGTU = 0b011110, VMSGT = 0b011111, VMFEQ = 0b011000, VMFLE = 0b011001, VMFLT = 0b011011, VMFNE = 0b011100, VMFGT = 0b011101, VMFGE = 0b011111, VRWUNARY0 = 0b010000, VFXUNARY0 = 0b010010, VFXUNARY1 = 0b010011, VMUNARY0 = 0b010100, VCOMPRESS = 0b010111, VMANDNOT = 0b011000, VMAND = 0b011001, VMOR = 0b011010, VMXOR = 0b011011, VMORNOT = 0b011100, VMNAND = 0b011101, VMNOR = 0b011110, VMXNOR = 0b011111, VSADDU = 0b100000, VSADD = 0b100001, VSSUBU = 0b100010, VSSUB = 0b100011, VSLL = 0b100101, VSMUL_VMVR = 0b100111, VSRL = 0b101000, VSRA = 0b101001, VSSRL = 0b101010, VSSRA = 0b101011, VNSRL = 0b101100, VNSRA = 0b101101, VNCLIPU = 0b101110, VNCLIP = 0b101111, VDIVU = 0b100000, VDIV = 0b100001, VREMU = 0b100010, VREM = 0b100011, VMULHU = 0b100100, VMUL = 0b100101, VMULHSU = 0b100110, VMULH = 0b100111, VMADD = 0b101001, VNMSUB = 0b101011, VMACC = 0b101101, VNMSAC = 0b101111, VFDIV = 0b100000, VFRDIV = 0b100001, VFMUL = 0b100100, VFRSUB = 0b100111, VFMADD = 0b101000, VFNMADD = 0b101001, VFMSUB = 0b101010, VFNMSUB = 0b101011, VFMACC = 0b101100, VFNMACC = 0b101101, VFMSAC = 0b101110, VFNMSAC = 0b101111, VWREDSUMU = 0b110000, VWREDSUM = 0b110001, VWADDU = 0b110000, VWADD = 0b110001, VWSUBU = 0b110010, VWSUB = 0b110011, VWADDU_W = 0b110100, VWADD_W = 0b110101, VWSUBU_W = 0b110110, VWSUB_W = 0b110111, VWMULU = 0b111000, VWMULSU = 0b111010, VWMUL = 0b111011, VWMACCU = 0b111100, VWMACC = 0b111101, VWMACCUS = 0b111110, VWMACCSU = 0b111111, VFWADD = 0b110000, VFWREDUSUM = 0b110001, VFWSUB = 0b110010, VFWREDOSUM = 0b110011, VFWADD_W = 0b110100, VFWSUB_W = 0b110110, VFWMUL = 0b111000, VFWMACC = 0b111100, VFWNMACC = 0b111101, VFWMSAC = 0b111110, VFWNMSAC = 0b111111, }; enum class Funct12 { ECALL = 0b000000000000, EBREAK = 0b000000000001, }; enum class RiscCReg { X8, X9, X10, X11, X12, X13, X14, X15, }; enum class VLSUMop { ELEMS = 0b00000, REG = 0b01000, MASK = 0b01011, ELEMS_LOAD_FF = 0b10000, }; enum class VMop { UNIT = 0b00, INDEXU = 0b01, STRIDE = 0b10, INDEXO = 0b11, }; static inline RiscVReg DecodeReg(RiscVReg reg) { return (RiscVReg)(reg & 0x1F); } static inline bool IsGPR(RiscVReg reg) { return (reg & ~0x1F) == 0; } static inline bool IsFPR(RiscVReg reg) { return (reg & ~0x1F) == 0x20; } static inline bool IsVPR(RiscVReg reg) { return (reg & ~0x1F) == 0x40; } static inline bool CanCompress(RiscVReg reg) { return (DecodeReg(reg) & 0x18) == 0x08; } static inline RiscCReg CompressReg(RiscVReg reg) { _assert_msg_(CanCompress(reg), "Compressed reg must be between 8 and 15"); return (RiscCReg)(reg & 0x07); } static inline s32 SignReduce32(s32 v, int width) { int shift = 32 - width; return (v << shift) >> shift; } static inline s64 SignReduce64(s64 v, int width) { int shift = 64 - width; return (v << shift) >> shift; } // Compressed encodings have weird immediate bit order, trying to make it more readable. static inline u8 ImmBit8(int imm, int bit) { return (imm >> bit) & 1; } static inline u8 ImmBits8(int imm, int start, int sz) { int mask = (1 << sz) - 1; return (imm >> start) & mask; } static inline u16 ImmBit16(int imm, int bit) { return (imm >> bit) & 1; } static inline u16 ImmBits16(int imm, int start, int sz) { int mask = (1 << sz) - 1; return (imm >> start) & mask; } static inline u32 ImmBit32(int imm, int bit) { return (imm >> bit) & 1; } static inline u32 ImmBits32(int imm, int start, int sz) { int mask = (1 << sz) - 1; return (imm >> start) & mask; } static inline u32 EncodeR(Opcode32 opcode, RiscVReg rd, Funct3 funct3, RiscVReg rs1, RiscVReg rs2, Funct7 funct7) { return (u32)opcode | ((u32)DecodeReg(rd) << 7) | ((u32)funct3 << 12) | ((u32)DecodeReg(rs1) << 15) | ((u32)DecodeReg(rs2) << 20) | ((u32)funct7 << 25); } static inline u32 EncodeGR(Opcode32 opcode, RiscVReg rd, Funct3 funct3, RiscVReg rs1, RiscVReg rs2, Funct7 funct7) { _assert_msg_(IsGPR(rd), "R instruction rd must be GPR"); _assert_msg_(IsGPR(rs1), "R instruction rs1 must be GPR"); _assert_msg_(IsGPR(rs2), "R instruction rs2 must be GPR"); return EncodeR(opcode, rd, funct3, rs1, rs2, funct7); } static inline u32 EncodeGR(Opcode32 opcode, RiscVReg rd, Funct3 funct3, RiscVReg rs1, Funct5 funct5, Funct7 funct7) { _assert_msg_(IsGPR(rd), "R instruction rd must be GPR"); _assert_msg_(IsGPR(rs1), "R instruction rs1 must be GPR"); return EncodeR(opcode, rd, funct3, rs1, (RiscVReg)funct5, funct7); } static inline u32 EncodeAtomicR(Opcode32 opcode, RiscVReg rd, Funct3 funct3, RiscVReg rs1, RiscVReg rs2, Atomic ordering, Funct5 funct5) { u32 funct7 = ((u32)funct5 << 2) | (u32)ordering; return EncodeGR(opcode, rd, funct3, rs1, rs2, (Funct7)funct7); } static inline u32 EncodeR4(Opcode32 opcode, RiscVReg rd, Funct3 funct3, RiscVReg rs1, RiscVReg rs2, Funct2 funct2, RiscVReg rs3) { return (u32)opcode | ((u32)DecodeReg(rd) << 7) | ((u32)funct3 << 12) | ((u32)DecodeReg(rs1) << 15) | ((u32)DecodeReg(rs2) << 20) | ((u32)funct2 << 25) | ((u32)DecodeReg(rs3) << 27); } static inline u32 EncodeFR4(Opcode32 opcode, RiscVReg rd, Funct3 funct3, RiscVReg rs1, RiscVReg rs2, Funct2 funct2, RiscVReg rs3) { _assert_msg_(IsFPR(rd), "R4 instruction rd must be FPR"); _assert_msg_(IsFPR(rs1), "R4 instruction rs1 must be FPR"); _assert_msg_(IsFPR(rs2), "R4 instruction rs2 must be FPR"); _assert_msg_(IsFPR(rs3), "R4 instruction rs3 must be FPR"); return EncodeR4(opcode, rd, funct3, rs1, rs2, funct2, rs3); } static inline u32 EncodeR(Opcode32 opcode, RiscVReg rd, Funct3 funct3, RiscVReg rs1, RiscVReg rs2, Funct2 funct2, Funct5 funct5) { return EncodeR(opcode, rd, funct3, rs1, rs2, (Funct7)(((u32)funct5 << 2) | (u32)funct2)); } static inline u32 EncodeFR(Opcode32 opcode, RiscVReg rd, Funct3 funct3, RiscVReg rs1, RiscVReg rs2, Funct2 funct2, Funct5 funct5) { _assert_msg_(IsFPR(rd), "FR instruction rd must be FPR"); _assert_msg_(IsFPR(rs1), "FR instruction rs1 must be FPR"); _assert_msg_(IsFPR(rs2), "FR instruction rs2 must be FPR"); return EncodeR(opcode, rd, funct3, rs1, rs2, (Funct7)(((u32)funct5 << 2) | (u32)funct2)); } static inline u32 EncodeI(Opcode32 opcode, RiscVReg rd, Funct3 funct3, RiscVReg rs1, s32 simm12) { _assert_msg_(SignReduce32(simm12, 12) == simm12, "I immediate must be signed s11.0: %d", simm12); return (u32)opcode | ((u32)DecodeReg(rd) << 7) | ((u32)funct3 << 12) | ((u32)DecodeReg(rs1) << 15) | ((u32)simm12 << 20); } static inline u32 EncodeGI(Opcode32 opcode, RiscVReg rd, Funct3 funct3, RiscVReg rs1, s32 simm12) { _assert_msg_(IsGPR(rd), "I instruction rd must be GPR"); _assert_msg_(IsGPR(rs1), "I instruction rs1 must be GPR"); return EncodeI(opcode, rd, funct3, rs1, simm12); } static inline u32 EncodeGIShift(Opcode32 opcode, RiscVReg rd, Funct3 funct3, RiscVReg rs1, u32 shamt, Funct7 funct7) { _assert_msg_(IsGPR(rd), "IShift instruction rd must be GPR"); _assert_msg_(IsGPR(rs1), "IShift instruction rs1 must be GPR"); _assert_msg_(shamt < BitsSupported(), "IShift instruction shift out of range %d", shamt); // Low bits of funct7 must be 0 to allow for shift amounts. return (u32)opcode | ((u32)DecodeReg(rd) << 7) | ((u32)funct3 << 12) | ((u32)DecodeReg(rs1) << 15) | ((u32)shamt << 20) | ((u32)funct7 << 25); } static inline u32 EncodeI(Opcode32 opcode, RiscVReg rd, Funct3 funct3, RiscVReg rs1, Funct12 funct12) { return EncodeI(opcode, rd, funct3, rs1, SignReduce32((s32)funct12, 12)); } static inline u32 EncodeGI(Opcode32 opcode, RiscVReg rd, Funct3 funct3, RiscVReg rs1, Funct12 funct12) { _assert_msg_(IsGPR(rd), "I instruction rd must be GPR"); _assert_msg_(IsGPR(rs1), "I instruction rs1 must be GPR"); return EncodeI(opcode, rd, funct3, rs1, funct12); } static inline u32 EncodeS(Opcode32 opcode, Funct3 funct3, RiscVReg rs1, RiscVReg rs2, s32 simm12) { _assert_msg_(SignReduce32(simm12, 12) == simm12, "S immediate must be signed s11.0: %d", simm12); u32 imm4_0 = ImmBits32(simm12, 0, 5); u32 imm11_5 = ImmBits32(simm12, 5, 7); return (u32)opcode | (imm4_0 << 7) | ((u32)funct3 << 12) | ((u32)DecodeReg(rs1) << 15) | ((u32)DecodeReg(rs2) << 20) | (imm11_5 << 25); } static inline u32 EncodeGS(Opcode32 opcode, Funct3 funct3, RiscVReg rs1, RiscVReg rs2, s32 simm12) { _assert_msg_(IsGPR(rs1), "S instruction rs1 must be GPR"); _assert_msg_(IsGPR(rs2), "S instruction rs2 must be GPR"); return EncodeS(opcode, funct3, rs1, rs2, simm12); } static inline u32 EncodeB(Opcode32 opcode, Funct3 funct3, RiscVReg rs1, RiscVReg rs2, s32 simm13) { _assert_msg_(SignReduce32(simm13, 13) == simm13, "B immediate must be signed s12.0: %d", simm13); _assert_msg_((simm13 & 1) == 0, "B immediate must be even"); // This weird encoding scheme is to keep most bits the same as S, but keep sign at 31. u32 imm4_1_11 = (ImmBits32(simm13, 1, 4) << 1) | ImmBit32(simm13, 11); u32 imm12_10_5 = (ImmBit32(simm13, 12) << 6) | ImmBits32(simm13, 5, 6); return (u32)opcode | ((u32)imm4_1_11 << 7) | ((u32)funct3 << 12) | ((u32)DecodeReg(rs1) << 15) | ((u32)DecodeReg(rs2) << 20) | ((u32)imm12_10_5 << 25); } static inline u32 EncodeGB(Opcode32 opcode, Funct3 funct3, RiscVReg rs1, RiscVReg rs2, s32 simm13) { _assert_msg_(IsGPR(rs1), "B instruction rs1 must be GPR"); _assert_msg_(IsGPR(rs2), "B instruction rs2 must be GPR"); return EncodeB(opcode, funct3, rs1, rs2, simm13); } static inline u32 EncodeU(Opcode32 opcode, RiscVReg rd, s32 simm32) { _assert_msg_((simm32 & 0x0FFF) == 0, "U immediate must not have lower 12 bits set"); return (u32)opcode | ((u32)DecodeReg(rd) << 7) | (u32)simm32; } static inline u32 EncodeGU(Opcode32 opcode, RiscVReg rd, s32 simm32) { _assert_msg_(IsGPR(rd), "I instruction rd must be GPR"); return EncodeU(opcode, rd, simm32); } static inline u32 EncodeJ(Opcode32 opcode, RiscVReg rd, s32 simm21) { _assert_msg_(SignReduce32(simm21, 21) == simm21, "J immediate must be signed s20.0: %d", simm21); _assert_msg_((simm21 & 1) == 0, "J immediate must be even"); u32 imm11 = ImmBit32(simm21, 11); u32 imm20 = ImmBit32(simm21, 20); u32 imm10_1 = ImmBits32(simm21, 1, 10); u32 imm19_12 = ImmBits32(simm21, 12, 8); // This encoding scheme tries to keep the bits from B in the same places, plus sign. u32 imm20_10_1_11_19_12 = (imm20 << 19) | (imm10_1 << 9) | (imm11 << 8) | imm19_12; return (u32)opcode | ((u32)DecodeReg(rd) << 7) | (imm20_10_1_11_19_12 << 12); } static inline u32 EncodeGJ(Opcode32 opcode, RiscVReg rd, s32 simm21) { _assert_msg_(IsGPR(rd), "J instruction rd must be GPR"); return EncodeJ(opcode, rd, simm21); } static inline u32 EncodeV(RiscVReg vd, Funct3 funct3, RiscVReg vs1, RiscVReg vs2, VUseMask vm, Funct6 funct6) { _assert_msg_(SupportsVector(), "V instruction not supported"); _assert_msg_(IsVPR(vs2), "V instruction vs2 must be VPR"); return EncodeR(Opcode32::OP_V, vd, funct3, vs1, vs2, (Funct7)(((s32)funct6 << 1) | (s32)vm)); } static inline u32 EncodeVV(RiscVReg vd, Funct3 funct3, RiscVReg vs1, RiscVReg vs2, VUseMask vm, Funct6 funct6) { _assert_msg_(IsVPR(vd), "VV instruction vd must be VPR"); _assert_msg_(IsVPR(vs1), "VV instruction vs1 must be VPR"); return EncodeV(vd, funct3, vs1, vs2, vm, funct6); } static inline u32 EncodeIVV_M(RiscVReg vd, RiscVReg vs1, RiscVReg vs2, VUseMask vm, Funct6 funct6) { return EncodeVV(vd, Funct3::OPIVV, vs1, vs2, vm, funct6); } static inline u32 EncodeIVV(RiscVReg vd, RiscVReg vs1, RiscVReg vs2, VUseMask vm, Funct6 funct6) { _assert_msg_(vm != VUseMask::V0_T || vd != V0, "IVV instruction vd overlap with mask"); return EncodeIVV_M(vd, vs1, vs2, vm, funct6); } static inline u32 EncodeMVV_M(RiscVReg vd, RiscVReg vs1, RiscVReg vs2, VUseMask vm, Funct6 funct6) { return EncodeVV(vd, Funct3::OPMVV, vs1, vs2, vm, funct6); } static inline u32 EncodeMVV(RiscVReg vd, RiscVReg vs1, RiscVReg vs2, VUseMask vm, Funct6 funct6) { _assert_msg_(vm != VUseMask::V0_T || vd != V0, "MVV instruction vd overlap with mask"); return EncodeMVV_M(vd, vs1, vs2, vm, funct6); } static inline u32 EncodeFVV_M(RiscVReg vd, RiscVReg vs1, RiscVReg vs2, VUseMask vm, Funct6 funct6) { _assert_msg_(FloatBitsSupported() >= 32, "FVV instruction requires vector float support"); return EncodeVV(vd, Funct3::OPFVV, vs1, vs2, vm, funct6); } static inline u32 EncodeFVV(RiscVReg vd, RiscVReg vs1, RiscVReg vs2, VUseMask vm, Funct6 funct6) { _assert_msg_(vm != VUseMask::V0_T || vd != V0, "FVV instruction vd overlap with mask"); return EncodeFVV_M(vd, vs1, vs2, vm, funct6); } static inline u32 EncodeFVV(RiscVReg vd, Funct5 funct5, RiscVReg vs2, VUseMask vm, Funct6 funct6) { _assert_msg_(FloatBitsSupported() >= 32, "FVV instruction requires vector float support"); _assert_msg_(IsVPR(vd), "VV instruction vd must be VPR"); _assert_msg_(vm != VUseMask::V0_T || vd != V0, "FVV instruction vd overlap with mask"); return EncodeV(vd, Funct3::OPFVV, (RiscVReg)funct5, vs2, vm, funct6); } static inline u32 EncodeIVI_M(RiscVReg vd, s8 simm5, RiscVReg vs2, VUseMask vm, Funct6 funct6) { _assert_msg_(IsVPR(vd), "IVI instruction vd must be VPR"); _assert_msg_(SignReduce32(simm5, 5) == simm5, "VI immediate must be signed 5-bit: %d", simm5); return EncodeV(vd, Funct3::OPIVI, (RiscVReg)(simm5 & 0x1F), vs2, vm, funct6); } static inline u32 EncodeIVI(RiscVReg vd, s8 simm5, RiscVReg vs2, VUseMask vm, Funct6 funct6) { _assert_msg_(vm != VUseMask::V0_T || vd != V0, "IVI instruction vd overlap with mask"); return EncodeIVI_M(vd, simm5, vs2, vm, funct6); } static inline u32 EncodeIVX_M(RiscVReg vd, RiscVReg rs1, RiscVReg vs2, VUseMask vm, Funct6 funct6) { _assert_msg_(IsVPR(vd), "IVX instruction vd must be VPR"); _assert_msg_(IsGPR(rs1), "IVX instruction rs1 must be GPR"); return EncodeV(vd, Funct3::OPIVX, rs1, vs2, vm, funct6); } static inline u32 EncodeIVX(RiscVReg vd, RiscVReg rs1, RiscVReg vs2, VUseMask vm, Funct6 funct6) { _assert_msg_(vm != VUseMask::V0_T || vd != V0, "IVX instruction vd overlap with mask"); return EncodeIVX_M(vd, rs1, vs2, vm, funct6); } static inline u32 EncodeMVX(RiscVReg vd, RiscVReg rs1, RiscVReg vs2, VUseMask vm, Funct6 funct6) { _assert_msg_(IsVPR(vd), "MVX instruction vd must be VPR"); _assert_msg_(IsGPR(rs1), "MVX instruction rs1 must be GPR"); return EncodeV(vd, Funct3::OPMVX, rs1, vs2, vm, funct6); } static inline u32 EncodeFVF_M(RiscVReg vd, RiscVReg rs1, RiscVReg vs2, VUseMask vm, Funct6 funct6) { _assert_msg_(FloatBitsSupported() >= 32, "FVF instruction requires vector float support"); _assert_msg_(IsVPR(vd), "FVF instruction vd must be VPR"); _assert_msg_(IsFPR(rs1), "FVF instruction rs1 must be FPR"); return EncodeV(vd, Funct3::OPFVF, rs1, vs2, vm, funct6); } static inline u32 EncodeFVF(RiscVReg vd, RiscVReg rs1, RiscVReg vs2, VUseMask vm, Funct6 funct6) { _assert_msg_(vm != VUseMask::V0_T || vd != V0, "FVF instruction vd overlap with mask"); return EncodeFVF_M(vd, rs1, vs2, vm, funct6); } static inline u16 EncodeCR(Opcode16 op, RiscVReg rs2, RiscVReg rd, Funct4 funct4) { _assert_msg_(SupportsCompressed(), "Compressed instructions unsupported"); return (u16)op | ((u16)rs2 << 2) | ((u16)rd << 7) | ((u16)funct4 << 12); } static inline u16 EncodeCI(Opcode16 op, u8 uimm6, RiscVReg rd, Funct3 funct3) { _assert_msg_(SupportsCompressed(), "Compressed instructions unsupported"); _assert_msg_(uimm6 <= 0x3F, "CI immediate overflow: %04x", uimm6); u16 imm4_0 = ImmBits16(uimm6, 0, 5); u16 imm5 = ImmBit16(uimm6, 5); return (u16)op | (imm4_0 << 2) | ((u16)rd << 7) | (imm5 << 12) | ((u16)funct3 << 13); } static inline u16 EncodeCSS(Opcode16 op, RiscVReg rs2, u8 uimm6, Funct3 funct3) { _assert_msg_(SupportsCompressed(), "Compressed instructions unsupported"); _assert_msg_(uimm6 <= 0x3F, "CI immediate overflow: %04x", uimm6); return (u16)op | ((u16)rs2 << 2) | ((u16)uimm6 << 7) | ((u16)funct3 << 13); } static inline u16 EncodeCIW(Opcode16 op, RiscCReg rd, u8 uimm8, Funct3 funct3) { _assert_msg_(SupportsCompressed(), "Compressed instructions unsupported"); return (u16)op | ((u16)rd << 2) | ((u16)uimm8 << 5) | ((u16)funct3 << 13); } static inline u16 EncodeCL(Opcode16 op, RiscCReg rd, u8 uimm2, RiscCReg rs1, u8 uimm3, Funct3 funct3) { _assert_msg_(SupportsCompressed(), "Compressed instructions unsupported"); _assert_msg_(uimm2 <= 3, "CL immediate1 overflow: %04x", uimm2); _assert_msg_(uimm3 <= 7, "CL immediate2 overflow: %04x", uimm3); return (u16)op | ((u16)rd << 2) | ((u16)uimm2 << 5) | ((u16)rs1 << 7) | ((u16)uimm3 << 10) | ((u16)funct3 << 13); } static inline u16 EncodeCL8(Opcode16 op, RiscCReg rd, RiscCReg rs1, u8 uimm8, Funct3 funct3) { _assert_msg_((uimm8 & 0xF8) == uimm8, "CL immediate must fit in 8 bits and be a multiple of 8: %d", (int)uimm8); u8 imm7_6 = ImmBits8(uimm8, 6, 2); u8 imm5_4_3 = ImmBits8(uimm8, 3, 3); return EncodeCL(op, rd, imm7_6, rs1, imm5_4_3, funct3); } static inline u16 EncodeCL4(Opcode16 op, RiscCReg rd, RiscCReg rs1, u8 uimm7, Funct3 funct3) { _assert_msg_((uimm7 & 0x7C) == uimm7, "CL immediate must fit in 7 bits and be a multiple of 4: %d", (int)uimm7); u8 imm2_6 = (ImmBit8(uimm7, 2) << 1) | ImmBit8(uimm7, 6); u8 imm5_4_3 = ImmBits8(uimm7, 3, 3); return EncodeCL(op, rd, imm2_6, rs1, imm5_4_3, funct3); } static inline u16 EncodeCS(Opcode16 op, RiscCReg rs2, u8 uimm2, RiscCReg rs1, u8 uimm3, Funct3 funct3) { _assert_msg_(SupportsCompressed(), "Compressed instructions unsupported"); _assert_msg_(uimm2 <= 3, "CS immediate1 overflow: %04x", uimm2); _assert_msg_(uimm3 <= 7, "CS immediate2 overflow: %04x", uimm3); return (u16)op | ((u16)rs2 << 2) | ((u16)uimm2 << 5) | ((u16)rs1 << 7) | ((u16)uimm3 << 10) | ((u16)funct3 << 13); } static inline u16 EncodeCS8(Opcode16 op, RiscCReg rd, RiscCReg rs1, u8 uimm8, Funct3 funct3) { _assert_msg_((uimm8 & 0xF8) == uimm8, "CS immediate must fit in 8 bits and be a multiple of 8: %d", (int)uimm8); u8 imm7_6 = ImmBits8(uimm8, 6, 2); u8 imm5_4_3 = ImmBits8(uimm8, 3, 3); return EncodeCS(op, rd, imm7_6, rs1, imm5_4_3, funct3); } static inline u16 EncodeCS4(Opcode16 op, RiscCReg rd, RiscCReg rs1, u8 uimm7, Funct3 funct3) { _assert_msg_((uimm7 & 0x7C) == uimm7, "CS immediate must fit in 7 bits and be a multiple of 4: %d", (int)uimm7); u8 imm2_6 = (ImmBit8(uimm7, 2) << 1) | ImmBit8(uimm7, 6); u8 imm5_4_3 = ImmBits8(uimm7, 3, 3); return EncodeCS(op, rd, imm2_6, rs1, imm5_4_3, funct3); } static inline u16 EncodeCA(Opcode16 op, RiscCReg rs2, Funct2 funct2a, RiscCReg rd, Funct6 funct6) { _assert_msg_(SupportsCompressed(), "Compressed instructions unsupported"); return (u16)op | ((u16)rs2 << 2) | ((u16)funct2a << 5) | ((u16)rd << 7) | ((u16)funct6 << 10); } static inline u16 EncodeCB(Opcode16 op, u8 uimm6, RiscCReg rd, Funct2 funct2, Funct3 funct3) { _assert_msg_(SupportsCompressed(), "Compressed instructions unsupported"); _assert_msg_(uimm6 <= 0x3F, "CI immediate overflow: %04x", uimm6); u16 imm4_0 = ImmBits16(uimm6, 0, 5); u16 imm5 = ImmBit16(uimm6, 5); return (u16)op | (imm4_0 << 2) | ((u16)rd << 7) | ((u16)funct2 << 10) | (imm5 << 12) | ((u16)funct3 << 13); } static inline u16 EncodeCB(Opcode16 op, s32 simm9, RiscCReg rs1, Funct3 funct3) { _assert_msg_(SupportsCompressed(), "Compressed instructions unsupported"); _assert_msg_(SignReduce32(simm9, 9) == simm9, "CB immediate must be signed s8.0: %d", simm9); _assert_msg_((simm9 & 1) == 0, "CB immediate must be even: %d", simm9); u16 imm76_21_5 = (ImmBits16(simm9, 6, 2) << 3) | (ImmBits16(simm9, 1, 2) << 1) | ImmBit16(simm9, 5); u16 imm8_43 = (ImmBit16(simm9, 8) << 2) | ImmBits16(simm9, 3, 2); return (u16)op | (imm76_21_5 << 2) | ((u16)rs1 << 7) | (imm8_43 << 10) | ((u16)funct3 << 13); } static inline u16 EncodeCJ(Opcode16 op, s32 simm12, Funct3 funct3) { _assert_msg_(SupportsCompressed(), "Compressed instructions unsupported"); _assert_msg_(SignReduce32(simm12, 12) == simm12, "CJ immediate must be signed s11.0: %d", simm12); _assert_msg_((simm12 & 1) == 0, "CJ immediate must be even: %d", simm12); u16 imm7_3_2_1_5 = (ImmBit16(simm12, 7) << 4) | (ImmBits16(simm12, 1, 3) << 1) | ImmBit16(simm12, 5); u16 imm9_8_10_6 = (ImmBits16(simm12, 8, 2) << 2) | (ImmBit16(simm12, 10) << 1) | ImmBit16(simm12, 6); u16 imm11_4 = (ImmBit16(simm12, 11) << 1) | ImmBit16(simm12, 4); u16 imm11_4_9_8_10_6_7_3_2_1_5 = (imm11_4 << 9) | (imm9_8_10_6 << 5) | imm7_3_2_1_5; return (u16)op | (imm11_4_9_8_10_6_7_3_2_1_5 << 2) | ((u16)funct3 << 13); } static inline u16 EncodeCLB(Opcode16 op, RiscCReg rd, u8 uimm2, RiscCReg rs1, Funct6 funct6) { _assert_msg_(SupportsCompressed(), "Compressed instructions unsupported"); _assert_msg_((uimm2 & 3) == uimm2, "CLB immediate must be 2 bit: %d", uimm2); return (u16)op | ((u16)rd << 2) | ((u16)uimm2 << 5) | ((u16)rs1 << 7) | ((u16)funct6 << 10); } static inline u16 EncodeCSB(Opcode16 op, RiscCReg rs2, u8 uimm2, RiscCReg rs1, Funct6 funct6) { _assert_msg_(SupportsCompressed(), "Compressed instructions unsupported"); _assert_msg_((uimm2 & 3) == uimm2, "CSB immediate must be 2 bit: %d", uimm2); return (u16)op | ((u16)rs2 << 2) | ((u16)uimm2 << 5) | ((u16)rs1 << 7) | ((u16)funct6 << 10); } static inline u16 EncodeCLH(Opcode16 op, RiscCReg rd, u8 uimm1, bool funct1, RiscCReg rs1, Funct6 funct6) { _assert_msg_(SupportsCompressed(), "Compressed instructions unsupported"); _assert_msg_((uimm1 & 1) == uimm1, "CLH immediate must be 1 bit: %d", uimm1); return (u16)op | ((u16)rd << 2) | ((u16)uimm1 << 5) | ((u16)funct1 << 6) | ((u16)rs1 << 7) | ((u16)funct6 << 10); } static inline u16 EncodeCSH(Opcode16 op, RiscCReg rs2, u8 uimm1, bool funct1, RiscCReg rs1, Funct6 funct6) { _assert_msg_(SupportsCompressed(), "Compressed instructions unsupported"); _assert_msg_((uimm1 & 1) == uimm1, "CSH immediate must be 1 bit: %d", uimm1); return (u16)op | ((u16)rs2 << 2) | ((u16)uimm1 << 5) | ((u16)funct1 << 6) | ((u16)rs1 << 7) | ((u16)funct6 << 10); } static inline u16 EncodeCU(Opcode16 op, Funct5 funct5, RiscCReg rd, Funct6 funct6) { _assert_msg_(SupportsCompressed(), "Compressed instructions unsupported"); return (u16)op | ((u16)funct5 << 2) | ((u16)rd << 7) | ((u16)funct6 << 10); } static inline Funct3 BitsToFunct3(int bits, bool useFloat = false, bool allowHalfMin = false) { int bitsSupported = useFloat ? FloatBitsSupported() : BitsSupported(); _assert_msg_(bitsSupported >= bits, "Cannot use funct3 width %d, only have %d", bits, bitsSupported); switch (bits) { case 16: _assert_msg_(SupportsFloatHalf(allowHalfMin), "Cannot use width 16 without Zfh/Zfhmin"); return Funct3::LS_H; case 32: return Funct3::LS_W; case 64: return Funct3::LS_D; default: _assert_msg_(false, "Invalid funct3 width %d", bits); return Funct3::LS_W; } } static inline Funct2 BitsToFunct2(int bits, bool allowHalfMin = false) { _assert_msg_(FloatBitsSupported() >= bits, "Cannot use funct2 width %d, only have %d", bits, FloatBitsSupported()); switch (bits) { case 16: _assert_msg_(SupportsFloatHalf(allowHalfMin), "Cannot use width 16 without Zfh/Zfhmin"); return Funct2::H; case 32: return Funct2::S; case 64: return Funct2::D; case 128: return Funct2::Q; default: _assert_msg_(false, "Invalid funct2 width %d", bits); return Funct2::S; } } static inline int FConvToFloatBits(FConv c) { switch (c) { case FConv::W: case FConv::WU: case FConv::L: case FConv::LU: break; case FConv::S: return 32; case FConv::D: return 64; case FConv::H: _assert_msg_(SupportsFloatHalf(true), "Cannot use width 16 without Zfh/Zfhmin"); return 16; case FConv::Q: return 128; } return 0; } static inline int FConvToIntegerBits(FConv c) { switch (c) { case FConv::S: case FConv::D: case FConv::H: case FConv::Q: break; case FConv::W: case FConv::WU: return 32; case FConv::L: case FConv::LU: return 64; } return 0; } Funct3 VecBitsToFunct3(int bits) { int bitsSupported = SupportsVector() ? 64 : 0; _assert_msg_(bitsSupported >= bits, "Cannot use funct3 width %d, only have %d", bits, bitsSupported); switch (bits) { case 8: return Funct3::VLS_8; case 16: return Funct3::VLS_16; case 32: return Funct3::VLS_32; case 64: return Funct3::VLS_64; default: _assert_msg_(false, "Invalid funct3 width %d", bits); return Funct3::VLS_8; } } static s32 VecLSToSimm12(RiscVReg vrs2, VUseMask vm, VMop mop, int bits, int nf) { _assert_msg_(nf >= 1 && nf <= 8, "Cannot encode field count %d (must be <= 8)", nf); int mew = bits >= 128 ? 1 : 0; int nf3 = nf > 4 ? (0xFFFFFFF8 | (nf - 1)) : (nf - 1); return (s32)DecodeReg(vrs2) | ((s32)vm << 5) | ((s32)mop << 6) | (mew << 8) | (nf3 << 9); } static s32 VecLSToSimm12(VLSUMop lsumop, VUseMask vm, VMop mop, int bits, int nf) { return VecLSToSimm12((RiscVReg)(int)lsumop, vm, mop, bits, nf); } static Funct5 VExtFracToFunct5(int frac, bool sign) { _assert_msg_(SupportsVector(), "v%cext instruction not supported", sign ? 's' : 'z'); switch (frac) { case 8: return sign ? Funct5::VSEXT_VF8 : Funct5::VZEXT_VF8; case 4: return sign ? Funct5::VSEXT_VF4 : Funct5::VZEXT_VF4; case 2: return sign ? Funct5::VSEXT_VF2 : Funct5::VZEXT_VF2; default: _assert_msg_(false, "Invalid v%cext frac %d", sign ? 's' : 'z', frac); return Funct5::VZEXT_VF8; } } RiscVEmitter::RiscVEmitter(const u8 *ptr, u8 *writePtr) { SetCodePointer(ptr, writePtr); } void RiscVEmitter::SetCodePointer(const u8 *ptr, u8 *writePtr) { code_ = ptr; writable_ = writePtr; lastCacheFlushEnd_ = ptr; } const u8 *RiscVEmitter::GetCodePointer() const { return code_; } u8 *RiscVEmitter::GetWritableCodePtr() { return writable_; } void RiscVEmitter::ReserveCodeSpace(u32 bytes) { _assert_msg_((bytes & 1) == 0, "Code space should be aligned"); _assert_msg_((bytes & 3) == 0 || SupportsCompressed(), "Code space should be aligned (no compressed)"); for (u32 i = 0; i < bytes / 4; i++) EBREAK(); if (bytes & 2) { if (SupportsCompressed()) C_EBREAK(); else Write16(0); } } const u8 *RiscVEmitter::AlignCode16() { int c = int((u64)code_ & 15); if (c) ReserveCodeSpace(16 - c); return code_; } const u8 *RiscVEmitter::AlignCodePage() { int page_size = GetMemoryProtectPageSize(); int c = int((intptr_t)code_ & ((intptr_t)page_size - 1)); if (c) ReserveCodeSpace(page_size - c); return code_; } void RiscVEmitter::FlushIcache() { FlushIcacheSection(lastCacheFlushEnd_, code_); lastCacheFlushEnd_ = code_; } void RiscVEmitter::FlushIcacheSection(const u8 *start, const u8 *end) { #if PPSSPP_ARCH(RISCV64) #if PPSSPP_PLATFORM(LINUX) __riscv_flush_icache((char *)start, (char *)end, 0); #else // TODO: This might only correspond to a local hart icache clear, which is no good. __builtin___clear_cache((char *)start, (char *)end); #endif #endif } FixupBranch::FixupBranch(FixupBranch &&other) { ptr = other.ptr; type = other.type; other.ptr = nullptr; } FixupBranch::~FixupBranch() { _assert_msg_(ptr == nullptr, "FixupBranch never set (left infinite loop)"); } FixupBranch &FixupBranch::operator =(FixupBranch &&other) { ptr = other.ptr; type = other.type; other.ptr = nullptr; return *this; } void RiscVEmitter::SetJumpTarget(FixupBranch &branch) { SetJumpTarget(branch, code_); } void RiscVEmitter::SetJumpTarget(FixupBranch &branch, const void *dst) { _assert_msg_(branch.ptr != nullptr, "Invalid FixupBranch (SetJumpTarget twice?)"); const intptr_t srcp = (intptr_t)branch.ptr; const intptr_t dstp = (intptr_t)dst; const ptrdiff_t writable_delta = writable_ - code_; u32 *writableSrc = (u32 *)(branch.ptr + writable_delta); // If compressed, this may be an unaligned 32-bit value, so we modify a copy. u32 fixup; u16 fixup16; _assert_msg_((dstp & 1) == 0, "Destination should be aligned"); _assert_msg_((dstp & 3) == 0 || SupportsCompressed(), "Destination should be aligned (no compressed)"); ptrdiff_t distance = dstp - srcp; _assert_msg_((distance & 1) == 0, "Distance should be aligned"); _assert_msg_((distance & 3) == 0 || SupportsCompressed(), "Distance should be aligned (no compressed)"); switch (branch.type) { case FixupBranchType::B: _assert_msg_(BInRange(branch.ptr, dst), "B destination is too far away (%p -> %p)", branch.ptr, dst); memcpy(&fixup, writableSrc, sizeof(u32)); fixup = (fixup & 0x01FFF07F) | EncodeB(Opcode32::ZERO, Funct3::ZERO, R_ZERO, R_ZERO, (s32)distance); memcpy(writableSrc, &fixup, sizeof(u32)); break; case FixupBranchType::J: _assert_msg_(JInRange(branch.ptr, dst), "J destination is too far away (%p -> %p)", branch.ptr, dst); memcpy(&fixup, writableSrc, sizeof(u32)); fixup = (fixup & 0x00000FFF) | EncodeJ(Opcode32::ZERO, R_ZERO, (s32)distance); memcpy(writableSrc, &fixup, sizeof(u32)); break; case FixupBranchType::CB: _assert_msg_(CBInRange(branch.ptr, dst), "C.B destination is too far away (%p -> %p)", branch.ptr, dst); memcpy(&fixup16, writableSrc, sizeof(u16)); fixup16 = (fixup16 & 0xE383) | EncodeCB(Opcode16::C0, (s32)distance, RiscCReg::X8, Funct3::ZERO); memcpy(writableSrc, &fixup16, sizeof(u16)); break; case FixupBranchType::CJ: _assert_msg_(CJInRange(branch.ptr, dst), "C.J destination is too far away (%p -> %p)", branch.ptr, dst); memcpy(&fixup16, writableSrc, sizeof(u16)); fixup16 = (fixup16 & 0xE003) | EncodeCJ(Opcode16::C0, (s32)distance, Funct3::ZERO); memcpy(writableSrc, &fixup16, sizeof(u16)); break; } branch.ptr = nullptr; } bool RiscVEmitter::BInRange(const void *func) const { return BInRange(code_, func); } bool RiscVEmitter::JInRange(const void *func) const { return JInRange(code_, func); } bool RiscVEmitter::CBInRange(const void *func) const { return CBInRange(code_, func); } bool RiscVEmitter::CJInRange(const void *func) const { return CJInRange(code_, func); } static inline bool BJInRange(const void *src, const void *dst, int bits) { ptrdiff_t distance = (intptr_t)dst - (intptr_t)src; // Get rid of bits and sign extend to validate range. s32 encodable = SignReduce32((s32)distance, bits); return distance == encodable; } bool RiscVEmitter::BInRange(const void *src, const void *dst) const { return BJInRange(src, dst, 13); } bool RiscVEmitter::JInRange(const void *src, const void *dst) const { return BJInRange(src, dst, 21); } bool RiscVEmitter::CBInRange(const void *src, const void *dst) const { return BJInRange(src, dst, 9); } bool RiscVEmitter::CJInRange(const void *src, const void *dst) const { return BJInRange(src, dst, 12); } void RiscVEmitter::QuickJAL(RiscVReg scratchreg, RiscVReg rd, const u8 *dst) { if (!JInRange(GetCodePointer(), dst)) { int32_t lower = 0; static_assert(sizeof(intptr_t) <= sizeof(int64_t)); // If it's near PC, we're better off shooting for AUIPC. Should take 8 bytes. int64_t pcdelta = (int64_t)dst - (int64_t)GetCodePointer(); if (pcdelta < 0x100000000LL && pcdelta >= -0x100000000LL) { lower = (int32_t)SignReduce64(pcdelta, 12); uintptr_t upper = ((pcdelta - lower) >> 12) << 12; LI(scratchreg, (uintptr_t)GetCodePointer() + upper); } else { lower = (int32_t)SignReduce64((int64_t)dst, 12); // Abuse rd as a temporary if we need to. LI(scratchreg, dst - lower, rd == scratchreg ? R_ZERO : rd); } JALR(rd, scratchreg, lower); } else { JAL(rd, dst); } } void RiscVEmitter::SetRegToImmediate(RiscVReg rd, uint64_t value, RiscVReg temp) { int64_t svalue = (int64_t)value; _assert_msg_(IsGPR(rd) && IsGPR(temp), "SetRegToImmediate only supports GPRs"); _assert_msg_(rd != temp, "SetRegToImmediate cannot use same register for temp and rd"); _assert_msg_(SignReduce64(svalue, 32) == svalue || (value & 0xFFFFFFFF) == value || BitsSupported() >= 64, "64-bit immediate unsupported"); if (SignReduce64(svalue, 12) == svalue) { // Nice and simple, small immediate fits in a single ADDI against zero. ADDI(rd, R_ZERO, (s32)svalue); return; } auto useUpper = [&](int64_t v, void (RiscVEmitter::*upperOp)(RiscVReg, s32), bool force = false) { if (SignReduce64(v, 32) == v || force) { int32_t lower = (int32_t)SignReduce64(v, 12); int32_t upper = ((v - lower) >> 12) << 12; bool clearUpper = v >= 0 && upper < 0; if (clearUpper) { _assert_msg_(BitsSupported() >= 64, "Shouldn't be possible on 32-bit"); _assert_msg_(force || (((int64_t)upper + lower) & 0xFFFFFFFF) == v, "Upper + ADDI immediate math mistake?"); // This isn't safe to do using AUIPC. We can't have the high bit set this way. if (upperOp == &RiscVEmitter::AUIPC) return false; } else { _assert_msg_(force || (int64_t)upper + lower == v, "Upper + ADDI immediate math mistake?"); } // Should be fused on some processors. (this->*upperOp)(rd, upper); if (clearUpper) ADDIW(rd, rd, lower); else if (lower != 0) ADDI(rd, rd, lower); return true; } return false; }; // If this is a simple 32-bit immediate, we can use LUI + ADDI. if (useUpper(svalue, &RiscVEmitter::LUI, BitsSupported() == 32)) return; _assert_msg_(BitsSupported() > 32, "Should have stopped at LUI + ADDI on 32-bit"); // Common case, within 32 bits of PC, use AUIPC + ADDI. intptr_t pc = (intptr_t)GetCodePointer(); if (sizeof(pc) <= 8 && useUpper(svalue - (int64_t)pc, &RiscVEmitter::AUIPC)) return; // Check if it's just a shifted 32 bit immediate, those are cheap. for (uint32_t start = 1; start <= 32; ++start) { // Take the value (shifted by start) and extend sign from 32 bits. int32_t simm32 = (int32_t)(svalue >> start); if (((int64_t)simm32 << start) == svalue) { LI(rd, simm32); SLLI(rd, rd, start); return; } } // If this is just a 32-bit unsigned value, use a wall to mask. if ((svalue >> 32) == 0) { LI(rd, (int32_t)(svalue & 0xFFFFFFFF)); if (SupportsBitmanip('a')) { ZEXT_W(rd, rd); } else { SLLI(rd, rd, BitsSupported() - 32); SRLI(rd, rd, BitsSupported() - 32); } return; } // If we have a temporary, let's use it to shorten. if (temp != R_ZERO) { int32_t lower = (int32_t)svalue; int32_t upper = (svalue - lower) >> 32; _assert_msg_(((int64_t)upper << 32) + lower == svalue, "LI + SLLI + LI + ADD immediate math mistake?"); // This could be a bit more optimal, in case a different shamt could simplify an LI. LI(rd, (int64_t)upper); SLLI(rd, rd, 32); LI(temp, (int64_t)lower); ADD(rd, rd, temp); return; } // Okay, let's just start with the upper 32 bits and add the rest via ADDI. int64_t upper = svalue >> 32; LI(rd, upper); uint32_t remaining = svalue & 0xFFFFFFFF; uint32_t shifted = 0; while (remaining != 0) { // Skip any zero bits, just set the first ones actually needed. uint32_t zeroBits = clz32_nonzero(remaining); // We do chunks of 11 to avoid compensating for sign. uint32_t targetShift = std::min(zeroBits + 11, 32U); uint32_t sourceShift = 32 - targetShift; int32_t chunk = (remaining >> sourceShift) & 0x07FF; SLLI(rd, rd, targetShift - shifted); ADDI(rd, rd, chunk); // Okay, increase shift and clear the bits we've deposited. shifted = targetShift; remaining &= ~(chunk << sourceShift); } // Move into place in case the lowest bits weren't set. if (shifted < 32) SLLI(rd, rd, 32 - shifted); } void RiscVEmitter::LUI(RiscVReg rd, s32 simm32) { _assert_msg_(rd != R_ZERO, "%s write to zero is a HINT", __func__); if (AutoCompress() && rd != R_SP && simm32 != 0 && SignReduce32(simm32 & 0x0003F000, 18) == simm32) { C_LUI(rd, simm32); return; } Write32(EncodeGU(Opcode32::LUI, rd, simm32)); } void RiscVEmitter::AUIPC(RiscVReg rd, s32 simm32) { _assert_msg_(rd != R_ZERO, "%s write to zero is a HINT", __func__); Write32(EncodeGU(Opcode32::AUIPC, rd, simm32)); } void RiscVEmitter::JAL(RiscVReg rd, const void *dst) { if (AutoCompress() && CJInRange(GetCodePointer(), dst)) { if (BitsSupported() == 32 && rd == R_RA) { C_JAL(dst); return; } else if (rd == R_ZERO) { C_J(dst); return; } } _assert_msg_(JInRange(GetCodePointer(), dst), "JAL destination is too far away (%p -> %p)", GetCodePointer(), dst); _assert_msg_(((intptr_t)dst & 1) == 0, "JAL destination should be aligned"); _assert_msg_(((intptr_t)dst & 3) == 0 || SupportsCompressed(), "JAL destination should be aligned (no compressed)"); ptrdiff_t distance = (intptr_t)dst - (intptr_t)GetCodePointer(); Write32(EncodeGJ(Opcode32::JAL, rd, (s32)distance)); } void RiscVEmitter::JALR(RiscVReg rd, RiscVReg rs1, s32 simm12) { if (AutoCompress() && rs1 != R_ZERO && simm12 == 0) { if (rd == R_ZERO) { C_JR(rs1); return; } else if (rd == R_RA) { C_JALR(rs1); return; } } Write32(EncodeGI(Opcode32::JALR, rd, Funct3::ZERO, rs1, simm12)); } FixupBranch RiscVEmitter::JAL(RiscVReg rd) { FixupBranch fixup{ GetCodePointer(), FixupBranchType::J }; Write32(EncodeGJ(Opcode32::JAL, rd, 0)); return fixup; } void RiscVEmitter::BEQ(RiscVReg rs1, RiscVReg rs2, const void *dst) { if (AutoCompress() && CBInRange(GetCodePointer(), dst)) { if (rs2 == R_ZERO) { C_BEQZ(rs1, dst); return; } else if (rs1 == R_ZERO) { C_BEQZ(rs2, dst); return; } } _assert_msg_(BInRange(GetCodePointer(), dst), "%s destination is too far away (%p -> %p)", __func__, GetCodePointer(), dst); _assert_msg_(((intptr_t)dst & 3) == 0 || SupportsCompressed(), "%s destination should be aligned (no compressed)", __func__); ptrdiff_t distance = (intptr_t)dst - (intptr_t)GetCodePointer(); Write32(EncodeGB(Opcode32::BRANCH, Funct3::BEQ, rs1, rs2, (s32)distance)); } void RiscVEmitter::BNE(RiscVReg rs1, RiscVReg rs2, const void *dst) { if (AutoCompress() && CBInRange(GetCodePointer(), dst)) { if (rs2 == R_ZERO) { C_BNEZ(rs1, dst); return; } else if (rs1 == R_ZERO) { C_BNEZ(rs2, dst); return; } } _assert_msg_(BInRange(GetCodePointer(), dst), "%s destination is too far away (%p -> %p)", __func__, GetCodePointer(), dst); _assert_msg_(((intptr_t)dst & 3) == 0 || SupportsCompressed(), "%s destination should be aligned (no compressed)", __func__); ptrdiff_t distance = (intptr_t)dst - (intptr_t)GetCodePointer(); Write32(EncodeGB(Opcode32::BRANCH, Funct3::BNE, rs1, rs2, (s32)distance)); } void RiscVEmitter::BLT(RiscVReg rs1, RiscVReg rs2, const void *dst) { _assert_msg_(BInRange(GetCodePointer(), dst), "%s destination is too far away (%p -> %p)", __func__, GetCodePointer(), dst); _assert_msg_(((intptr_t)dst & 3) == 0 || SupportsCompressed(), "%s destination should be aligned (no compressed)", __func__); ptrdiff_t distance = (intptr_t)dst - (intptr_t)GetCodePointer(); Write32(EncodeGB(Opcode32::BRANCH, Funct3::BLT, rs1, rs2, (s32)distance)); } void RiscVEmitter::BGE(RiscVReg rs1, RiscVReg rs2, const void *dst) { _assert_msg_(BInRange(GetCodePointer(), dst), "%s destination is too far away (%p -> %p)", __func__, GetCodePointer(), dst); _assert_msg_(((intptr_t)dst & 3) == 0 || SupportsCompressed(), "%s destination should be aligned (no compressed)", __func__); ptrdiff_t distance = (intptr_t)dst - (intptr_t)GetCodePointer(); Write32(EncodeGB(Opcode32::BRANCH, Funct3::BGE, rs1, rs2, (s32)distance)); } void RiscVEmitter::BLTU(RiscVReg rs1, RiscVReg rs2, const void *dst) { _assert_msg_(BInRange(GetCodePointer(), dst), "%s destination is too far away (%p -> %p)", __func__, GetCodePointer(), dst); _assert_msg_(((intptr_t)dst & 3) == 0 || SupportsCompressed(), "%s destination should be aligned (no compressed)", __func__); ptrdiff_t distance = (intptr_t)dst - (intptr_t)GetCodePointer(); Write32(EncodeGB(Opcode32::BRANCH, Funct3::BLTU, rs1, rs2, (s32)distance)); } void RiscVEmitter::BGEU(RiscVReg rs1, RiscVReg rs2, const void *dst) { _assert_msg_(BInRange(GetCodePointer(), dst), "%s destination is too far away (%p -> %p)", __func__, GetCodePointer(), dst); _assert_msg_(((intptr_t)dst & 3) == 0 || SupportsCompressed(), "%s destination should be aligned (no compressed)", __func__); ptrdiff_t distance = (intptr_t)dst - (intptr_t)GetCodePointer(); Write32(EncodeGB(Opcode32::BRANCH, Funct3::BGEU, rs1, rs2, (s32)distance)); } FixupBranch RiscVEmitter::BEQ(RiscVReg rs1, RiscVReg rs2) { FixupBranch fixup{ GetCodePointer(), FixupBranchType::B }; Write32(EncodeGB(Opcode32::BRANCH, Funct3::BEQ, rs1, rs2, 0)); return fixup; } FixupBranch RiscVEmitter::BNE(RiscVReg rs1, RiscVReg rs2) { FixupBranch fixup{ GetCodePointer(), FixupBranchType::B }; Write32(EncodeGB(Opcode32::BRANCH, Funct3::BNE, rs1, rs2, 0)); return fixup; } FixupBranch RiscVEmitter::BLT(RiscVReg rs1, RiscVReg rs2) { FixupBranch fixup{ GetCodePointer(), FixupBranchType::B }; Write32(EncodeGB(Opcode32::BRANCH, Funct3::BLT, rs1, rs2, 0)); return fixup; } FixupBranch RiscVEmitter::BGE(RiscVReg rs1, RiscVReg rs2) { FixupBranch fixup{ GetCodePointer(), FixupBranchType::B }; Write32(EncodeGB(Opcode32::BRANCH, Funct3::BGE, rs1, rs2, 0)); return fixup; } FixupBranch RiscVEmitter::BLTU(RiscVReg rs1, RiscVReg rs2) { FixupBranch fixup{ GetCodePointer(), FixupBranchType::B }; Write32(EncodeGB(Opcode32::BRANCH, Funct3::BLTU, rs1, rs2, 0)); return fixup; } FixupBranch RiscVEmitter::BGEU(RiscVReg rs1, RiscVReg rs2) { FixupBranch fixup{ GetCodePointer(), FixupBranchType::B }; Write32(EncodeGB(Opcode32::BRANCH, Funct3::BGEU, rs1, rs2, 0)); return fixup; } void RiscVEmitter::LB(RiscVReg rd, RiscVReg rs1, s32 simm12) { Write32(EncodeGI(Opcode32::LOAD, rd, Funct3::LS_B, rs1, simm12)); } void RiscVEmitter::LH(RiscVReg rd, RiscVReg rs1, s32 simm12) { if (AutoCompress() && SupportsCompressed('b')) { if (CanCompress(rd) && CanCompress(rs1) && (simm12 & 2) == simm12) { C_LH(rd, rs1, simm12 & 3); return; } } Write32(EncodeGI(Opcode32::LOAD, rd, Funct3::LS_H, rs1, simm12)); } void RiscVEmitter::LW(RiscVReg rd, RiscVReg rs1, s32 simm12) { if (AutoCompress()) { if (CanCompress(rd) && CanCompress(rs1) && (simm12 & 0x7C) == simm12) { C_LW(rd, rs1, (u8)simm12); return; } else if (rd != R_ZERO && rs1 == R_SP && (simm12 & 0xFC) == simm12) { C_LWSP(rd, (u8)simm12); return; } } Write32(EncodeGI(Opcode32::LOAD, rd, Funct3::LS_W, rs1, simm12)); } void RiscVEmitter::LBU(RiscVReg rd, RiscVReg rs1, s32 simm12) { if (AutoCompress() && SupportsCompressed('b')) { if (CanCompress(rd) && CanCompress(rs1) && (simm12 & 3) == simm12) { C_LBU(rd, rs1, simm12 & 3); return; } } Write32(EncodeGI(Opcode32::LOAD, rd, Funct3::LS_BU, rs1, simm12)); } void RiscVEmitter::LHU(RiscVReg rd, RiscVReg rs1, s32 simm12) { if (AutoCompress() && SupportsCompressed('b')) { if (CanCompress(rd) && CanCompress(rs1) && (simm12 & 2) == simm12) { C_LHU(rd, rs1, simm12 & 3); return; } } Write32(EncodeGI(Opcode32::LOAD, rd, Funct3::LS_HU, rs1, simm12)); } void RiscVEmitter::SB(RiscVReg rs2, RiscVReg rs1, s32 simm12) { if (AutoCompress() && SupportsCompressed('b')) { if (CanCompress(rs2) && CanCompress(rs1) && (simm12 & 3) == simm12) { C_SB(rs2, rs1, simm12 & 3); return; } } Write32(EncodeGS(Opcode32::STORE, Funct3::LS_B, rs1, rs2, simm12)); } void RiscVEmitter::SH(RiscVReg rs2, RiscVReg rs1, s32 simm12) { if (AutoCompress() && SupportsCompressed('b')) { if (CanCompress(rs2) && CanCompress(rs1) && (simm12 & 2) == simm12) { C_SH(rs2, rs1, simm12 & 3); return; } } Write32(EncodeGS(Opcode32::STORE, Funct3::LS_H, rs1, rs2, simm12)); } void RiscVEmitter::SW(RiscVReg rs2, RiscVReg rs1, s32 simm12) { if (AutoCompress()) { if (CanCompress(rs2) && CanCompress(rs1) && (simm12 & 0x7C) == simm12) { C_SW(rs2, rs1, (u8)simm12); return; } else if (rs1 == R_SP && (simm12 & 0xFC) == simm12) { C_LWSP(rs2, (u8)simm12); return; } } Write32(EncodeGS(Opcode32::STORE, Funct3::LS_W, rs1, rs2, simm12)); } void RiscVEmitter::ADDI(RiscVReg rd, RiscVReg rs1, s32 simm12) { // Allow NOP form of ADDI. _assert_msg_(rd != R_ZERO || (rs1 == R_ZERO && simm12 == 0), "%s write to zero is a HINT", __func__); if (AutoCompress()) { if (CanCompress(rd) && rs1 == R_SP && simm12 != 0 && (simm12 & 0x03FC) == simm12) { C_ADDI4SPN(rd, (u32)simm12); return; } else if (rd != R_ZERO && rd == rs1 && simm12 != 0 && SignReduce32(simm12, 6) == simm12) { C_ADDI(rd, (s8)simm12); return; } else if (rd != R_ZERO && rs1 == R_ZERO && SignReduce32(simm12, 6) == simm12) { C_LI(rd, (s8)simm12); return; } else if (rd == R_SP && rd == rs1 && simm12 != 0 && SignReduce32(simm12 & ~0xF, 10) == simm12) { C_ADDI16SP(simm12); return; } else if (rd != R_ZERO && rs1 != R_ZERO && simm12 == 0) { C_MV(rd, rs1); return; } } Write32(EncodeGI(Opcode32::OP_IMM, rd, Funct3::ADD, rs1, simm12)); } void RiscVEmitter::SLTI(RiscVReg rd, RiscVReg rs1, s32 simm12) { _assert_msg_(rd != R_ZERO, "%s write to zero is a HINT", __func__); Write32(EncodeGI(Opcode32::OP_IMM, rd, Funct3::SLT, rs1, simm12)); } void RiscVEmitter::SLTIU(RiscVReg rd, RiscVReg rs1, s32 simm12) { _assert_msg_(rd != R_ZERO, "%s write to zero is a HINT", __func__); Write32(EncodeGI(Opcode32::OP_IMM, rd, Funct3::SLTU, rs1, simm12)); } void RiscVEmitter::XORI(RiscVReg rd, RiscVReg rs1, s32 simm12) { _assert_msg_(rd != R_ZERO, "%s write to zero is a HINT", __func__); if (AutoCompress() && SupportsCompressed('b') && CanCompress(rd) && rd == rs1 && simm12 == -1) { C_NOT(rd); return; } Write32(EncodeGI(Opcode32::OP_IMM, rd, Funct3::XOR, rs1, simm12)); } void RiscVEmitter::ORI(RiscVReg rd, RiscVReg rs1, s32 simm12) { _assert_msg_(rd != R_ZERO, "%s write to zero is a HINT", __func__); if (AutoCompress()) { if (rd != R_ZERO && rs1 != R_ZERO && simm12 == 0) { C_MV(rd, rs1); return; } } Write32(EncodeGI(Opcode32::OP_IMM, rd, Funct3::OR, rs1, simm12)); } void RiscVEmitter::ANDI(RiscVReg rd, RiscVReg rs1, s32 simm12) { _assert_msg_(rd != R_ZERO, "%s write to zero is a HINT", __func__); if (AutoCompress() && CanCompress(rd) && rd == rs1) { if (SignReduce32(simm12, 6) == simm12) { C_ANDI(rd, (s8)simm12); return; } else if (SupportsCompressed('b') && simm12 == 0xFF) { C_ZEXT_B(rd); return; } } Write32(EncodeGI(Opcode32::OP_IMM, rd, Funct3::AND, rs1, simm12)); } void RiscVEmitter::SLLI(RiscVReg rd, RiscVReg rs1, u32 shamt) { _assert_msg_(rd != R_ZERO, "%s write to zero is a HINT", __func__); // Not sure if shamt=0 is legal or not, let's play it safe. _assert_msg_(shamt > 0 && shamt < BitsSupported(), "Shift out of range"); if (AutoCompress() && rd == rs1 && shamt != 0 && shamt <= (u32)(BitsSupported() == 64 ? 63 : 31)) { C_SLLI(rd, (u8)shamt); return; } Write32(EncodeGIShift(Opcode32::OP_IMM, rd, Funct3::SLL, rs1, shamt, Funct7::ZERO)); } void RiscVEmitter::SRLI(RiscVReg rd, RiscVReg rs1, u32 shamt) { _assert_msg_(rd != R_ZERO, "%s write to zero is a HINT", __func__); // Not sure if shamt=0 is legal or not, let's play it safe. _assert_msg_(shamt > 0 && shamt < BitsSupported(), "Shift out of range"); if (AutoCompress() && CanCompress(rd) && rd == rs1 && shamt <= (u32)(BitsSupported() == 64 ? 63 : 31)) { C_SRLI(rd, (u8)shamt); return; } Write32(EncodeGIShift(Opcode32::OP_IMM, rd, Funct3::SRL, rs1, shamt, Funct7::ZERO)); } void RiscVEmitter::SRAI(RiscVReg rd, RiscVReg rs1, u32 shamt) { _assert_msg_(rd != R_ZERO, "%s write to zero is a HINT", __func__); // Not sure if shamt=0 is legal or not, let's play it safe. _assert_msg_(shamt > 0 && shamt < BitsSupported(), "Shift out of range"); if (AutoCompress() && CanCompress(rd) && rd == rs1 && shamt <= (u32)(BitsSupported() == 64 ? 63 : 31)) { C_SRAI(rd, (u8)shamt); return; } Write32(EncodeGIShift(Opcode32::OP_IMM, rd, Funct3::SRL, rs1, shamt, Funct7::SRA)); } void RiscVEmitter::ADD(RiscVReg rd, RiscVReg rs1, RiscVReg rs2) { _assert_msg_(rd != R_ZERO, "%s write to zero is a HINT", __func__); if (AutoCompress()) { if (rs1 != R_ZERO && rs2 == R_ZERO) { C_MV(rd, rs1); return; } else if (rs1 == R_ZERO && rs2 != R_ZERO) { C_MV(rd, rs2); return; } else if (rd == rs1 && rs2 != R_ZERO) { C_ADD(rd, rs2); return; } else if (rd == rs2 && rs1 != R_ZERO) { C_ADD(rd, rs1); return; } } Write32(EncodeGR(Opcode32::OP, rd, Funct3::ADD, rs1, rs2, Funct7::ZERO)); } void RiscVEmitter::SUB(RiscVReg rd, RiscVReg rs1, RiscVReg rs2) { _assert_msg_(rd != R_ZERO, "%s write to zero is a HINT", __func__); if (AutoCompress() && CanCompress(rd) && rd == rs1 && CanCompress(rs2)) { C_SUB(rd, rs2); return; } Write32(EncodeGR(Opcode32::OP, rd, Funct3::ADD, rs1, rs2, Funct7::SUB)); } void RiscVEmitter::SLL(RiscVReg rd, RiscVReg rs1, RiscVReg rs2) { _assert_msg_(rd != R_ZERO, "%s write to zero is a HINT", __func__); Write32(EncodeGR(Opcode32::OP, rd, Funct3::SLL, rs1, rs2, Funct7::ZERO)); } void RiscVEmitter::SLT(RiscVReg rd, RiscVReg rs1, RiscVReg rs2) { _assert_msg_(rd != R_ZERO, "%s write to zero is a HINT", __func__); Write32(EncodeGR(Opcode32::OP, rd, Funct3::SLT, rs1, rs2, Funct7::ZERO)); } void RiscVEmitter::SLTU(RiscVReg rd, RiscVReg rs1, RiscVReg rs2) { _assert_msg_(rd != R_ZERO, "%s write to zero is a HINT", __func__); Write32(EncodeGR(Opcode32::OP, rd, Funct3::SLTU, rs1, rs2, Funct7::ZERO)); } void RiscVEmitter::XOR(RiscVReg rd, RiscVReg rs1, RiscVReg rs2) { _assert_msg_(rd != R_ZERO, "%s write to zero is a HINT", __func__); if (AutoCompress() && CanCompress(rd) && rd == rs1 && CanCompress(rs2)) { C_XOR(rd, rs2); return; } Write32(EncodeGR(Opcode32::OP, rd, Funct3::XOR, rs1, rs2, Funct7::ZERO)); } void RiscVEmitter::SRL(RiscVReg rd, RiscVReg rs1, RiscVReg rs2) { _assert_msg_(rd != R_ZERO, "%s write to zero is a HINT", __func__); Write32(EncodeGR(Opcode32::OP, rd, Funct3::SRL, rs1, rs2, Funct7::ZERO)); } void RiscVEmitter::SRA(RiscVReg rd, RiscVReg rs1, RiscVReg rs2) { _assert_msg_(rd != R_ZERO, "%s write to zero is a HINT", __func__); Write32(EncodeGR(Opcode32::OP, rd, Funct3::SRL, rs1, rs2, Funct7::SRA)); } void RiscVEmitter::OR(RiscVReg rd, RiscVReg rs1, RiscVReg rs2) { _assert_msg_(rd != R_ZERO, "%s write to zero is a HINT", __func__); if (AutoCompress()) { if (CanCompress(rd) && rd == rs1 && CanCompress(rs2)) { C_OR(rd, rs2); return; } else if (rs1 != R_ZERO && rs2 == R_ZERO) { C_MV(rd, rs1); return; } else if (rs1 == R_ZERO && rs2 != R_ZERO) { C_MV(rd, rs2); return; } } Write32(EncodeGR(Opcode32::OP, rd, Funct3::OR, rs1, rs2, Funct7::ZERO)); } void RiscVEmitter::AND(RiscVReg rd, RiscVReg rs1, RiscVReg rs2) { _assert_msg_(rd != R_ZERO, "%s write to zero is a HINT", __func__); if (AutoCompress() && CanCompress(rd) && rd == rs1 && CanCompress(rs2)) { C_AND(rd, rs2); return; } Write32(EncodeGR(Opcode32::OP, rd, Funct3::AND, rs1, rs2, Funct7::ZERO)); } void RiscVEmitter::FENCE(Fence predecessor, Fence successor) { _assert_msg_((u32)predecessor != 0 && (u32)successor != 0, "FENCE missing pred/succ"); s32 simm12 = ((u32)predecessor << 4) | (u32)successor; Write32(EncodeI(Opcode32::MISC_MEM, R_ZERO, Funct3::FENCE, R_ZERO, simm12)); } void RiscVEmitter::FENCE_TSO() { s32 simm12 = (0b1000 << 28) | ((u32)Fence::RW << 4) | (u32)Fence::RW; Write32(EncodeI(Opcode32::MISC_MEM, R_ZERO, Funct3::FENCE, R_ZERO, simm12)); } void RiscVEmitter::ECALL() { Write32(EncodeI(Opcode32::System, R_ZERO, Funct3::PRIV, R_ZERO, Funct12::ECALL)); } void RiscVEmitter::EBREAK() { Write32(EncodeI(Opcode32::System, R_ZERO, Funct3::PRIV, R_ZERO, Funct12::EBREAK)); } void RiscVEmitter::LWU(RiscVReg rd, RiscVReg rs1, s32 simm12) { if (BitsSupported() == 32) { LW(rd, rs1, simm12); return; } _assert_msg_(BitsSupported() >= 64, "%s is only valid with R64I", __func__); Write32(EncodeGI(Opcode32::LOAD, rd, Funct3::LS_WU, rs1, simm12)); } void RiscVEmitter::LD(RiscVReg rd, RiscVReg rs1, s32 simm12) { _assert_msg_(BitsSupported() >= 64, "%s is only valid with R64I", __func__); if (AutoCompress() && (BitsSupported() == 64 || BitsSupported() == 128)) { if (CanCompress(rd) && CanCompress(rs1) && (simm12 & 0xF8) == simm12) { C_LD(rd, rs1, (u8)simm12); return; } else if (rd != R_ZERO && rs1 == R_SP && (simm12 & 0x01F8) == simm12) { C_LDSP(rd, (u8)simm12); return; } } Write32(EncodeGI(Opcode32::LOAD, rd, Funct3::LS_D, rs1, simm12)); } void RiscVEmitter::SD(RiscVReg rs2, RiscVReg rs1, s32 simm12) { _assert_msg_(BitsSupported() >= 64, "%s is only valid with R64I", __func__); if (AutoCompress() && (BitsSupported() == 64 || BitsSupported() == 128)) { if (CanCompress(rs2) && CanCompress(rs1) && (simm12 & 0xF8) == simm12) { C_SD(rs2, rs1, (u8)simm12); return; } else if (rs1 == R_SP && (simm12 & 0x01F8) == simm12) { C_SDSP(rs2, (u8)simm12); return; } } Write32(EncodeGS(Opcode32::STORE, Funct3::LS_D, rs1, rs2, simm12)); } void RiscVEmitter::ADDIW(RiscVReg rd, RiscVReg rs1, s32 simm12) { if (BitsSupported() == 32) { ADDI(rd, rs1, simm12); return; } if (AutoCompress() && rd != R_ZERO && rd == rs1 && SignReduce32(simm12, 6) == simm12) { C_ADDIW(rd, (s8)simm12); return; } _assert_msg_(rd != R_ZERO, "%s write to zero is a HINT", __func__); Write32(EncodeGI(Opcode32::OP_IMM_32, rd, Funct3::ADD, rs1, simm12)); } void RiscVEmitter::SLLIW(RiscVReg rd, RiscVReg rs1, u32 shamt) { if (BitsSupported() == 32) { SLLI(rd, rs1, shamt); return; } _assert_msg_(rd != R_ZERO, "%s write to zero is a HINT", __func__); // Not sure if shamt=0 is legal or not, let's play it safe. _assert_msg_(shamt > 0 && shamt < 32, "Shift out of range"); Write32(EncodeGIShift(Opcode32::OP_IMM_32, rd, Funct3::SLL, rs1, shamt, Funct7::ZERO)); } void RiscVEmitter::SRLIW(RiscVReg rd, RiscVReg rs1, u32 shamt) { if (BitsSupported() == 32) { SRLI(rd, rs1, shamt); return; } _assert_msg_(rd != R_ZERO, "%s write to zero is a HINT", __func__); // Not sure if shamt=0 is legal or not, let's play it safe. _assert_msg_(shamt > 0 && shamt < 32, "Shift out of range"); Write32(EncodeGIShift(Opcode32::OP_IMM_32, rd, Funct3::SRL, rs1, shamt, Funct7::ZERO)); } void RiscVEmitter::SRAIW(RiscVReg rd, RiscVReg rs1, u32 shamt) { if (BitsSupported() == 32) { SRAI(rd, rs1, shamt); return; } _assert_msg_(rd != R_ZERO, "%s write to zero is a HINT", __func__); // Not sure if shamt=0 is legal or not, let's play it safe. _assert_msg_(shamt > 0 && shamt < 32, "Shift out of range"); Write32(EncodeGIShift(Opcode32::OP_IMM_32, rd, Funct3::SRL, rs1, shamt, Funct7::SRA)); } void RiscVEmitter::ADDW(RiscVReg rd, RiscVReg rs1, RiscVReg rs2) { if (BitsSupported() == 32) { ADD(rd, rs1, rs2); return; } if (AutoCompress() && CanCompress(rd) && rd == rs1 && CanCompress(rs2)) { C_ADDW(rd, rs2); return; } _assert_msg_(rd != R_ZERO, "%s write to zero is a HINT", __func__); Write32(EncodeGR(Opcode32::OP_32, rd, Funct3::ADD, rs1, rs2, Funct7::ZERO)); } void RiscVEmitter::SUBW(RiscVReg rd, RiscVReg rs1, RiscVReg rs2) { if (BitsSupported() == 32) { SUB(rd, rs1, rs2); return; } if (AutoCompress() && CanCompress(rd) && rd == rs1 && CanCompress(rs2)) { C_SUBW(rd, rs2); return; } _assert_msg_(rd != R_ZERO, "%s write to zero is a HINT", __func__); Write32(EncodeGR(Opcode32::OP_32, rd, Funct3::ADD, rs1, rs2, Funct7::SUB)); } void RiscVEmitter::SLLW(RiscVReg rd, RiscVReg rs1, RiscVReg rs2) { if (BitsSupported() == 32) { SLL(rd, rs1, rs2); return; } _assert_msg_(rd != R_ZERO, "%s write to zero is a HINT", __func__); Write32(EncodeGR(Opcode32::OP_32, rd, Funct3::SLL, rs1, rs2, Funct7::ZERO)); } void RiscVEmitter::SRLW(RiscVReg rd, RiscVReg rs1, RiscVReg rs2) { if (BitsSupported() == 32) { SRL(rd, rs1, rs2); return; } _assert_msg_(rd != R_ZERO, "%s write to zero is a HINT", __func__); Write32(EncodeGR(Opcode32::OP_32, rd, Funct3::SRL, rs1, rs2, Funct7::ZERO)); } void RiscVEmitter::SRAW(RiscVReg rd, RiscVReg rs1, RiscVReg rs2) { if (BitsSupported() == 32) { SRA(rd, rs1, rs2); return; } _assert_msg_(rd != R_ZERO, "%s write to zero is a HINT", __func__); Write32(EncodeGR(Opcode32::OP_32, rd, Funct3::SRL, rs1, rs2, Funct7::SRA)); } void RiscVEmitter::MUL(RiscVReg rd, RiscVReg rs1, RiscVReg rs2) { _assert_msg_(SupportsMulDiv(true), "%s instruction unsupported without M/Zmmul", __func__); // Not explicitly a HINT, but seems sensible to restrict just in case. _assert_msg_(rd != R_ZERO, "%s write to zero", __func__); if (AutoCompress() && SupportsCompressed('b') && CanCompress(rd)) { if (rd == rs1 && CanCompress(rs2)) { C_MUL(rd, rs2); return; } else if (rd == rs2 && CanCompress(rs1)) { C_MUL(rd, rs1); return; } } Write32(EncodeGR(Opcode32::OP, rd, Funct3::MUL, rs1, rs2, Funct7::MULDIV)); } void RiscVEmitter::MULH(RiscVReg rd, RiscVReg rs1, RiscVReg rs2) { _assert_msg_(SupportsMulDiv(true), "%s instruction unsupported without M/Zmmul", __func__); // Not explicitly a HINT, but seems sensible to restrict just in case. _assert_msg_(rd != R_ZERO, "%s write to zero", __func__); Write32(EncodeGR(Opcode32::OP, rd, Funct3::MULH, rs1, rs2, Funct7::MULDIV)); } void RiscVEmitter::MULHSU(RiscVReg rd, RiscVReg rs1, RiscVReg rs2) { _assert_msg_(SupportsMulDiv(true), "%s instruction unsupported without M/Zmmul", __func__); // Not explicitly a HINT, but seems sensible to restrict just in case. _assert_msg_(rd != R_ZERO, "%s write to zero", __func__); Write32(EncodeGR(Opcode32::OP, rd, Funct3::MULHSU, rs1, rs2, Funct7::MULDIV)); } void RiscVEmitter::MULHU(RiscVReg rd, RiscVReg rs1, RiscVReg rs2) { _assert_msg_(SupportsMulDiv(true), "%s instruction unsupported without M/Zmmul", __func__); // Not explicitly a HINT, but seems sensible to restrict just in case. _assert_msg_(rd != R_ZERO, "%s write to zero", __func__); Write32(EncodeGR(Opcode32::OP, rd, Funct3::MULHU, rs1, rs2, Funct7::MULDIV)); } void RiscVEmitter::DIV(RiscVReg rd, RiscVReg rs1, RiscVReg rs2) { _assert_msg_(SupportsMulDiv(), "%s instruction unsupported without M", __func__); // Not explicitly a HINT, but seems sensible to restrict just in case. _assert_msg_(rd != R_ZERO, "%s write to zero", __func__); Write32(EncodeGR(Opcode32::OP, rd, Funct3::DIV, rs1, rs2, Funct7::MULDIV)); } void RiscVEmitter::DIVU(RiscVReg rd, RiscVReg rs1, RiscVReg rs2) { _assert_msg_(SupportsMulDiv(), "%s instruction unsupported without M", __func__); // Not explicitly a HINT, but seems sensible to restrict just in case. _assert_msg_(rd != R_ZERO, "%s write to zero", __func__); Write32(EncodeGR(Opcode32::OP, rd, Funct3::DIVU, rs1, rs2, Funct7::MULDIV)); } void RiscVEmitter::REM(RiscVReg rd, RiscVReg rs1, RiscVReg rs2) { _assert_msg_(SupportsMulDiv(), "%s instruction unsupported without M", __func__); // Not explicitly a HINT, but seems sensible to restrict just in case. _assert_msg_(rd != R_ZERO, "%s write to zero", __func__); Write32(EncodeGR(Opcode32::OP, rd, Funct3::REM, rs1, rs2, Funct7::MULDIV)); } void RiscVEmitter::REMU(RiscVReg rd, RiscVReg rs1, RiscVReg rs2) { _assert_msg_(SupportsMulDiv(), "%s instruction unsupported without M", __func__); // Not explicitly a HINT, but seems sensible to restrict just in case. _assert_msg_(rd != R_ZERO, "%s write to zero", __func__); Write32(EncodeGR(Opcode32::OP, rd, Funct3::REMU, rs1, rs2, Funct7::MULDIV)); } void RiscVEmitter::MULW(RiscVReg rd, RiscVReg rs1, RiscVReg rs2) { _assert_msg_(BitsSupported() >= 64 && SupportsMulDiv(true), "%s is only valid with R64M", __func__); // Not explicitly a HINT, but seems sensible to restrict just in case. _assert_msg_(rd != R_ZERO, "%s write to zero", __func__); Write32(EncodeGR(Opcode32::OP_32, rd, Funct3::MUL, rs1, rs2, Funct7::MULDIV)); } void RiscVEmitter::DIVW(RiscVReg rd, RiscVReg rs1, RiscVReg rs2) { _assert_msg_(BitsSupported() >= 64 && SupportsMulDiv(), "%s is only valid with R64M", __func__); // Not explicitly a HINT, but seems sensible to restrict just in case. _assert_msg_(rd != R_ZERO, "%s write to zero", __func__); Write32(EncodeGR(Opcode32::OP_32, rd, Funct3::DIV, rs1, rs2, Funct7::MULDIV)); } void RiscVEmitter::DIVUW(RiscVReg rd, RiscVReg rs1, RiscVReg rs2) { _assert_msg_(BitsSupported() >= 64 && SupportsMulDiv(), "%s is only valid with R64M", __func__); // Not explicitly a HINT, but seems sensible to restrict just in case. _assert_msg_(rd != R_ZERO, "%s write to zero", __func__); Write32(EncodeGR(Opcode32::OP_32, rd, Funct3::DIVU, rs1, rs2, Funct7::MULDIV)); } void RiscVEmitter::REMW(RiscVReg rd, RiscVReg rs1, RiscVReg rs2) { _assert_msg_(BitsSupported() >= 64 && SupportsMulDiv(), "%s is only valid with R64M", __func__); // Not explicitly a HINT, but seems sensible to restrict just in case. _assert_msg_(rd != R_ZERO, "%s write to zero", __func__); Write32(EncodeGR(Opcode32::OP_32, rd, Funct3::REM, rs1, rs2, Funct7::MULDIV)); } void RiscVEmitter::REMUW(RiscVReg rd, RiscVReg rs1, RiscVReg rs2) { _assert_msg_(BitsSupported() >= 64 && SupportsMulDiv(), "%s is only valid with R64M", __func__); // Not explicitly a HINT, but seems sensible to restrict just in case. _assert_msg_(rd != R_ZERO, "%s write to zero", __func__); Write32(EncodeGR(Opcode32::OP_32, rd, Funct3::REMU, rs1, rs2, Funct7::MULDIV)); } void RiscVEmitter::LR(int bits, RiscVReg rd, RiscVReg rs1, Atomic ordering) { _assert_msg_(SupportsAtomic(), "%s is only valid with R32A", __func__); _assert_msg_(ordering != Atomic::RELEASE, "%s should not use RELEASE ordering", __func__); Write32(EncodeAtomicR(Opcode32::AMO, rd, BitsToFunct3(bits), rs1, R_ZERO, ordering, Funct5::LR)); } void RiscVEmitter::SC(int bits, RiscVReg rd, RiscVReg rs2, RiscVReg rs1, Atomic ordering) { _assert_msg_(SupportsAtomic(), "%s is only valid with R32A", __func__); _assert_msg_(ordering != Atomic::ACQUIRE, "%s should not use ACQUIRE ordering", __func__); Write32(EncodeAtomicR(Opcode32::AMO, rd, BitsToFunct3(bits), rs1, rs2, ordering, Funct5::SC)); } void RiscVEmitter::AMOSWAP(int bits, RiscVReg rd, RiscVReg rs2, RiscVReg rs1, Atomic ordering) { _assert_msg_(SupportsAtomic(), "%s is only valid with R32A", __func__); Write32(EncodeAtomicR(Opcode32::AMO, rd, BitsToFunct3(bits), rs1, rs2, ordering, Funct5::AMOSWAP)); } void RiscVEmitter::AMOADD(int bits, RiscVReg rd, RiscVReg rs2, RiscVReg rs1, Atomic ordering) { _assert_msg_(SupportsAtomic(), "%s is only valid with R32A", __func__); Write32(EncodeAtomicR(Opcode32::AMO, rd, BitsToFunct3(bits), rs1, rs2, ordering, Funct5::AMOADD)); } void RiscVEmitter::AMOAND(int bits, RiscVReg rd, RiscVReg rs2, RiscVReg rs1, Atomic ordering) { _assert_msg_(SupportsAtomic(), "%s is only valid with R32A", __func__); Write32(EncodeAtomicR(Opcode32::AMO, rd, BitsToFunct3(bits), rs1, rs2, ordering, Funct5::AMOAND)); } void RiscVEmitter::AMOOR(int bits, RiscVReg rd, RiscVReg rs2, RiscVReg rs1, Atomic ordering) { _assert_msg_(SupportsAtomic(), "%s is only valid with R32A", __func__); Write32(EncodeAtomicR(Opcode32::AMO, rd, BitsToFunct3(bits), rs1, rs2, ordering, Funct5::AMOOR)); } void RiscVEmitter::AMOXOR(int bits, RiscVReg rd, RiscVReg rs2, RiscVReg rs1, Atomic ordering) { _assert_msg_(SupportsAtomic(), "%s is only valid with R32A", __func__); Write32(EncodeAtomicR(Opcode32::AMO, rd, BitsToFunct3(bits), rs1, rs2, ordering, Funct5::AMOXOR)); } void RiscVEmitter::AMOMIN(int bits, RiscVReg rd, RiscVReg rs2, RiscVReg rs1, Atomic ordering) { _assert_msg_(SupportsAtomic(), "%s is only valid with R32A", __func__); Write32(EncodeAtomicR(Opcode32::AMO, rd, BitsToFunct3(bits), rs1, rs2, ordering, Funct5::AMOMIN)); } void RiscVEmitter::AMOMAX(int bits, RiscVReg rd, RiscVReg rs2, RiscVReg rs1, Atomic ordering) { _assert_msg_(SupportsAtomic(), "%s is only valid with R32A", __func__); Write32(EncodeAtomicR(Opcode32::AMO, rd, BitsToFunct3(bits), rs1, rs2, ordering, Funct5::AMOMAX)); } void RiscVEmitter::AMOMINU(int bits, RiscVReg rd, RiscVReg rs2, RiscVReg rs1, Atomic ordering) { _assert_msg_(SupportsAtomic(), "%s is only valid with R32A", __func__); Write32(EncodeAtomicR(Opcode32::AMO, rd, BitsToFunct3(bits), rs1, rs2, ordering, Funct5::AMOMINU)); } void RiscVEmitter::AMOMAXU(int bits, RiscVReg rd, RiscVReg rs2, RiscVReg rs1, Atomic ordering) { _assert_msg_(SupportsAtomic(), "%s is only valid with R32A", __func__); Write32(EncodeAtomicR(Opcode32::AMO, rd, BitsToFunct3(bits), rs1, rs2, ordering, Funct5::AMOMAXU)); } void RiscVEmitter::FL(int bits, RiscVReg rd, RiscVReg rs1, s32 simm12) { _assert_msg_(IsGPR(rs1) && IsFPR(rd), "FL with incorrect register types"); if (AutoCompress() && CanCompress(rd) && CanCompress(rs1)) { if (bits == 64 && BitsSupported() <= 64 && (simm12 & 0xF8) == simm12) { C_FLD(rd, rs1, (u8)simm12); return; } else if (bits == 32 && BitsSupported() == 32 && (simm12 & 0x7C) == simm12) { C_FLW(rd, rs1, (u8)simm12); return; } } else if (AutoCompress() && rs1 == R_SP) { if (bits == 64 && BitsSupported() <= 64 && (simm12 & 0x01F8) == simm12) { C_FLDSP(rd, (u32)simm12); return; } else if (bits == 32 && BitsSupported() == 32 && (simm12 & 0xFC) == simm12) { C_FLWSP(rd, (u8)simm12); return; } } Write32(EncodeI(Opcode32::LOAD_FP, rd, BitsToFunct3(bits, true, true), rs1, simm12)); } void RiscVEmitter::FS(int bits, RiscVReg rs2, RiscVReg rs1, s32 simm12) { _assert_msg_(IsGPR(rs1) && IsFPR(rs2), "FS with incorrect register types"); if (AutoCompress() && CanCompress(rs2) && CanCompress(rs1)) { if (bits == 64 && BitsSupported() <= 64 && (simm12 & 0xF8) == simm12) { C_FSD(rs2, rs1, (u8)simm12); return; } else if (bits == 32 && BitsSupported() == 32 && (simm12 & 0x7C) == simm12) { C_FSW(rs2, rs1, (u8)simm12); return; } else if (AutoCompress() && rs1 == R_SP) { if (bits == 64 && BitsSupported() <= 64 && (simm12 & 0x01F8) == simm12) { C_FSDSP(rs2, (u32)simm12); return; } else if (bits == 32 && BitsSupported() == 32 && (simm12 & 0xFC) == simm12) { C_FSWSP(rs2, (u8)simm12); return; } } } Write32(EncodeS(Opcode32::STORE_FP, BitsToFunct3(bits, true, true), rs1, rs2, simm12)); } void RiscVEmitter::FMADD(int bits, RiscVReg rd, RiscVReg rs1, RiscVReg rs2, RiscVReg rs3, Round rm) { Write32(EncodeFR4(Opcode32::FMADD, rd, (Funct3)rm, rs1, rs2, BitsToFunct2(bits), rs3)); } void RiscVEmitter::FMSUB(int bits, RiscVReg rd, RiscVReg rs1, RiscVReg rs2, RiscVReg rs3, Round rm) { Write32(EncodeFR4(Opcode32::FMSUB, rd, (Funct3)rm, rs1, rs2, BitsToFunct2(bits), rs3)); } void RiscVEmitter::FNMSUB(int bits, RiscVReg rd, RiscVReg rs1, RiscVReg rs2, RiscVReg rs3, Round rm) { Write32(EncodeFR4(Opcode32::FNMSUB, rd, (Funct3)rm, rs1, rs2, BitsToFunct2(bits), rs3)); } void RiscVEmitter::FNMADD(int bits, RiscVReg rd, RiscVReg rs1, RiscVReg rs2, RiscVReg rs3, Round rm) { Write32(EncodeFR4(Opcode32::FNMADD, rd, (Funct3)rm, rs1, rs2, BitsToFunct2(bits), rs3)); } void RiscVEmitter::FADD(int bits, RiscVReg rd, RiscVReg rs1, RiscVReg rs2, Round rm) { Write32(EncodeFR(Opcode32::OP_FP, rd, (Funct3)rm, rs1, rs2, BitsToFunct2(bits), Funct5::FADD)); } void RiscVEmitter::FSUB(int bits, RiscVReg rd, RiscVReg rs1, RiscVReg rs2, Round rm) { Write32(EncodeFR(Opcode32::OP_FP, rd, (Funct3)rm, rs1, rs2, BitsToFunct2(bits), Funct5::FSUB)); } void RiscVEmitter::FMUL(int bits, RiscVReg rd, RiscVReg rs1, RiscVReg rs2, Round rm) { Write32(EncodeFR(Opcode32::OP_FP, rd, (Funct3)rm, rs1, rs2, BitsToFunct2(bits), Funct5::FMUL)); } void RiscVEmitter::FDIV(int bits, RiscVReg rd, RiscVReg rs1, RiscVReg rs2, Round rm) { Write32(EncodeFR(Opcode32::OP_FP, rd, (Funct3)rm, rs1, rs2, BitsToFunct2(bits), Funct5::FDIV)); } void RiscVEmitter::FSQRT(int bits, RiscVReg rd, RiscVReg rs1, Round rm) { Write32(EncodeFR(Opcode32::OP_FP, rd, (Funct3)rm, rs1, F0, BitsToFunct2(bits), Funct5::FSQRT)); } void RiscVEmitter::FSGNJ(int bits, RiscVReg rd, RiscVReg rs1, RiscVReg rs2) { Write32(EncodeFR(Opcode32::OP_FP, rd, Funct3::FSGNJ, rs1, rs2, BitsToFunct2(bits), Funct5::FSGNJ)); } void RiscVEmitter::FSGNJN(int bits, RiscVReg rd, RiscVReg rs1, RiscVReg rs2) { Write32(EncodeFR(Opcode32::OP_FP, rd, Funct3::FSGNJN, rs1, rs2, BitsToFunct2(bits), Funct5::FSGNJ)); } void RiscVEmitter::FSGNJX(int bits, RiscVReg rd, RiscVReg rs1, RiscVReg rs2) { Write32(EncodeFR(Opcode32::OP_FP, rd, Funct3::FSGNJX, rs1, rs2, BitsToFunct2(bits), Funct5::FSGNJ)); } void RiscVEmitter::FMIN(int bits, RiscVReg rd, RiscVReg rs1, RiscVReg rs2) { Write32(EncodeFR(Opcode32::OP_FP, rd, Funct3::FMIN, rs1, rs2, BitsToFunct2(bits), Funct5::FMINMAX)); } void RiscVEmitter::FMAX(int bits, RiscVReg rd, RiscVReg rs1, RiscVReg rs2) { Write32(EncodeFR(Opcode32::OP_FP, rd, Funct3::FMAX, rs1, rs2, BitsToFunct2(bits), Funct5::FMINMAX)); } void RiscVEmitter::FCVT(FConv to, FConv from, RiscVReg rd, RiscVReg rs1, Round rm) { int floatBits = std::max(FConvToFloatBits(from), FConvToFloatBits(to)); int integerBits = std::max(FConvToIntegerBits(from), FConvToIntegerBits(to)); _assert_msg_(floatBits > 0, "FCVT can't be used with only GPRs"); _assert_msg_(integerBits <= BitsSupported(), "FCVT for %d integer bits, only %d supported", integerBits, BitsSupported()); _assert_msg_(floatBits <= FloatBitsSupported(), "FCVT for %d float bits, only %d supported", floatBits, FloatBitsSupported()); if (integerBits == 0) { // Convert between float widths. Funct2 fromFmt = BitsToFunct2(FConvToFloatBits(from), true); Funct2 toFmt = BitsToFunct2(FConvToFloatBits(to), true); if (FConvToFloatBits(to) > FConvToFloatBits(from)) { _assert_msg_(rm == Round::DYNAMIC || rm == Round::NEAREST_EVEN, "Invalid rounding mode for widening FCVT"); rm = Round::NEAREST_EVEN; } _assert_msg_(fromFmt != toFmt, "FCVT cannot convert to same float type"); Write32(EncodeR(Opcode32::OP_FP, rd, (Funct3)rm, rs1, (RiscVReg)fromFmt, toFmt, Funct5::FCVT_SZ)); } else { Funct5 funct5 = FConvToIntegerBits(to) == 0 ? Funct5::FCVT_FROMX : Funct5::FCVT_TOX; FConv integerFmt = FConvToIntegerBits(to) == 0 ? from : to; Funct2 floatFmt = BitsToFunct2(floatBits); _assert_msg_(((int)integerFmt & ~3) == 0, "Got wrong integer bits"); Write32(EncodeR(Opcode32::OP_FP, rd, (Funct3)rm, rs1, (RiscVReg)integerFmt, floatFmt, funct5)); } } void RiscVEmitter::FMV(FMv to, FMv from, RiscVReg rd, RiscVReg rs1) { int bits = 0; switch (to == FMv::X ? from : to) { case FMv::D: bits = 64; break; case FMv::W: bits = 32; break; case FMv::H: bits = 16; break; case FMv::X: bits = 0; break; } _assert_msg_(BitsSupported() >= bits && FloatBitsSupported() >= bits, "FMV cannot be used for %d bits, only %d/%d supported", bits, BitsSupported(), FloatBitsSupported()); _assert_msg_((to == FMv::X && from != FMv::X) || (to != FMv::X && from == FMv::X), "%s can only transfer between FPR/GPR", __func__); _assert_msg_(to == FMv::X ? IsGPR(rd) : IsFPR(rd), "%s rd of wrong type", __func__); _assert_msg_(from == FMv::X ? IsGPR(rs1) : IsFPR(rs1), "%s rs1 of wrong type", __func__); Funct5 funct5 = to == FMv::X ? Funct5::FMV_TOX : Funct5::FMV_FROMX; Write32(EncodeR(Opcode32::OP_FP, rd, Funct3::FMV, rs1, F0, BitsToFunct2(bits, true), funct5)); } void RiscVEmitter::FEQ(int bits, RiscVReg rd, RiscVReg rs1, RiscVReg rs2) { _assert_msg_(IsGPR(rd), "%s rd must be GPR", __func__); _assert_msg_(IsFPR(rs1), "%s rs1 must be FPR", __func__); _assert_msg_(IsFPR(rs2), "%s rs2 must be FPR", __func__); Write32(EncodeR(Opcode32::OP_FP, rd, Funct3::FEQ, rs1, rs2, BitsToFunct2(bits), Funct5::FCMP)); } void RiscVEmitter::FLT(int bits, RiscVReg rd, RiscVReg rs1, RiscVReg rs2) { _assert_msg_(IsGPR(rd), "%s rd must be GPR", __func__); _assert_msg_(IsFPR(rs1), "%s rs1 must be FPR", __func__); _assert_msg_(IsFPR(rs2), "%s rs2 must be FPR", __func__); Write32(EncodeR(Opcode32::OP_FP, rd, Funct3::FLT, rs1, rs2, BitsToFunct2(bits), Funct5::FCMP)); } void RiscVEmitter::FLE(int bits, RiscVReg rd, RiscVReg rs1, RiscVReg rs2) { _assert_msg_(IsGPR(rd), "%s rd must be GPR", __func__); _assert_msg_(IsFPR(rs1), "%s rs1 must be FPR", __func__); _assert_msg_(IsFPR(rs2), "%s rs2 must be FPR", __func__); Write32(EncodeR(Opcode32::OP_FP, rd, Funct3::FLE, rs1, rs2, BitsToFunct2(bits), Funct5::FCMP)); } void RiscVEmitter::FCLASS(int bits, RiscVReg rd, RiscVReg rs1) { _assert_msg_(IsGPR(rd), "%s rd must be GPR", __func__); _assert_msg_(IsFPR(rs1), "%s rs1 must be FPR", __func__); Write32(EncodeR(Opcode32::OP_FP, rd, Funct3::FCLASS, rs1, F0, BitsToFunct2(bits), Funct5::FMV_TOX)); } static const uint32_t FLIvalues[32] = { 0xBF800000, // -1.0 0x00800000, // FLT_MIN (note: a bit special) 0x37800000, // pow(2, -16) 0x38000000, // pow(2, -15) 0x3B800000, // pow(2, -8) 0x3C000000, // pow(2, -7) 0x3D800000, // 0.0625 0x3E000000, // 0.125 0x3E800000, // 0.25 0x3EA00000, // 0.3125 0x3EC00000, // 0.375 0x3EE00000, // 0.4375 0x3F000000, // 0.5 0x3F200000, // 0.625 0x3F400000, // 0.75 0x3F600000, // 0.875 0x3F800000, // 1.0 0x3FA00000, // 1.25 0x3FC00000, // 1.5 0x3FE00000, // 1.75 0x40000000, // 2.0 0x40200000, // 2.5 0x40400000, // 3.0 0x40800000, // 4.0 0x41000000, // 8.0 0x41800000, // 16.0 0x43000000, // 128.0 0x43800000, // 256.0 0x47000000, // pow(2, 15) 0x47800000, // pow(2, 16) 0x7F800000, // INFINITY 0x7FC00000, // NAN }; static RiscVReg EncodeFLImm(int bits, double v) { float f = (float)v; int index = -1; for (size_t i = 0; i < ARRAY_SIZE(FLIvalues); ++i) { if (memcmp(&f, &FLIvalues[i], sizeof(float)) == 0) { index = (int)i; break; } } // For 16-bit, 2/3 are subnormal and 29 is not possible. Just avoid for now. if (index != -1 && index != 1 && (bits > 16 || (index != 2 && index != 3 && index != 29))) return (RiscVReg)index; if (bits == 64) { uint64_t dmin = 0x0010000000000000ULL; if (memcmp(&v, &dmin, 8) == 0) return F1; } else if (bits == 32 && index == 1) { return F1; } else if (bits == 16) { uint64_t hmin = 0x3F10000000000000ULL; if (memcmp(&v, &hmin, 8) == 0) return F1; } return INVALID_REG; } bool RiscVEmitter::CanFLI(int bits, double v) const { if (!SupportsFloatExtra()) return false; if (bits == 16 && !SupportsFloatHalf()) return false; if (bits > FloatBitsSupported()) return false; return EncodeFLImm(bits, v) != INVALID_REG; } bool RiscVEmitter::CanFLI(int bits, uint32_t pattern) const { float f; memcpy(&f, &pattern, sizeof(f)); return CanFLI(bits, f); } void RiscVEmitter::FLI(int bits, RiscVReg rd, double v) { _assert_msg_(SupportsFloatExtra(), "%s cannot be used without Zfa", __func__); _assert_msg_(bits <= FloatBitsSupported(), "FLI cannot be used for %d bits, only %d/%d supported", bits, BitsSupported(), FloatBitsSupported()); _assert_msg_(IsFPR(rd), "%s rd of wrong type", __func__); RiscVReg imm = EncodeFLImm(bits, v); _assert_msg_(imm != INVALID_REG, "FLI with unsupported constant %f for %d bits", v, bits); Write32(EncodeR(Opcode32::OP_FP, rd, Funct3::FMV, imm, F1, BitsToFunct2(bits, false), Funct5::FMV_FROMX)); } void RiscVEmitter::FLI(int bits, RiscVReg rd, uint32_t pattern) { float f; memcpy(&f, &pattern, sizeof(f)); FLI(bits, rd, f); } void RiscVEmitter::FMINM(int bits, RiscVReg rd, RiscVReg rs1, RiscVReg rs2) { _assert_msg_(SupportsFloatExtra(), "%s cannot be used without Zfa", __func__); Write32(EncodeFR(Opcode32::OP_FP, rd, Funct3::FMINM, rs1, rs2, BitsToFunct2(bits), Funct5::FMINMAX)); } void RiscVEmitter::FMAXM(int bits, RiscVReg rd, RiscVReg rs1, RiscVReg rs2) { _assert_msg_(SupportsFloatExtra(), "%s cannot be used without Zfa", __func__); Write32(EncodeFR(Opcode32::OP_FP, rd, Funct3::FMAXM, rs1, rs2, BitsToFunct2(bits), Funct5::FMINMAX)); } void RiscVEmitter::FROUND(int bits, RiscVReg rd, RiscVReg rs1, Round rm) { _assert_msg_(SupportsFloatExtra(), "%s cannot be used without Zfa", __func__); _assert_msg_(bits <= FloatBitsSupported(), "FROUND for %d float bits, only %d supported", bits, FloatBitsSupported()); _assert_msg_(IsFPR(rd), "%s rd of wrong type", __func__); _assert_msg_(IsFPR(rs1), "%s rs1 of wrong type", __func__); Funct2 toFmt = BitsToFunct2(bits, false); Write32(EncodeR(Opcode32::OP_FP, rd, (Funct3)rm, rs1, F4, toFmt, Funct5::FCVT_SZ)); } void RiscVEmitter::QuickFLI(int bits, RiscVReg rd, double v, RiscVReg scratchReg) { if (CanFLI(bits, v)) { FLI(bits, rd, v); } else if (bits == 64) { LI(scratchReg, v); FMV(FMv::D, FMv::X, rd, scratchReg); } else if (bits <= 32) { QuickFLI(32, rd, (float)v, scratchReg); } else { _assert_msg_(false, "Unsupported QuickFLI bits"); } } void RiscVEmitter::QuickFLI(int bits, RiscVReg rd, uint32_t pattern, RiscVReg scratchReg) { if (CanFLI(bits, pattern)) { FLI(bits, rd, pattern); } else if (bits == 32) { LI(scratchReg, (int32_t)pattern); FMV(FMv::W, FMv::X, rd, scratchReg); } else if (bits == 16) { LI(scratchReg, (int16_t)pattern); FMV(FMv::H, FMv::X, rd, scratchReg); } else { _assert_msg_(false, "Unsupported QuickFLI bits"); } } void RiscVEmitter::QuickFLI(int bits, RiscVReg rd, float v, RiscVReg scratchReg) { if (CanFLI(bits, v)) { FLI(bits, rd, v); } else if (bits == 64) { QuickFLI(32, rd, (double)v, scratchReg); } else if (bits == 32) { LI(scratchReg, v); FMV(FMv::D, FMv::X, rd, scratchReg); } else { _assert_msg_(false, "Unsupported QuickFLI bits"); } } void RiscVEmitter::CSRRW(RiscVReg rd, Csr csr, RiscVReg rs1) { _assert_msg_(SupportsZicsr(), "%s instruction not supported", __func__); _assert_msg_((u32)csr <= 0x00000FFF, "%s with invalid CSR number", __func__); Write32(EncodeGI(Opcode32::System, rd, Funct3::CSRRW, rs1, (Funct12)csr)); } void RiscVEmitter::CSRRS(RiscVReg rd, Csr csr, RiscVReg rs1) { _assert_msg_(SupportsZicsr(), "%s instruction not supported", __func__); _assert_msg_((u32)csr <= 0x00000FFF, "%s with invalid CSR number", __func__); Write32(EncodeGI(Opcode32::System, rd, Funct3::CSRRS, rs1, (Funct12)csr)); } void RiscVEmitter::CSRRC(RiscVReg rd, Csr csr, RiscVReg rs1) { _assert_msg_(SupportsZicsr(), "%s instruction not supported", __func__); _assert_msg_((u32)csr <= 0x00000FFF, "%s with invalid CSR number", __func__); Write32(EncodeGI(Opcode32::System, rd, Funct3::CSRRC, rs1, (Funct12)csr)); } void RiscVEmitter::CSRRWI(RiscVReg rd, Csr csr, u8 uimm5) { _assert_msg_(SupportsZicsr(), "%s instruction not supported", __func__); _assert_msg_((u32)csr <= 0x00000FFF, "%s with invalid CSR number", __func__); _assert_msg_((u32)uimm5 <= 0x1F, "%s can only specify lowest 5 bits", __func__); Write32(EncodeGI(Opcode32::System, rd, Funct3::CSRRWI, (RiscVReg)uimm5, (Funct12)csr)); } void RiscVEmitter::CSRRSI(RiscVReg rd, Csr csr, u8 uimm5) { _assert_msg_(SupportsZicsr(), "%s instruction not supported", __func__); _assert_msg_((u32)csr <= 0x00000FFF, "%s with invalid CSR number", __func__); _assert_msg_((u32)uimm5 <= 0x1F, "%s can only set lowest 5 bits", __func__); Write32(EncodeGI(Opcode32::System, rd, Funct3::CSRRSI, (RiscVReg)uimm5, (Funct12)csr)); } void RiscVEmitter::CSRRCI(RiscVReg rd, Csr csr, u8 uimm5) { _assert_msg_(SupportsZicsr(), "%s instruction not supported", __func__); _assert_msg_((u32)csr <= 0x00000FFF, "%s with invalid CSR number", __func__); _assert_msg_((u32)uimm5 <= 0x1F, "%s can only clear lowest 5 bits", __func__); Write32(EncodeGI(Opcode32::System, rd, Funct3::CSRRCI, (RiscVReg)uimm5, (Funct12)csr)); } void RiscVEmitter::VSETVLI(RiscVReg rd, RiscVReg rs1, VType vtype) { _assert_msg_(SupportsVector(), "%s instruction not supported", __func__); _assert_msg_((vtype.value & ~0xFF) == 0, "%s with invalid vtype", __func__); _assert_msg_(IsGPR(rd), "%s rd (VL) must be GPR", __func__); _assert_msg_(IsGPR(rs1), "%s rs1 (AVL) must be GPR", __func__); Write32(EncodeI(Opcode32::OP_V, rd, Funct3::OPCFG, rs1, (s32)vtype.value)); } void RiscVEmitter::VSETIVLI(RiscVReg rd, u8 uimm5, VType vtype) { _assert_msg_(SupportsVector(), "%s instruction not supported", __func__); _assert_msg_((vtype.value & ~0xFF) == 0, "%s with invalid vtype", __func__); _assert_msg_(IsGPR(rd), "%s rd (VL) must be GPR", __func__); _assert_msg_((u32)uimm5 <= 0x1F, "%s (AVL) can only set up to 31", __func__); s32 simm12 = 0xFFFFFC00 | vtype.value; Write32(EncodeI(Opcode32::OP_V, rd, Funct3::OPCFG, (RiscVReg)uimm5, (s32)vtype.value)); } void RiscVEmitter::VSETVL(RiscVReg rd, RiscVReg rs1, RiscVReg rs2) { _assert_msg_(SupportsVector(), "%s instruction not supported", __func__); _assert_msg_(IsGPR(rd), "%s rd (VL) must be GPR", __func__); _assert_msg_(IsGPR(rs1), "%s rs1 (AVL) must be GPR", __func__); _assert_msg_(IsGPR(rs2), "%s rs2 (vtype) must be GPR", __func__); Write32(EncodeI(Opcode32::OP_V, rd, Funct3::OPCFG, rs1, rs2)); } void RiscVEmitter::VLM_V(RiscVReg vd, RiscVReg rs1) { _assert_msg_(SupportsVector(), "%s instruction not supported", __func__); _assert_msg_(IsVPR(vd), "%s vd must be VPR", __func__); s32 simm12 = VecLSToSimm12(VLSUMop::MASK, VUseMask::NONE, VMop::UNIT, 8, 1); Write32(EncodeI(Opcode32::LOAD_FP, vd, Funct3::VLS_8, rs1, simm12)); } void RiscVEmitter::VLSEGE_V(int fields, int dataBits, RiscVReg vd, RiscVReg rs1, VUseMask vm) { _assert_msg_(SupportsVector(), "%s instruction not supported", __func__); _assert_msg_(IsVPR(vd), "%s vd must be VPR", __func__); _assert_msg_(vm != VUseMask::V0_T || vd != V0, "%s vd cannot overlap mask", __func__); _assert_msg_(IsGPR(rs1), "%s rs1 must be GPR", __func__); // Of course, if LMUL > 1, it could still be wrong, but this is a good basic check. _assert_msg_((int)DecodeReg(vd) + fields <= 32, "%s cannot access beyond V31", __func__); s32 simm12 = VecLSToSimm12(VLSUMop::ELEMS, vm, VMop::UNIT, dataBits, fields); Write32(EncodeI(Opcode32::LOAD_FP, vd, VecBitsToFunct3(dataBits), rs1, simm12)); } void RiscVEmitter::VLSSEGE_V(int fields, int dataBits, RiscVReg vd, RiscVReg rs1, RiscVReg rs2, VUseMask vm) { _assert_msg_(SupportsVector(), "%s instruction not supported", __func__); _assert_msg_(IsVPR(vd), "%s vd must be VPR", __func__); _assert_msg_(vm != VUseMask::V0_T || vd != V0, "%s vd cannot overlap mask", __func__); _assert_msg_(IsGPR(rs1), "%s rs1 (base) must be GPR", __func__); _assert_msg_(IsGPR(rs2), "%s rs2 (stride) must be GPR", __func__); _assert_msg_((int)DecodeReg(vd) + fields <= 32, "%s cannot access beyond V31", __func__); s32 simm12 = VecLSToSimm12(rs2, vm, VMop::STRIDE, dataBits, fields); Write32(EncodeI(Opcode32::LOAD_FP, vd, VecBitsToFunct3(dataBits), rs1, simm12)); } void RiscVEmitter::VLUXSEGEI_V(int fields, int indexBits, RiscVReg vd, RiscVReg rs1, RiscVReg vs2, VUseMask vm) { _assert_msg_(SupportsVector(), "%s instruction not supported", __func__); _assert_msg_(IsVPR(vd), "%s vd must be VPR", __func__); _assert_msg_(vm != VUseMask::V0_T || vd != V0, "%s vd cannot overlap mask", __func__); _assert_msg_(IsGPR(rs1), "%s rs1 (base) must be GPR", __func__); _assert_msg_(IsVPR(vs2), "%s vs2 (stride) must be VPR", __func__); _assert_msg_((int)DecodeReg(vd) + fields <= 32, "%s cannot access beyond V31", __func__); s32 simm12 = VecLSToSimm12(vs2, vm, VMop::INDEXU, indexBits, fields); Write32(EncodeI(Opcode32::LOAD_FP, vd, VecBitsToFunct3(indexBits), rs1, simm12)); } void RiscVEmitter::VLOXSEGEI_V(int fields, int indexBits, RiscVReg vd, RiscVReg rs1, RiscVReg vs2, VUseMask vm) { _assert_msg_(SupportsVector(), "%s instruction not supported", __func__); _assert_msg_(IsVPR(vd), "%s vd must be VPR", __func__); _assert_msg_(vm != VUseMask::V0_T || vd != V0, "%s vd cannot overlap mask", __func__); _assert_msg_(IsGPR(rs1), "%s rs1 (base) must be GPR", __func__); _assert_msg_(IsVPR(vs2), "%s vs2 (stride) must be VPR", __func__); _assert_msg_((int)DecodeReg(vd) + fields <= 32, "%s cannot access beyond V31", __func__); s32 simm12 = VecLSToSimm12(vs2, vm, VMop::INDEXO, indexBits, fields); Write32(EncodeI(Opcode32::LOAD_FP, vd, VecBitsToFunct3(indexBits), rs1, simm12)); } void RiscVEmitter::VLSEGEFF_V(int fields, int dataBits, RiscVReg vd, RiscVReg rs1, VUseMask vm) { _assert_msg_(SupportsVector(), "%s instruction not supported", __func__); _assert_msg_(IsVPR(vd), "%s vd must be VPR", __func__); _assert_msg_(vm != VUseMask::V0_T || vd != V0, "%s vd cannot overlap mask", __func__); _assert_msg_(IsGPR(rs1), "%s rs1 must be GPR", __func__); s32 simm12 = VecLSToSimm12(VLSUMop::ELEMS_LOAD_FF, vm, VMop::UNIT, dataBits, fields); Write32(EncodeI(Opcode32::LOAD_FP, vd, VecBitsToFunct3(dataBits), rs1, simm12)); } void RiscVEmitter::VLR_V(int regs, int hintBits, RiscVReg vd, RiscVReg rs1) { _assert_msg_(SupportsVector(), "%s instruction not supported", __func__); _assert_msg_(IsVPR(vd), "%s vd must be VPR", __func__); _assert_msg_(IsGPR(rs1), "%s rs1 must be GPR", __func__); _assert_msg_(regs == 1 || regs == 2 || regs == 4 || regs == 8, "%s can only access count=1/2/4/8 at a time, not %d", __func__, regs); _assert_msg_(regs == 1 || ((int)DecodeReg(vd) & (regs - 1)) == 0, "%s base reg must align to reg count", __func__); _assert_msg_((int)DecodeReg(vd) + regs <= 32, "%s cannot access beyond V31", __func__); s32 simm12 = VecLSToSimm12(VLSUMop::REG, VUseMask::NONE, VMop::UNIT, hintBits, regs); Write32(EncodeI(Opcode32::LOAD_FP, vd, VecBitsToFunct3(hintBits), rs1, simm12)); } void RiscVEmitter::VSM_V(RiscVReg vs3, RiscVReg rs1) { _assert_msg_(SupportsVector(), "%s instruction not supported", __func__); _assert_msg_(IsVPR(vs3), "%s vs3 must be VPR", __func__); s32 simm12 = VecLSToSimm12(VLSUMop::MASK, VUseMask::NONE, VMop::UNIT, 8, 1); Write32(EncodeI(Opcode32::STORE_FP, vs3, Funct3::VLS_8, rs1, simm12)); } void RiscVEmitter::VSSEGE_V(int fields, int dataBits, RiscVReg vs3, RiscVReg rs1, VUseMask vm) { _assert_msg_(SupportsVector(), "%s instruction not supported", __func__); _assert_msg_(IsVPR(vs3), "%s vs3 must be VPR", __func__); _assert_msg_(IsGPR(rs1), "%s rs1 must be GPR", __func__); _assert_msg_((int)DecodeReg(vs3) + fields <= 32, "%s cannot access beyond V31", __func__); s32 simm12 = VecLSToSimm12(VLSUMop::ELEMS, vm, VMop::UNIT, dataBits, fields); Write32(EncodeI(Opcode32::STORE_FP, vs3, VecBitsToFunct3(dataBits), rs1, simm12)); } void RiscVEmitter::VSSSEGE_V(int fields, int dataBits, RiscVReg vs3, RiscVReg rs1, RiscVReg rs2, VUseMask vm) { _assert_msg_(SupportsVector(), "%s instruction not supported", __func__); _assert_msg_(IsVPR(vs3), "%s vs3 must be VPR", __func__); _assert_msg_(IsGPR(rs1), "%s rs1 (base) must be GPR", __func__); _assert_msg_(IsGPR(rs2), "%s rs2 (stride) must be GPR", __func__); _assert_msg_((int)DecodeReg(vs3) + fields <= 32, "%s cannot access beyond V31", __func__); s32 simm12 = VecLSToSimm12(rs2, vm, VMop::STRIDE, dataBits, fields); Write32(EncodeI(Opcode32::STORE_FP, vs3, VecBitsToFunct3(dataBits), rs1, simm12)); } void RiscVEmitter::VSUXSEGEI_V(int fields, int indexBits, RiscVReg vs3, RiscVReg rs1, RiscVReg vs2, VUseMask vm) { _assert_msg_(SupportsVector(), "%s instruction not supported", __func__); _assert_msg_(IsVPR(vs3), "%s vs3 must be VPR", __func__); _assert_msg_(IsGPR(rs1), "%s rs1 (base) must be GPR", __func__); _assert_msg_(IsVPR(vs2), "%s vs2 (stride) must be VPR", __func__); _assert_msg_((int)DecodeReg(vs3) + fields <= 32, "%s cannot access beyond V31", __func__); s32 simm12 = VecLSToSimm12(vs2, vm, VMop::INDEXU, indexBits, fields); Write32(EncodeI(Opcode32::STORE_FP, vs3, VecBitsToFunct3(indexBits), rs1, simm12)); } void RiscVEmitter::VSOXSEGEI_V(int fields, int indexBits, RiscVReg vs3, RiscVReg rs1, RiscVReg vs2, VUseMask vm) { _assert_msg_(SupportsVector(), "%s instruction not supported", __func__); _assert_msg_(IsVPR(vs3), "%s vs3 must be VPR", __func__); _assert_msg_(IsGPR(rs1), "%s rs1 (base) must be GPR", __func__); _assert_msg_(IsVPR(vs2), "%s vs2 (stride) must be VPR", __func__); _assert_msg_((int)DecodeReg(vs3) + fields <= 32, "%s cannot access beyond V31", __func__); s32 simm12 = VecLSToSimm12(vs2, vm, VMop::INDEXO, indexBits, fields); Write32(EncodeI(Opcode32::STORE_FP, vs3, VecBitsToFunct3(indexBits), rs1, simm12)); } void RiscVEmitter::VSR_V(int regs, RiscVReg vs3, RiscVReg rs1) { _assert_msg_(SupportsVector(), "%s instruction not supported", __func__); _assert_msg_(IsVPR(vs3), "%s vs3 must be VPR", __func__); _assert_msg_(IsGPR(rs1), "%s rs1 must be GPR", __func__); _assert_msg_(regs == 1 || regs == 2 || regs == 4 || regs == 8, "%s can only access count=1/2/4/8 at a time, not %d", __func__, regs); _assert_msg_(regs == 1 || ((int)DecodeReg(vs3) & (regs - 1)) == 0, "%s base reg must align to reg count", __func__); _assert_msg_((int)DecodeReg(vs3) + regs <= 32, "%s cannot access beyond V31", __func__); s32 simm12 = VecLSToSimm12(VLSUMop::REG, VUseMask::NONE, VMop::UNIT, 8, regs); Write32(EncodeI(Opcode32::STORE_FP, vs3, VecBitsToFunct3(8), rs1, simm12)); } void RiscVEmitter::VADD_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeIVV(vd, vs1, vs2, vm, Funct6::VADD)); } void RiscVEmitter::VADD_VX(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeIVX(vd, rs1, vs2, vm, Funct6::VADD)); } void RiscVEmitter::VADD_VI(RiscVReg vd, RiscVReg vs2, s8 simm5, VUseMask vm) { Write32(EncodeIVI(vd, simm5, vs2, vm, Funct6::VADD)); } void RiscVEmitter::VSUB_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeIVV(vd, vs1, vs2, vm, Funct6::VSUB)); } void RiscVEmitter::VSUB_VX(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeIVX(vd, rs1, vs2, vm, Funct6::VSUB)); } void RiscVEmitter::VRSUB_VX(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeIVX(vd, rs1, vs2, vm, Funct6::VRSUB)); } void RiscVEmitter::VRSUB_VI(RiscVReg vd, RiscVReg vs2, s8 simm5, VUseMask vm) { if (simm5 == 0) { // Normalize, this is the preferred form. VRSUB_VX(vd, vs2, X0, vm); return; } Write32(EncodeIVI(vd, simm5, vs2, vm, Funct6::VRSUB)); } void RiscVEmitter::VWADDU_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeMVV(vd, vs1, vs2, vm, Funct6::VWADDU)); } void RiscVEmitter::VWADDU_VX(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeMVX(vd, rs1, vs2, vm, Funct6::VWADDU)); } void RiscVEmitter::VWSUBU_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeMVV(vd, vs1, vs2, vm, Funct6::VWSUBU)); } void RiscVEmitter::VWSUBU_VX(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeMVX(vd, rs1, vs2, vm, Funct6::VWSUBU)); } void RiscVEmitter::VWADD_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeMVV(vd, vs1, vs2, vm, Funct6::VWADD)); } void RiscVEmitter::VWADD_VX(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeMVX(vd, rs1, vs2, vm, Funct6::VWADD)); } void RiscVEmitter::VWSUB_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeMVV(vd, vs1, vs2, vm, Funct6::VWSUB)); } void RiscVEmitter::VWSUB_VX(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeMVX(vd, rs1, vs2, vm, Funct6::VWSUB)); } void RiscVEmitter::VWADDU_WV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeMVV(vd, vs1, vs2, vm, Funct6::VWADDU_W)); } void RiscVEmitter::VWADDU_WX(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeMVX(vd, rs1, vs2, vm, Funct6::VWADDU_W)); } void RiscVEmitter::VWSUBU_WV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeMVV(vd, vs1, vs2, vm, Funct6::VWSUBU_W)); } void RiscVEmitter::VWSUBU_WX(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeMVX(vd, rs1, vs2, vm, Funct6::VWSUBU_W)); } void RiscVEmitter::VWADD_WV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeMVV(vd, vs1, vs2, vm, Funct6::VWADD_W)); } void RiscVEmitter::VWADD_WX(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeMVX(vd, rs1, vs2, vm, Funct6::VWADD_W)); } void RiscVEmitter::VWSUB_WV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeMVV(vd, vs1, vs2, vm, Funct6::VWSUB_W)); } void RiscVEmitter::VWSUB_WX(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeMVX(vd, rs1, vs2, vm, Funct6::VWSUB_W)); } void RiscVEmitter::VZEXT_V(int frac, RiscVReg vd, RiscVReg vs2, VUseMask vm) { Write32(EncodeMVX(vd, (RiscVReg)VExtFracToFunct5(frac, false), vs2, vm, Funct6::VFXUNARY0)); } void RiscVEmitter::VSEXT_V(int frac, RiscVReg vd, RiscVReg vs2, VUseMask vm) { Write32(EncodeMVX(vd, (RiscVReg)VExtFracToFunct5(frac, true), vs2, vm, Funct6::VFXUNARY0)); } void RiscVEmitter::VADC_VVM(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, RiscVReg vmask) { _assert_msg_(vmask == V0, "vmask must be V0"); Write32(EncodeIVV(vd, vs1, vs2, VUseMask::V0_T, Funct6::VADC)); } void RiscVEmitter::VADC_VXM(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, RiscVReg vmask) { _assert_msg_(vmask == V0, "vmask must be V0"); Write32(EncodeIVX(vd, rs1, vs2, VUseMask::V0_T, Funct6::VADC)); } void RiscVEmitter::VADC_VIM(RiscVReg vd, RiscVReg vs2, s8 simm5, RiscVReg vmask) { _assert_msg_(vmask == V0, "vmask must be V0"); Write32(EncodeIVI(vd, simm5, vs2, VUseMask::V0_T, Funct6::VADC)); } void RiscVEmitter::VMADC_VVM(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, RiscVReg vmask) { _assert_msg_(vmask == V0, "vmask must be V0"); Write32(EncodeIVV(vd, vs1, vs2, VUseMask::V0_T, Funct6::VMADC)); } void RiscVEmitter::VMADC_VXM(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, RiscVReg vmask) { _assert_msg_(vmask == V0, "vmask must be V0"); Write32(EncodeIVX(vd, rs1, vs2, VUseMask::V0_T, Funct6::VMADC)); } void RiscVEmitter::VMADC_VIM(RiscVReg vd, RiscVReg vs2, s8 simm5, RiscVReg vmask) { _assert_msg_(vmask == V0, "vmask must be V0"); Write32(EncodeIVI(vd, simm5, vs2, VUseMask::V0_T, Funct6::VMADC)); } void RiscVEmitter::VMADC_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1) { Write32(EncodeIVV(vd, vs1, vs2, VUseMask::NONE, Funct6::VMADC)); } void RiscVEmitter::VMADC_VX(RiscVReg vd, RiscVReg vs2, RiscVReg rs1) { Write32(EncodeIVX(vd, rs1, vs2, VUseMask::NONE, Funct6::VMADC)); } void RiscVEmitter::VMADC_VI(RiscVReg vd, RiscVReg vs2, s8 simm5) { Write32(EncodeIVI(vd, simm5, vs2, VUseMask::NONE, Funct6::VMADC)); } void RiscVEmitter::VSBC_VVM(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, RiscVReg vmask) { _assert_msg_(vmask == V0, "vmask must be V0"); Write32(EncodeIVV(vd, vs1, vs2, VUseMask::V0_T, Funct6::VSBC)); } void RiscVEmitter::VSBC_VXM(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, RiscVReg vmask) { _assert_msg_(vmask == V0, "vmask must be V0"); Write32(EncodeIVX(vd, rs1, vs2, VUseMask::V0_T, Funct6::VSBC)); } void RiscVEmitter::VMSBC_VVM(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, RiscVReg vmask) { _assert_msg_(vmask == V0, "vmask must be V0"); Write32(EncodeIVV(vd, vs1, vs2, VUseMask::V0_T, Funct6::VMSBC)); } void RiscVEmitter::VMSBC_VXM(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, RiscVReg vmask) { _assert_msg_(vmask == V0, "vmask must be V0"); Write32(EncodeIVX(vd, rs1, vs2, VUseMask::V0_T, Funct6::VMSBC)); } void RiscVEmitter::VMSBC_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1) { Write32(EncodeIVV(vd, vs1, vs2, VUseMask::NONE, Funct6::VMSBC)); } void RiscVEmitter::VMSBC_VX(RiscVReg vd, RiscVReg vs2, RiscVReg rs1) { Write32(EncodeIVX(vd, rs1, vs2, VUseMask::NONE, Funct6::VMSBC)); } void RiscVEmitter::VAND_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeIVV(vd, vs1, vs2, vm, Funct6::VAND)); } void RiscVEmitter::VAND_VX(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeIVX(vd, rs1, vs2, vm, Funct6::VAND)); } void RiscVEmitter::VAND_VI(RiscVReg vd, RiscVReg vs2, s8 simm5, VUseMask vm) { Write32(EncodeIVI(vd, simm5, vs2, vm, Funct6::VAND)); } void RiscVEmitter::VOR_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeIVV(vd, vs1, vs2, vm, Funct6::VOR)); } void RiscVEmitter::VOR_VX(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeIVX(vd, rs1, vs2, vm, Funct6::VOR)); } void RiscVEmitter::VOR_VI(RiscVReg vd, RiscVReg vs2, s8 simm5, VUseMask vm) { Write32(EncodeIVI(vd, simm5, vs2, vm, Funct6::VOR)); } void RiscVEmitter::VXOR_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeIVV(vd, vs1, vs2, vm, Funct6::VXOR)); } void RiscVEmitter::VXOR_VX(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeIVX(vd, rs1, vs2, vm, Funct6::VXOR)); } void RiscVEmitter::VXOR_VI(RiscVReg vd, RiscVReg vs2, s8 simm5, VUseMask vm) { Write32(EncodeIVI(vd, simm5, vs2, vm, Funct6::VXOR)); } void RiscVEmitter::VSLL_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeIVV(vd, vs1, vs2, vm, Funct6::VSLL)); } void RiscVEmitter::VSLL_VX(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeIVX(vd, rs1, vs2, vm, Funct6::VSLL)); } void RiscVEmitter::VSLL_VI(RiscVReg vd, RiscVReg vs2, u8 uimm5, VUseMask vm) { _assert_msg_((uimm5 & 0x1F) == uimm5, "%s shift must be <= 0x1F", __func__); Write32(EncodeIVI(vd, SignReduce32(uimm5, 5), vs2, vm, Funct6::VSLL)); } void RiscVEmitter::VSRL_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeIVV(vd, vs1, vs2, vm, Funct6::VSRL)); } void RiscVEmitter::VSRL_VX(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeIVX(vd, rs1, vs2, vm, Funct6::VSRL)); } void RiscVEmitter::VSRL_VI(RiscVReg vd, RiscVReg vs2, u8 uimm5, VUseMask vm) { _assert_msg_((uimm5 & 0x1F) == uimm5, "%s shift must be <= 0x1F", __func__); Write32(EncodeIVI(vd, SignReduce32(uimm5, 5), vs2, vm, Funct6::VSRL)); } void RiscVEmitter::VSRA_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeIVV(vd, vs1, vs2, vm, Funct6::VSRA)); } void RiscVEmitter::VSRA_VX(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeIVX(vd, rs1, vs2, vm, Funct6::VSRA)); } void RiscVEmitter::VSRA_VI(RiscVReg vd, RiscVReg vs2, u8 uimm5, VUseMask vm) { _assert_msg_((uimm5 & 0x1F) == uimm5, "%s shift must be <= 0x1F", __func__); Write32(EncodeIVI(vd, SignReduce32(uimm5, 5), vs2, vm, Funct6::VSRA)); } void RiscVEmitter::VNSRL_WV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeIVV(vd, vs1, vs2, vm, Funct6::VNSRL)); } void RiscVEmitter::VNSRL_WX(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeIVX(vd, rs1, vs2, vm, Funct6::VNSRL)); } void RiscVEmitter::VNSRL_WI(RiscVReg vd, RiscVReg vs2, u8 uimm5, VUseMask vm) { _assert_msg_((uimm5 & 0x1F) == uimm5, "%s shift must be <= 0x1F", __func__); Write32(EncodeIVI(vd, SignReduce32(uimm5, 5), vs2, vm, Funct6::VNSRL)); } void RiscVEmitter::VNSRA_WV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeIVV(vd, vs1, vs2, vm, Funct6::VNSRA)); } void RiscVEmitter::VNSRA_WX(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeIVX(vd, rs1, vs2, vm, Funct6::VNSRA)); } void RiscVEmitter::VNSRA_WI(RiscVReg vd, RiscVReg vs2, u8 uimm5, VUseMask vm) { _assert_msg_((uimm5 & 0x1F) == uimm5, "%s shift must be <= 0x1F", __func__); Write32(EncodeIVI(vd, SignReduce32(uimm5, 5), vs2, vm, Funct6::VNSRA)); } void RiscVEmitter::VMSEQ_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeIVV_M(vd, vs1, vs2, vm, Funct6::VMSEQ)); } void RiscVEmitter::VMSNE_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeIVV_M(vd, vs1, vs2, vm, Funct6::VMSNE)); } void RiscVEmitter::VMSLTU_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeIVV_M(vd, vs1, vs2, vm, Funct6::VMSLTU)); } void RiscVEmitter::VMSLT_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeIVV_M(vd, vs1, vs2, vm, Funct6::VMSLT)); } void RiscVEmitter::VMSLEU_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeIVV_M(vd, vs1, vs2, vm, Funct6::VMSLEU)); } void RiscVEmitter::VMSLE_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeIVV_M(vd, vs1, vs2, vm, Funct6::VMSLE)); } void RiscVEmitter::VMSEQ_VX(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeIVX_M(vd, rs1, vs2, vm, Funct6::VMSEQ)); } void RiscVEmitter::VMSNE_VX(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeIVX_M(vd, rs1, vs2, vm, Funct6::VMSNE)); } void RiscVEmitter::VMSLTU_VX(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeIVX_M(vd, rs1, vs2, vm, Funct6::VMSLTU)); } void RiscVEmitter::VMSLT_VX(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeIVX_M(vd, rs1, vs2, vm, Funct6::VMSLT)); } void RiscVEmitter::VMSLEU_VX(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeIVX_M(vd, rs1, vs2, vm, Funct6::VMSLEU)); } void RiscVEmitter::VMSLE_VX(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeIVX_M(vd, rs1, vs2, vm, Funct6::VMSLE)); } void RiscVEmitter::VMSGTU_VX(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeIVX_M(vd, rs1, vs2, vm, Funct6::VMSGTU)); } void RiscVEmitter::VMSGT_VX(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeIVX_M(vd, rs1, vs2, vm, Funct6::VMSGT)); } void RiscVEmitter::VMSEQ_VI(RiscVReg vd, RiscVReg vs2, s8 simm5, VUseMask vm) { Write32(EncodeIVI_M(vd, simm5, vs2, vm, Funct6::VMSEQ)); } void RiscVEmitter::VMSNE_VI(RiscVReg vd, RiscVReg vs2, s8 simm5, VUseMask vm) { Write32(EncodeIVI_M(vd, simm5, vs2, vm, Funct6::VMSNE)); } void RiscVEmitter::VMSLEU_VI(RiscVReg vd, RiscVReg vs2, s8 simm5, VUseMask vm) { Write32(EncodeIVI_M(vd, simm5, vs2, vm, Funct6::VMSLEU)); } void RiscVEmitter::VMSLE_VI(RiscVReg vd, RiscVReg vs2, s8 simm5, VUseMask vm) { Write32(EncodeIVI_M(vd, simm5, vs2, vm, Funct6::VMSLE)); } void RiscVEmitter::VMSGTU_VI(RiscVReg vd, RiscVReg vs2, s8 simm5, VUseMask vm) { Write32(EncodeIVI_M(vd, simm5, vs2, vm, Funct6::VMSGTU)); } void RiscVEmitter::VMSGT_VI(RiscVReg vd, RiscVReg vs2, s8 simm5, VUseMask vm) { Write32(EncodeIVI_M(vd, simm5, vs2, vm, Funct6::VMSGT)); } void RiscVEmitter::VMINU_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeIVV(vd, vs1, vs2, vm, Funct6::VMINU)); } void RiscVEmitter::VMINU_VX(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeIVV(vd, rs1, vs2, vm, Funct6::VMINU)); } void RiscVEmitter::VMIN_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeIVV(vd, vs1, vs2, vm, Funct6::VMIN)); } void RiscVEmitter::VMIN_VX(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeIVV(vd, rs1, vs2, vm, Funct6::VMIN)); } void RiscVEmitter::VMAXU_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeIVV(vd, vs1, vs2, vm, Funct6::VMAXU)); } void RiscVEmitter::VMAXU_VX(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeIVV(vd, rs1, vs2, vm, Funct6::VMAXU)); } void RiscVEmitter::VMAX_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeIVV(vd, vs1, vs2, vm, Funct6::VMAX)); } void RiscVEmitter::VMAX_VX(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeIVV(vd, rs1, vs2, vm, Funct6::VMAX)); } void RiscVEmitter::VMUL_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeMVV(vd, vs1, vs2, vm, Funct6::VMUL)); } void RiscVEmitter::VMUL_VX(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeMVX(vd, rs1, vs2, vm, Funct6::VMUL)); } void RiscVEmitter::VMULH_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeMVV(vd, vs1, vs2, vm, Funct6::VMULH)); } void RiscVEmitter::VMULH_VX(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeMVX(vd, rs1, vs2, vm, Funct6::VMULH)); } void RiscVEmitter::VMULHU_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeMVV(vd, vs1, vs2, vm, Funct6::VMULHU)); } void RiscVEmitter::VMULHU_VX(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeMVX(vd, rs1, vs2, vm, Funct6::VMULHU)); } void RiscVEmitter::VMULHSU_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeMVV(vd, vs1, vs2, vm, Funct6::VMULHSU)); } void RiscVEmitter::VMULHSU_VX(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeMVX(vd, rs1, vs2, vm, Funct6::VMULHSU)); } void RiscVEmitter::VDIVU_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeMVV(vd, vs1, vs2, vm, Funct6::VDIVU)); } void RiscVEmitter::VDIVU_VX(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeMVX(vd, rs1, vs2, vm, Funct6::VDIVU)); } void RiscVEmitter::VDIV_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeMVV(vd, vs1, vs2, vm, Funct6::VDIV)); } void RiscVEmitter::VDIV_VX(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeMVX(vd, rs1, vs2, vm, Funct6::VDIV)); } void RiscVEmitter::VREMU_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeMVV(vd, vs1, vs2, vm, Funct6::VREMU)); } void RiscVEmitter::VREMU_VX(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeMVX(vd, rs1, vs2, vm, Funct6::VREMU)); } void RiscVEmitter::VREM_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeMVV(vd, vs1, vs2, vm, Funct6::VREM)); } void RiscVEmitter::VREM_VX(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeMVX(vd, rs1, vs2, vm, Funct6::VREM)); } void RiscVEmitter::VWMUL_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeMVV(vd, vs1, vs2, vm, Funct6::VWMUL)); } void RiscVEmitter::VWMUL_VX(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeMVX(vd, rs1, vs2, vm, Funct6::VWMUL)); } void RiscVEmitter::VWMULU_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeMVV(vd, vs1, vs2, vm, Funct6::VWMULU)); } void RiscVEmitter::VWMULU_VX(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeMVX(vd, rs1, vs2, vm, Funct6::VWMULU)); } void RiscVEmitter::VWMULSU_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeMVV(vd, vs1, vs2, vm, Funct6::VWMULSU)); } void RiscVEmitter::VWMULSU_VX(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeMVX(vd, rs1, vs2, vm, Funct6::VWMULSU)); } void RiscVEmitter::VMACC_VV(RiscVReg vd, RiscVReg vs1, RiscVReg vs2, VUseMask vm) { Write32(EncodeMVV(vd, vs1, vs2, vm, Funct6::VMACC)); } void RiscVEmitter::VMACC_VX(RiscVReg vd, RiscVReg rs1, RiscVReg vs2, VUseMask vm) { Write32(EncodeMVX(vd, rs1, vs2, vm, Funct6::VMACC)); } void RiscVEmitter::VNMSAC_VV(RiscVReg vd, RiscVReg vs1, RiscVReg vs2, VUseMask vm) { Write32(EncodeMVV(vd, vs1, vs2, vm, Funct6::VNMSAC)); } void RiscVEmitter::VNMSAC_VX(RiscVReg vd, RiscVReg rs1, RiscVReg vs2, VUseMask vm) { Write32(EncodeMVX(vd, rs1, vs2, vm, Funct6::VNMSAC)); } void RiscVEmitter::VMADD_VV(RiscVReg vd, RiscVReg vs1, RiscVReg vs2, VUseMask vm) { Write32(EncodeMVV(vd, vs1, vs2, vm, Funct6::VMADD)); } void RiscVEmitter::VMADD_VX(RiscVReg vd, RiscVReg rs1, RiscVReg vs2, VUseMask vm) { Write32(EncodeMVX(vd, rs1, vs2, vm, Funct6::VMADD)); } void RiscVEmitter::VNMSUB_VV(RiscVReg vd, RiscVReg vs1, RiscVReg vs2, VUseMask vm) { Write32(EncodeMVV(vd, vs1, vs2, vm, Funct6::VNMSUB)); } void RiscVEmitter::VNMSUB_VX(RiscVReg vd, RiscVReg rs1, RiscVReg vs2, VUseMask vm) { Write32(EncodeMVX(vd, rs1, vs2, vm, Funct6::VNMSUB)); } void RiscVEmitter::VWMACCU_VV(RiscVReg vd, RiscVReg vs1, RiscVReg vs2, VUseMask vm) { Write32(EncodeMVV(vd, vs1, vs2, vm, Funct6::VWMACCU)); } void RiscVEmitter::VWMACCU_VX(RiscVReg vd, RiscVReg rs1, RiscVReg vs2, VUseMask vm) { Write32(EncodeMVX(vd, rs1, vs2, vm, Funct6::VWMACCU)); } void RiscVEmitter::VWMACC_VV(RiscVReg vd, RiscVReg vs1, RiscVReg vs2, VUseMask vm) { Write32(EncodeMVV(vd, vs1, vs2, vm, Funct6::VWMACC)); } void RiscVEmitter::VWMACC_VX(RiscVReg vd, RiscVReg rs1, RiscVReg vs2, VUseMask vm) { Write32(EncodeMVX(vd, rs1, vs2, vm, Funct6::VWMACC)); } void RiscVEmitter::VWMACCSU_VV(RiscVReg vd, RiscVReg vs1, RiscVReg vs2, VUseMask vm) { Write32(EncodeMVV(vd, vs1, vs2, vm, Funct6::VWMACCSU)); } void RiscVEmitter::VWMACCSU_VX(RiscVReg vd, RiscVReg rs1, RiscVReg vs2, VUseMask vm) { Write32(EncodeMVX(vd, rs1, vs2, vm, Funct6::VWMACCSU)); } void RiscVEmitter::VWMACCUS_VX(RiscVReg vd, RiscVReg rs1, RiscVReg vs2, VUseMask vm) { Write32(EncodeMVX(vd, rs1, vs2, vm, Funct6::VWMACCUS)); } void RiscVEmitter::VMERGE_VVM(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, RiscVReg vmask) { _assert_msg_(vmask == V0, "vmask must be V0"); Write32(EncodeIVV(vd, vs1, vs2, VUseMask::V0_T, Funct6::VMV)); } void RiscVEmitter::VMERGE_VXM(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, RiscVReg vmask) { _assert_msg_(vmask == V0, "vmask must be V0"); Write32(EncodeIVX(vd, rs1, vs2, VUseMask::V0_T, Funct6::VMV)); } void RiscVEmitter::VMERGE_VIM(RiscVReg vd, RiscVReg vs2, s8 simm5, RiscVReg vmask) { _assert_msg_(vmask == V0, "vmask must be V0"); Write32(EncodeIVI(vd, simm5, vs2, VUseMask::V0_T, Funct6::VMV)); } void RiscVEmitter::VMV_VV(RiscVReg vd, RiscVReg vs1) { Write32(EncodeIVV(vd, vs1, V0, VUseMask::NONE, Funct6::VMV)); } void RiscVEmitter::VMV_VX(RiscVReg vd, RiscVReg rs1) { Write32(EncodeIVX(vd, rs1, V0, VUseMask::NONE, Funct6::VMV)); } void RiscVEmitter::VMV_VI(RiscVReg vd, s8 simm5) { Write32(EncodeIVI(vd, simm5, V0, VUseMask::NONE, Funct6::VMV)); } void RiscVEmitter::VSADDU_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeIVV(vd, vs1, vs2, vm, Funct6::VSADDU)); } void RiscVEmitter::VSADDU_VX(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeIVX(vd, rs1, vs2, vm, Funct6::VSADDU)); } void RiscVEmitter::VSADDU_VI(RiscVReg vd, RiscVReg vs2, s8 simm5, VUseMask vm) { Write32(EncodeIVI(vd, simm5, vs2, vm, Funct6::VSADDU)); } void RiscVEmitter::VSADD_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeIVV(vd, vs1, vs2, vm, Funct6::VSADD)); } void RiscVEmitter::VSADD_VX(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeIVX(vd, rs1, vs2, vm, Funct6::VSADD)); } void RiscVEmitter::VSADD_VI(RiscVReg vd, RiscVReg vs2, s8 simm5, VUseMask vm) { Write32(EncodeIVI(vd, simm5, vs2, vm, Funct6::VSADD)); } void RiscVEmitter::VSSUBU_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeIVV(vd, vs1, vs2, vm, Funct6::VSSUBU)); } void RiscVEmitter::VSSUBU_VX(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeIVX(vd, rs1, vs2, vm, Funct6::VSSUBU)); } void RiscVEmitter::VSSUB_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeIVV(vd, vs1, vs2, vm, Funct6::VSSUB)); } void RiscVEmitter::VSSUB_VX(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeIVX(vd, rs1, vs2, vm, Funct6::VSSUB)); } void RiscVEmitter::VAADDU_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeMVV(vd, vs1, vs2, vm, Funct6::VAADDU)); } void RiscVEmitter::VAADDU_VX(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeMVX(vd, rs1, vs2, vm, Funct6::VAADDU)); } void RiscVEmitter::VAADD_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeMVV(vd, vs1, vs2, vm, Funct6::VAADD)); } void RiscVEmitter::VAADD_VX(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeMVX(vd, rs1, vs2, vm, Funct6::VAADD)); } void RiscVEmitter::VASUBU_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeMVV(vd, vs1, vs2, vm, Funct6::VASUBU)); } void RiscVEmitter::VASUBU_VX(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeMVX(vd, rs1, vs2, vm, Funct6::VASUBU)); } void RiscVEmitter::VASUB_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeMVV(vd, vs1, vs2, vm, Funct6::VASUB)); } void RiscVEmitter::VASUB_VX(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeMVX(vd, rs1, vs2, vm, Funct6::VASUB)); } void RiscVEmitter::VSMUL_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeIVV(vd, vs1, vs2, vm, Funct6::VSMUL_VMVR)); } void RiscVEmitter::VSMUL_VX(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeIVX(vd, rs1, vs2, vm, Funct6::VSMUL_VMVR)); } void RiscVEmitter::VSSRL_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeIVV(vd, vs1, vs2, vm, Funct6::VSSRL)); } void RiscVEmitter::VSSRL_VX(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeIVX(vd, rs1, vs2, vm, Funct6::VSSRL)); } void RiscVEmitter::VSSRL_VI(RiscVReg vd, RiscVReg vs2, s8 simm5, VUseMask vm) { Write32(EncodeIVI(vd, simm5, vs2, vm, Funct6::VSSRL)); } void RiscVEmitter::VSSRA_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeIVV(vd, vs1, vs2, vm, Funct6::VSSRA)); } void RiscVEmitter::VSSRA_VX(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeIVX(vd, rs1, vs2, vm, Funct6::VSSRA)); } void RiscVEmitter::VSSRA_VI(RiscVReg vd, RiscVReg vs2, s8 simm5, VUseMask vm) { Write32(EncodeIVI(vd, simm5, vs2, vm, Funct6::VSSRA)); } void RiscVEmitter::VNCLIPU_WV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeIVV(vd, vs1, vs2, vm, Funct6::VNCLIPU)); } void RiscVEmitter::VNCLIPU_WX(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeIVX(vd, rs1, vs2, vm, Funct6::VNCLIPU)); } void RiscVEmitter::VNCLIPU_VI(RiscVReg vd, RiscVReg vs2, s8 simm5, VUseMask vm) { Write32(EncodeIVI(vd, simm5, vs2, vm, Funct6::VNCLIPU)); } void RiscVEmitter::VNCLIP_WV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeIVV(vd, vs1, vs2, vm, Funct6::VNCLIP)); } void RiscVEmitter::VNCLIP_WX(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeIVX(vd, rs1, vs2, vm, Funct6::VNCLIP)); } void RiscVEmitter::VNCLIP_VI(RiscVReg vd, RiscVReg vs2, s8 simm5, VUseMask vm) { Write32(EncodeIVI(vd, simm5, vs2, vm, Funct6::VNCLIP)); } void RiscVEmitter::VFADD_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeFVV(vd, vs1, vs2, vm, Funct6::VADD)); } void RiscVEmitter::VFADD_VF(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeFVF(vd, rs1, vs2, vm, Funct6::VADD)); } void RiscVEmitter::VFSUB_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeFVV(vd, vs1, vs2, vm, Funct6::VSUB)); } void RiscVEmitter::VFSUB_VF(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeFVF(vd, rs1, vs2, vm, Funct6::VSUB)); } void RiscVEmitter::VFRSUB_VF(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeFVF(vd, rs1, vs2, vm, Funct6::VFRSUB)); } void RiscVEmitter::VFWADD_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeFVV(vd, vs1, vs2, vm, Funct6::VFWADD)); } void RiscVEmitter::VFWADD_VF(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeFVF(vd, rs1, vs2, vm, Funct6::VFWADD)); } void RiscVEmitter::VFWSUB_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeFVV(vd, vs1, vs2, vm, Funct6::VFWSUB)); } void RiscVEmitter::VFWSUB_VF(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeFVF(vd, rs1, vs2, vm, Funct6::VFWSUB)); } void RiscVEmitter::VFWADD_WV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeFVV(vd, vs1, vs2, vm, Funct6::VFWADD_W)); } void RiscVEmitter::VFWADD_WF(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeFVF(vd, rs1, vs2, vm, Funct6::VFWADD_W)); } void RiscVEmitter::VFWSUB_WV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeFVV(vd, vs1, vs2, vm, Funct6::VFWSUB_W)); } void RiscVEmitter::VFWSUB_WF(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeFVF(vd, rs1, vs2, vm, Funct6::VFWSUB_W)); } void RiscVEmitter::VFMUL_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeFVV(vd, vs1, vs2, vm, Funct6::VFMUL)); } void RiscVEmitter::VFMUL_VF(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeFVF(vd, rs1, vs2, vm, Funct6::VFMUL)); } void RiscVEmitter::VFDIV_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeFVV(vd, vs1, vs2, vm, Funct6::VFDIV)); } void RiscVEmitter::VFDIV_VF(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeFVF(vd, rs1, vs2, vm, Funct6::VFDIV)); } void RiscVEmitter::VFRDIV_VF(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeFVF(vd, rs1, vs2, vm, Funct6::VFRDIV)); } void RiscVEmitter::VFWMUL_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeFVV(vd, vs1, vs2, vm, Funct6::VFWMUL)); } void RiscVEmitter::VFWMUL_VF(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeFVF(vd, rs1, vs2, vm, Funct6::VFWMUL)); } void RiscVEmitter::VFMACC_VV(RiscVReg vd, RiscVReg vs1, RiscVReg vs2, VUseMask vm) { Write32(EncodeFVV(vd, vs1, vs2, vm, Funct6::VFMACC)); } void RiscVEmitter::VFMACC_VF(RiscVReg vd, RiscVReg rs1, RiscVReg vs2, VUseMask vm) { Write32(EncodeFVF(vd, rs1, vs2, vm, Funct6::VFMACC)); } void RiscVEmitter::VFNMACC_VV(RiscVReg vd, RiscVReg vs1, RiscVReg vs2, VUseMask vm) { Write32(EncodeFVV(vd, vs1, vs2, vm, Funct6::VFNMACC)); } void RiscVEmitter::VFNMACC_VF(RiscVReg vd, RiscVReg rs1, RiscVReg vs2, VUseMask vm) { Write32(EncodeFVF(vd, rs1, vs2, vm, Funct6::VFNMACC)); } void RiscVEmitter::VFMSAC_VV(RiscVReg vd, RiscVReg vs1, RiscVReg vs2, VUseMask vm) { Write32(EncodeFVV(vd, vs1, vs2, vm, Funct6::VFMSAC)); } void RiscVEmitter::VFMSAC_VF(RiscVReg vd, RiscVReg rs1, RiscVReg vs2, VUseMask vm) { Write32(EncodeFVF(vd, rs1, vs2, vm, Funct6::VFMSAC)); } void RiscVEmitter::VFNMSAC_VV(RiscVReg vd, RiscVReg vs1, RiscVReg vs2, VUseMask vm) { Write32(EncodeFVV(vd, vs1, vs2, vm, Funct6::VFNMSAC)); } void RiscVEmitter::VFNMSAC_VF(RiscVReg vd, RiscVReg rs1, RiscVReg vs2, VUseMask vm) { Write32(EncodeFVF(vd, rs1, vs2, vm, Funct6::VFNMSAC)); } void RiscVEmitter::VFMADD_VV(RiscVReg vd, RiscVReg vs1, RiscVReg vs2, VUseMask vm) { Write32(EncodeFVV(vd, vs1, vs2, vm, Funct6::VFMADD)); } void RiscVEmitter::VFMADD_VF(RiscVReg vd, RiscVReg rs1, RiscVReg vs2, VUseMask vm) { Write32(EncodeFVF(vd, rs1, vs2, vm, Funct6::VFMADD)); } void RiscVEmitter::VFNMADD_VV(RiscVReg vd, RiscVReg vs1, RiscVReg vs2, VUseMask vm) { Write32(EncodeFVV(vd, vs1, vs2, vm, Funct6::VFNMADD)); } void RiscVEmitter::VFNMADD_VF(RiscVReg vd, RiscVReg rs1, RiscVReg vs2, VUseMask vm) { Write32(EncodeFVF(vd, rs1, vs2, vm, Funct6::VFNMADD)); } void RiscVEmitter::VFMSUB_VV(RiscVReg vd, RiscVReg vs1, RiscVReg vs2, VUseMask vm) { Write32(EncodeFVV(vd, vs1, vs2, vm, Funct6::VFMSUB)); } void RiscVEmitter::VFMSUB_VF(RiscVReg vd, RiscVReg rs1, RiscVReg vs2, VUseMask vm) { Write32(EncodeFVF(vd, rs1, vs2, vm, Funct6::VFMSUB)); } void RiscVEmitter::VFNMSUB_VV(RiscVReg vd, RiscVReg vs1, RiscVReg vs2, VUseMask vm) { Write32(EncodeFVV(vd, vs1, vs2, vm, Funct6::VFNMSUB)); } void RiscVEmitter::VFNMSUB_VF(RiscVReg vd, RiscVReg rs1, RiscVReg vs2, VUseMask vm) { Write32(EncodeFVF(vd, rs1, vs2, vm, Funct6::VFNMSUB)); } void RiscVEmitter::VFWMACC_VV(RiscVReg vd, RiscVReg vs1, RiscVReg vs2, VUseMask vm) { Write32(EncodeFVV(vd, vs1, vs2, vm, Funct6::VFWMACC)); } void RiscVEmitter::VFWMACC_VF(RiscVReg vd, RiscVReg rs1, RiscVReg vs2, VUseMask vm) { Write32(EncodeFVF(vd, rs1, vs2, vm, Funct6::VFWMACC)); } void RiscVEmitter::VFWNMACC_VV(RiscVReg vd, RiscVReg vs1, RiscVReg vs2, VUseMask vm) { Write32(EncodeFVV(vd, vs1, vs2, vm, Funct6::VFWNMACC)); } void RiscVEmitter::VFWNMACC_VF(RiscVReg vd, RiscVReg rs1, RiscVReg vs2, VUseMask vm) { Write32(EncodeFVF(vd, rs1, vs2, vm, Funct6::VFWNMACC)); } void RiscVEmitter::VFWMSAC_VV(RiscVReg vd, RiscVReg vs1, RiscVReg vs2, VUseMask vm) { Write32(EncodeFVV(vd, vs1, vs2, vm, Funct6::VFWMSAC)); } void RiscVEmitter::VFWMSAC_VF(RiscVReg vd, RiscVReg rs1, RiscVReg vs2, VUseMask vm) { Write32(EncodeFVF(vd, rs1, vs2, vm, Funct6::VFWMSAC)); } void RiscVEmitter::VFWNMSAC_VV(RiscVReg vd, RiscVReg vs1, RiscVReg vs2, VUseMask vm) { Write32(EncodeFVV(vd, vs1, vs2, vm, Funct6::VFWNMSAC)); } void RiscVEmitter::VFWNMSAC_VF(RiscVReg vd, RiscVReg rs1, RiscVReg vs2, VUseMask vm) { Write32(EncodeFVF(vd, rs1, vs2, vm, Funct6::VFWNMSAC)); } void RiscVEmitter::VFSQRT_V(RiscVReg vd, RiscVReg vs2, VUseMask vm) { Write32(EncodeFVV(vd, Funct5::VFSQRT, vs2, vm, Funct6::VFXUNARY1)); } void RiscVEmitter::VFRSQRT7_V(RiscVReg vd, RiscVReg vs2, VUseMask vm) { Write32(EncodeFVV(vd, Funct5::VFRSQRT7, vs2, vm, Funct6::VFXUNARY1)); } void RiscVEmitter::VFREC7_V(RiscVReg vd, RiscVReg vs2, VUseMask vm) { Write32(EncodeFVV(vd, Funct5::VFREC7, vs2, vm, Funct6::VFXUNARY1)); } void RiscVEmitter::VFMIN_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeFVV(vd, vs1, vs2, vm, Funct6::VFMIN)); } void RiscVEmitter::VFMIN_VF(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeFVF(vd, rs1, vs2, vm, Funct6::VFMIN)); } void RiscVEmitter::VFMAX_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeFVV(vd, vs1, vs2, vm, Funct6::VFMAX)); } void RiscVEmitter::VFMAX_VF(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeFVF(vd, rs1, vs2, vm, Funct6::VFMAX)); } void RiscVEmitter::VFSGNJ_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeFVV(vd, vs1, vs2, vm, Funct6::VFSGNJ)); } void RiscVEmitter::VFSGNJ_VF(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeFVF(vd, rs1, vs2, vm, Funct6::VFSGNJ)); } void RiscVEmitter::VFSGNJN_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeFVV(vd, vs1, vs2, vm, Funct6::VFSGNJN)); } void RiscVEmitter::VFSGNJN_VF(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeFVF(vd, rs1, vs2, vm, Funct6::VFSGNJN)); } void RiscVEmitter::VFSGNJX_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeFVV(vd, vs1, vs2, vm, Funct6::VFSGNJX)); } void RiscVEmitter::VFSGNJX_VF(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeFVF(vd, rs1, vs2, vm, Funct6::VFSGNJX)); } void RiscVEmitter::VMFEQ_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeFVV_M(vd, vs1, vs2, vm, Funct6::VMFEQ)); } void RiscVEmitter::VMFEQ_VF(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeFVF_M(vd, rs1, vs2, vm, Funct6::VMFEQ)); } void RiscVEmitter::VMFNE_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeFVV_M(vd, vs1, vs2, vm, Funct6::VMFNE)); } void RiscVEmitter::VMFNE_VF(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeFVF_M(vd, rs1, vs2, vm, Funct6::VMFNE)); } void RiscVEmitter::VMFLT_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeFVV_M(vd, vs1, vs2, vm, Funct6::VMFLT)); } void RiscVEmitter::VMFLT_VF(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeFVF_M(vd, rs1, vs2, vm, Funct6::VMFLT)); } void RiscVEmitter::VMFLE_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeFVV_M(vd, vs1, vs2, vm, Funct6::VMFLE)); } void RiscVEmitter::VMFLE_VF(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeFVF_M(vd, rs1, vs2, vm, Funct6::VMFLE)); } void RiscVEmitter::VMFGT_VF(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeFVF_M(vd, rs1, vs2, vm, Funct6::VMFGT)); } void RiscVEmitter::VMFGE_VF(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { Write32(EncodeFVF_M(vd, rs1, vs2, vm, Funct6::VMFGE)); } void RiscVEmitter::VFCLASS_V(RiscVReg vd, RiscVReg vs2, VUseMask vm) { Write32(EncodeFVV(vd, Funct5::VFCLASS, vs2, vm, Funct6::VFXUNARY1)); } void RiscVEmitter::VFMERGE_VFM(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, RiscVReg vmask) { _assert_msg_(vmask == V0, "vmask must be V0"); Write32(EncodeFVF(vd, rs1, vs2, VUseMask::V0_T, Funct6::VMV)); } void RiscVEmitter::VFMV_VF(RiscVReg vd, RiscVReg rs1) { Write32(EncodeFVF(vd, rs1, V0, VUseMask::NONE, Funct6::VMV)); } void RiscVEmitter::VFCVT_XU_F_V(RiscVReg vd, RiscVReg vs2, VUseMask vm) { Write32(EncodeFVV(vd, Funct5::VFCVT_XU_F, vs2, vm, Funct6::VFXUNARY0)); } void RiscVEmitter::VFCVT_X_F_V(RiscVReg vd, RiscVReg vs2, VUseMask vm) { Write32(EncodeFVV(vd, Funct5::VFCVT_X_F, vs2, vm, Funct6::VFXUNARY0)); } void RiscVEmitter::VFCVT_RTZ_XU_F_V(RiscVReg vd, RiscVReg vs2, VUseMask vm) { Write32(EncodeFVV(vd, Funct5::VFCVT_RTZ_XU_F, vs2, vm, Funct6::VFXUNARY0)); } void RiscVEmitter::VFCVT_RTZ_X_F_V(RiscVReg vd, RiscVReg vs2, VUseMask vm) { Write32(EncodeFVV(vd, Funct5::VFCVT_RTZ_X_F, vs2, vm, Funct6::VFXUNARY0)); } void RiscVEmitter::VFCVT_F_XU_V(RiscVReg vd, RiscVReg vs2, VUseMask vm) { Write32(EncodeFVV(vd, Funct5::VFCVT_F_XU, vs2, vm, Funct6::VFXUNARY0)); } void RiscVEmitter::VFCVT_F_X_V(RiscVReg vd, RiscVReg vs2, VUseMask vm) { Write32(EncodeFVV(vd, Funct5::VFCVT_F_X, vs2, vm, Funct6::VFXUNARY0)); } void RiscVEmitter::VFWCVT_XU_F_V(RiscVReg vd, RiscVReg vs2, VUseMask vm) { Write32(EncodeFVV(vd, Funct5::VFWCVT_XU_F, vs2, vm, Funct6::VFXUNARY0)); } void RiscVEmitter::VFWCVT_X_F_V(RiscVReg vd, RiscVReg vs2, VUseMask vm) { Write32(EncodeFVV(vd, Funct5::VFWCVT_X_F, vs2, vm, Funct6::VFXUNARY0)); } void RiscVEmitter::VFWCVT_RTZ_XU_F_V(RiscVReg vd, RiscVReg vs2, VUseMask vm) { Write32(EncodeFVV(vd, Funct5::VFWCVT_RTZ_XU_F, vs2, vm, Funct6::VFXUNARY0)); } void RiscVEmitter::VFWCVT_RTZ_X_F_V(RiscVReg vd, RiscVReg vs2, VUseMask vm) { Write32(EncodeFVV(vd, Funct5::VFWCVT_RTZ_X_F, vs2, vm, Funct6::VFXUNARY0)); } void RiscVEmitter::VFWCVT_F_XU_V(RiscVReg vd, RiscVReg vs2, VUseMask vm) { Write32(EncodeFVV(vd, Funct5::VFWCVT_F_XU, vs2, vm, Funct6::VFXUNARY0)); } void RiscVEmitter::VFWCVT_F_X_V(RiscVReg vd, RiscVReg vs2, VUseMask vm) { Write32(EncodeFVV(vd, Funct5::VFWCVT_F_X, vs2, vm, Funct6::VFXUNARY0)); } void RiscVEmitter::VFWCVT_F_F_V(RiscVReg vd, RiscVReg vs2, VUseMask vm) { Write32(EncodeFVV(vd, Funct5::VFWCVT_F_F, vs2, vm, Funct6::VFXUNARY0)); } void RiscVEmitter::VFNCVT_XU_F_W(RiscVReg vd, RiscVReg vs2, VUseMask vm) { Write32(EncodeFVV(vd, Funct5::VFNCVT_XU_F, vs2, vm, Funct6::VFXUNARY0)); } void RiscVEmitter::VFNCVT_X_F_W(RiscVReg vd, RiscVReg vs2, VUseMask vm) { Write32(EncodeFVV(vd, Funct5::VFNCVT_X_F, vs2, vm, Funct6::VFXUNARY0)); } void RiscVEmitter::VFNCVT_RTZ_XU_F_W(RiscVReg vd, RiscVReg vs2, VUseMask vm) { Write32(EncodeFVV(vd, Funct5::VFNCVT_RTZ_XU_F, vs2, vm, Funct6::VFXUNARY0)); } void RiscVEmitter::VFNCVT_RTZ_X_F_W(RiscVReg vd, RiscVReg vs2, VUseMask vm) { Write32(EncodeFVV(vd, Funct5::VFNCVT_RTZ_X_F, vs2, vm, Funct6::VFXUNARY0)); } void RiscVEmitter::VFNCVT_F_XU_W(RiscVReg vd, RiscVReg vs2, VUseMask vm) { Write32(EncodeFVV(vd, Funct5::VFNCVT_F_XU, vs2, vm, Funct6::VFXUNARY0)); } void RiscVEmitter::VFNCVT_F_X_W(RiscVReg vd, RiscVReg vs2, VUseMask vm) { Write32(EncodeFVV(vd, Funct5::VFNCVT_F_X, vs2, vm, Funct6::VFXUNARY0)); } void RiscVEmitter::VFNCVT_F_F_V(RiscVReg vd, RiscVReg vs2, VUseMask vm) { Write32(EncodeFVV(vd, Funct5::VFNCVT_F_F, vs2, vm, Funct6::VFXUNARY0)); } void RiscVEmitter::VFNCVT_ROD_F_F_V(RiscVReg vd, RiscVReg vs2, VUseMask vm) { Write32(EncodeFVV(vd, Funct5::VFNCVT_ROD_F_F, vs2, vm, Funct6::VFXUNARY0)); } void RiscVEmitter::VREDSUM_VS(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeMVV_M(vd, vs1, vs2, vm, Funct6::VREDSUM)); } void RiscVEmitter::VREDMAXU_VS(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeMVV_M(vd, vs1, vs2, vm, Funct6::VMAXU)); } void RiscVEmitter::VREDMAX_VS(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeMVV_M(vd, vs1, vs2, vm, Funct6::VMAX)); } void RiscVEmitter::VREDMINU_VS(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeMVV_M(vd, vs1, vs2, vm, Funct6::VMINU)); } void RiscVEmitter::VREDMIN_VS(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeMVV_M(vd, vs1, vs2, vm, Funct6::VMIN)); } void RiscVEmitter::VREDAND_VS(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeMVV_M(vd, vs1, vs2, vm, Funct6::VREDAND)); } void RiscVEmitter::VREDOR_VS(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeMVV_M(vd, vs1, vs2, vm, Funct6::VREDOR)); } void RiscVEmitter::VREDXOR_VS(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeMVV_M(vd, vs1, vs2, vm, Funct6::VREDXOR)); } void RiscVEmitter::VWREDSUMU_VS(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeIVV_M(vd, vs1, vs2, vm, Funct6::VWREDSUMU)); } void RiscVEmitter::VWREDSUM_VS(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeIVV_M(vd, vs1, vs2, vm, Funct6::VWREDSUM)); } void RiscVEmitter::VFREDOSUM_VS(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeFVV_M(vd, vs1, vs2, vm, Funct6::VFREDOSUM)); } void RiscVEmitter::VFREDUSUM_VS(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeFVV_M(vd, vs1, vs2, vm, Funct6::VFREDUSUM)); } void RiscVEmitter::VFREDMAX_VS(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeFVV_M(vd, vs1, vs2, vm, Funct6::VMAX)); } void RiscVEmitter::VFREDMIN_VS(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeFVV_M(vd, vs1, vs2, vm, Funct6::VMIN)); } void RiscVEmitter::VFWREDOSUM_VS(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeFVV_M(vd, vs1, vs2, vm, Funct6::VFWREDOSUM)); } void RiscVEmitter::VFWREDUSUM_VS(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { Write32(EncodeFVV_M(vd, vs1, vs2, vm, Funct6::VFWREDUSUM)); } void RiscVEmitter::VMAND_MM(RiscVReg vd, RiscVReg vs2, RiscVReg vs1) { Write32(EncodeMVV_M(vd, vs1, vs2, VUseMask::NONE, Funct6::VMAND)); } void RiscVEmitter::VMNAND_MM(RiscVReg vd, RiscVReg vs2, RiscVReg vs1) { Write32(EncodeMVV_M(vd, vs1, vs2, VUseMask::NONE, Funct6::VMNAND)); } void RiscVEmitter::VMANDN_MM(RiscVReg vd, RiscVReg vs2, RiscVReg vs1) { Write32(EncodeMVV_M(vd, vs1, vs2, VUseMask::NONE, Funct6::VMANDNOT)); } void RiscVEmitter::VMXOR_MM(RiscVReg vd, RiscVReg vs2, RiscVReg vs1) { Write32(EncodeMVV_M(vd, vs1, vs2, VUseMask::NONE, Funct6::VMXOR)); } void RiscVEmitter::VMOR_MM(RiscVReg vd, RiscVReg vs2, RiscVReg vs1) { Write32(EncodeMVV_M(vd, vs1, vs2, VUseMask::NONE, Funct6::VMOR)); } void RiscVEmitter::VMNOR_MM(RiscVReg vd, RiscVReg vs2, RiscVReg vs1) { Write32(EncodeMVV_M(vd, vs1, vs2, VUseMask::NONE, Funct6::VMNOR)); } void RiscVEmitter::VMORN_MM(RiscVReg vd, RiscVReg vs2, RiscVReg vs1) { Write32(EncodeMVV_M(vd, vs1, vs2, VUseMask::NONE, Funct6::VMORNOT)); } void RiscVEmitter::VMXNOR_MM(RiscVReg vd, RiscVReg vs2, RiscVReg vs1) { Write32(EncodeMVV_M(vd, vs1, vs2, VUseMask::NONE, Funct6::VMXNOR)); } void RiscVEmitter::VCPOP_M(RiscVReg rd, RiscVReg vs2, VUseMask vm) { _assert_msg_(IsGPR(rd), "%s instruction rd must be GPR", __func__); _assert_msg_(rd != R_ZERO, "%s should avoid write to zero", __func__); Write32(EncodeV(rd, Funct3::OPMVV, (RiscVReg)Funct5::VCPOP, vs2, vm, Funct6::VRWUNARY0)); } void RiscVEmitter::VFIRST_M(RiscVReg rd, RiscVReg vs2, VUseMask vm) { _assert_msg_(IsGPR(rd), "%s instruction rd must be GPR", __func__); _assert_msg_(rd != R_ZERO, "%s should avoid write to zero", __func__); Write32(EncodeV(rd, Funct3::OPMVV, (RiscVReg)Funct5::VFIRST, vs2, vm, Funct6::VRWUNARY0)); } void RiscVEmitter::VMSBF_M(RiscVReg vd, RiscVReg vs2, VUseMask vm) { _assert_msg_(IsVPR(vd), "%s instruction vd must be VPR", __func__); _assert_msg_(vm != VUseMask::V0_T || vd != V0, "%s instruction vd overlap with mask", __func__); _assert_msg_(vd != vs2, "%s instruction vd overlap vs2", __func__); Write32(EncodeV(vd, Funct3::OPMVV, (RiscVReg)Funct5::VMSBF, vs2, vm, Funct6::VMUNARY0)); } void RiscVEmitter::VMSIF_M(RiscVReg vd, RiscVReg vs2, VUseMask vm) { _assert_msg_(IsVPR(vd), "%s instruction vd must be VPR", __func__); _assert_msg_(vm != VUseMask::V0_T || vd != V0, "%s instruction vd overlap with mask", __func__); _assert_msg_(vd != vs2, "%s instruction vd overlap vs2", __func__); Write32(EncodeV(vd, Funct3::OPMVV, (RiscVReg)Funct5::VMSIF, vs2, vm, Funct6::VMUNARY0)); } void RiscVEmitter::VMSOF_M(RiscVReg vd, RiscVReg vs2, VUseMask vm) { _assert_msg_(IsVPR(vd), "%s instruction vd must be VPR", __func__); _assert_msg_(vm != VUseMask::V0_T || vd != V0, "%s instruction vd overlap with mask", __func__); _assert_msg_(vd != vs2, "%s instruction vd overlap vs2", __func__); Write32(EncodeV(vd, Funct3::OPMVV, (RiscVReg)Funct5::VMSOF, vs2, vm, Funct6::VMUNARY0)); } void RiscVEmitter::VIOTA_M(RiscVReg vd, RiscVReg vs2, VUseMask vm) { _assert_msg_(IsVPR(vd), "%s instruction vd must be VPR", __func__); _assert_msg_(vm != VUseMask::V0_T || vd != V0, "%s instruction vd overlap with mask", __func__); _assert_msg_(vd != vs2, "%s instruction vd overlap vs2", __func__); Write32(EncodeV(vd, Funct3::OPMVV, (RiscVReg)Funct5::VIOTA, vs2, vm, Funct6::VMUNARY0)); } void RiscVEmitter::VID_M(RiscVReg vd, VUseMask vm) { _assert_msg_(IsVPR(vd), "%s instruction vd must be VPR", __func__); // The spec doesn't say this, but it also says it's essentially viota.m with vs2=-1, so let's assume. _assert_msg_(vm != VUseMask::V0_T || vd != V0, "%s instruction vd overlap with mask", __func__); Write32(EncodeV(vd, Funct3::OPMVV, (RiscVReg)Funct5::VID, V0, vm, Funct6::VMUNARY0)); } void RiscVEmitter::VMV_X_S(RiscVReg rd, RiscVReg vs2) { _assert_msg_(IsGPR(rd), "%s instruction rd must be GPR", __func__); _assert_msg_(rd != R_ZERO, "%s should avoid write to zero", __func__); Write32(EncodeV(rd, Funct3::OPMVV, (RiscVReg)Funct5::VMV_S, vs2, VUseMask::NONE, Funct6::VRWUNARY0)); } void RiscVEmitter::VMV_S_X(RiscVReg vd, RiscVReg rs1) { _assert_msg_(IsVPR(vd), "%s instruction vd must be VPR", __func__); _assert_msg_(IsGPR(rs1), "%s instruction rs1 must be GPR", __func__); Write32(EncodeV(vd, Funct3::OPMVV, rs1, V0, VUseMask::NONE, Funct6::VRWUNARY0)); } void RiscVEmitter::VFMV_F_S(RiscVReg rd, RiscVReg vs2) { _assert_msg_(FloatBitsSupported() >= 32, "FVV instruction requires vector float support"); _assert_msg_(IsFPR(rd), "%s instruction rd must be FPR", __func__); Write32(EncodeV(rd, Funct3::OPFVV, (RiscVReg)Funct5::VMV_S, vs2, VUseMask::NONE, Funct6::VRWUNARY0)); } void RiscVEmitter::VFMV_S_F(RiscVReg vd, RiscVReg rs1) { _assert_msg_(FloatBitsSupported() >= 32, "FVV instruction requires vector float support"); _assert_msg_(IsVPR(vd), "%s instruction vd must be VPR", __func__); _assert_msg_(IsFPR(rs1), "%s instruction rs1 must be FPR", __func__); Write32(EncodeV(vd, Funct3::OPFVV, rs1, V0, VUseMask::NONE, Funct6::VRWUNARY0)); } void RiscVEmitter::VSLIDEUP_VX(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { _assert_msg_(vd != vs2, "%s instruction vd cannot overlap vs2", __func__); Write32(EncodeIVX(vd, rs1, vs2, vm, Funct6::VSLIDEUP)); } void RiscVEmitter::VSLIDEUP_VI(RiscVReg vd, RiscVReg vs2, u8 uimm5, VUseMask vm) { _assert_msg_(vd != vs2, "%s instruction vd cannot overlap vs2", __func__); _assert_msg_((uimm5 & 0x1F) == uimm5, "%s slide amount must be <= 0x1F", __func__); Write32(EncodeIVI(vd, SignReduce32(uimm5, 5), vs2, vm, Funct6::VSLIDEUP)); } void RiscVEmitter::VSLIDEDOWN_VX(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { _assert_msg_(vd != vs2, "%s instruction vd cannot overlap vs2", __func__); Write32(EncodeIVX(vd, rs1, vs2, vm, Funct6::VSLIDEDOWN)); } void RiscVEmitter::VSLIDEDOWN_VI(RiscVReg vd, RiscVReg vs2, u8 uimm5, VUseMask vm) { _assert_msg_(vd != vs2, "%s instruction vd cannot overlap vs2", __func__); _assert_msg_((uimm5 & 0x1F) == uimm5, "%s slide amount must be <= 0x1F", __func__); Write32(EncodeIVI(vd, SignReduce32(uimm5, 5), vs2, vm, Funct6::VSLIDEDOWN)); } void RiscVEmitter::VSLIDE1UP_VX(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { _assert_msg_(vd != vs2, "%s instruction vd cannot overlap vs2", __func__); Write32(EncodeMVX(vd, rs1, vs2, vm, Funct6::VSLIDEUP)); } void RiscVEmitter::VFSLIDE1UP_VF(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { _assert_msg_(vd != vs2, "%s instruction vd cannot overlap vs2", __func__); Write32(EncodeFVF(vd, rs1, vs2, vm, Funct6::VSLIDEUP)); } void RiscVEmitter::VSLIDE1DOWN_VX(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { _assert_msg_(vd != vs2, "%s instruction vd cannot overlap vs2", __func__); Write32(EncodeMVX(vd, rs1, vs2, vm, Funct6::VSLIDEDOWN)); } void RiscVEmitter::VFSLIDE1DOWN_VF(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { _assert_msg_(vd != vs2, "%s instruction vd cannot overlap vs2", __func__); Write32(EncodeFVF(vd, rs1, vs2, vm, Funct6::VSLIDEDOWN)); } void RiscVEmitter::VRGATHER_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { _assert_msg_(vd != vs1, "%s instruction vd cannot overlap vs1", __func__); _assert_msg_(vd != vs2, "%s instruction vd cannot overlap vs2", __func__); Write32(EncodeIVV(vd, vs1, vs2, vm, Funct6::VRGATHER)); } void RiscVEmitter::VRGATHEREI16_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { _assert_msg_(vd != vs1, "%s instruction vd cannot overlap vs1", __func__); _assert_msg_(vd != vs2, "%s instruction vd cannot overlap vs2", __func__); Write32(EncodeIVV(vd, vs1, vs2, vm, Funct6::VRGATHEREI16)); } void RiscVEmitter::VRGATHER_VX(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { _assert_msg_(vd != vs2, "%s instruction vd cannot overlap vs2", __func__); Write32(EncodeIVX(vd, rs1, vs2, vm, Funct6::VRGATHER)); } void RiscVEmitter::VRGATHER_VI(RiscVReg vd, RiscVReg vs2, u8 uimm5, VUseMask vm) { _assert_msg_(vd != vs2, "%s instruction vd cannot overlap vs2", __func__); _assert_msg_((uimm5 & 0x1F) == uimm5, "%s index must be <= 0x1F", __func__); Write32(EncodeIVI(vd, SignReduce32(uimm5, 5), vs2, vm, Funct6::VRGATHER)); } void RiscVEmitter::VCOMPRESS_VM(RiscVReg vd, RiscVReg vs2, RiscVReg vs1) { _assert_msg_(vd != vs1, "%s instruction vd cannot overlap vs1", __func__); _assert_msg_(vd != vs2, "%s instruction vd cannot overlap vs2", __func__); Write32(EncodeMVV(vd, vs1, vs2, VUseMask::NONE, Funct6::VCOMPRESS)); } void RiscVEmitter::VMVR_V(int regs, RiscVReg vd, RiscVReg vs2) { _assert_msg_(regs == 1 || regs == 2 || regs == 4 || regs == 8, "%s can only access count=1/2/4/8 at a time, not %d", __func__, regs); _assert_msg_(regs == 1 || ((int)DecodeReg(vd) & (regs - 1)) == 0, "%s base reg must align to reg count", __func__); _assert_msg_((int)DecodeReg(vd) + regs <= 32, "%s cannot access beyond V31", __func__); Write32(EncodeIVI(vd, regs - 1, vs2, VUseMask::NONE, Funct6::VSMUL_VMVR)); } void RiscVEmitter::VANDN_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { _assert_msg_(SupportsVectorBitmanip('b') || SupportsVectorBitmanip('k'), "%s instruction requires Zvbb or Zvkb", __func__); Write32(EncodeIVV(vd, vs1, vs2, vm, Funct6::VANDN)); } void RiscVEmitter::VANDN_VX(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { _assert_msg_(SupportsVectorBitmanip('b') || SupportsVectorBitmanip('k'), "%s instruction requires Zvbb or Zvkb", __func__); Write32(EncodeIVX(vd, rs1, vs2, vm, Funct6::VANDN)); } void RiscVEmitter::VBREV_V(RiscVReg vd, RiscVReg vs2, VUseMask vm) { _assert_msg_(SupportsVectorBitmanip('b'), "%s instruction requires Zvbb", __func__); _assert_msg_(IsVPR(vd), "%s instruction vd must be VPR", __func__); _assert_msg_(vm != VUseMask::V0_T || vd != V0, "%s instruction vd overlap with mask", __func__); Write32(EncodeV(vd, Funct3::OPMVV, (RiscVReg)Funct5::VBREV, vs2, vm, Funct6::VFXUNARY0)); } void RiscVEmitter::VBREV8_V(RiscVReg vd, RiscVReg vs2, VUseMask vm) { _assert_msg_(SupportsVectorBitmanip('b') || SupportsVectorBitmanip('k'), "%s instruction requires Zvbb or Zvkb", __func__); _assert_msg_(IsVPR(vd), "%s instruction vd must be VPR", __func__); _assert_msg_(vm != VUseMask::V0_T || vd != V0, "%s instruction vd overlap with mask", __func__); Write32(EncodeV(vd, Funct3::OPMVV, (RiscVReg)Funct5::VBREV8, vs2, vm, Funct6::VFXUNARY0)); } void RiscVEmitter::VREV8_V(RiscVReg vd, RiscVReg vs2, VUseMask vm) { _assert_msg_(SupportsVectorBitmanip('b') || SupportsVectorBitmanip('k'), "%s instruction requires Zvbb or Zvkb", __func__); _assert_msg_(IsVPR(vd), "%s instruction vd must be VPR", __func__); _assert_msg_(vm != VUseMask::V0_T || vd != V0, "%s instruction vd overlap with mask", __func__); Write32(EncodeV(vd, Funct3::OPMVV, (RiscVReg)Funct5::VREV8, vs2, vm, Funct6::VFXUNARY0)); } void RiscVEmitter::VCLZ_V(RiscVReg vd, RiscVReg vs2, VUseMask vm) { _assert_msg_(SupportsVectorBitmanip('b'), "%s instruction requires Zvbb", __func__); _assert_msg_(IsVPR(vd), "%s instruction vd must be VPR", __func__); _assert_msg_(vm != VUseMask::V0_T || vd != V0, "%s instruction vd overlap with mask", __func__); Write32(EncodeV(vd, Funct3::OPMVV, (RiscVReg)Funct5::VCLZ, vs2, vm, Funct6::VFXUNARY0)); } void RiscVEmitter::VCTZ_V(RiscVReg vd, RiscVReg vs2, VUseMask vm) { _assert_msg_(SupportsVectorBitmanip('b'), "%s instruction requires Zvbb", __func__); _assert_msg_(IsVPR(vd), "%s instruction vd must be VPR", __func__); _assert_msg_(vm != VUseMask::V0_T || vd != V0, "%s instruction vd overlap with mask", __func__); Write32(EncodeV(vd, Funct3::OPMVV, (RiscVReg)Funct5::VCTZ, vs2, vm, Funct6::VFXUNARY0)); } void RiscVEmitter::VCPOP_V(RiscVReg vd, RiscVReg vs2, VUseMask vm) { _assert_msg_(SupportsVectorBitmanip('b'), "%s instruction requires Zvbb", __func__); _assert_msg_(IsVPR(vd), "%s instruction vd must be VPR", __func__); _assert_msg_(vm != VUseMask::V0_T || vd != V0, "%s instruction vd overlap with mask", __func__); Write32(EncodeV(vd, Funct3::OPMVV, (RiscVReg)Funct5::VCPOP_V, vs2, vm, Funct6::VFXUNARY0)); } void RiscVEmitter::VROL_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { _assert_msg_(SupportsVectorBitmanip('b') || SupportsVectorBitmanip('k'), "%s instruction requires Zvbb or Zvkb", __func__); Write32(EncodeIVV(vd, vs1, vs2, vm, Funct6::VROL)); } void RiscVEmitter::VROL_VX(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { _assert_msg_(SupportsVectorBitmanip('b') || SupportsVectorBitmanip('k'), "%s instruction requires Zvbb or Zvkb", __func__); Write32(EncodeIVX(vd, rs1, vs2, vm, Funct6::VROL)); } void RiscVEmitter::VROR_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { _assert_msg_(SupportsVectorBitmanip('b') || SupportsVectorBitmanip('k'), "%s instruction requires Zvbb or Zvkb", __func__); Write32(EncodeIVV(vd, vs1, vs2, vm, Funct6::VROR)); } void RiscVEmitter::VROR_VX(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { _assert_msg_(SupportsVectorBitmanip('b') || SupportsVectorBitmanip('k'), "%s instruction requires Zvbb or Zvkb", __func__); Write32(EncodeIVX(vd, rs1, vs2, vm, Funct6::VROR)); } void RiscVEmitter::VROR_VI(RiscVReg vd, RiscVReg vs2, u8 uimm6, VUseMask vm) { _assert_msg_(SupportsVectorBitmanip('b') || SupportsVectorBitmanip('k'), "%s instruction requires Zvbb or Zvkb", __func__); _assert_msg_(uimm6 < 64, "%s immediate must be 0-63", __func__); // From an encoding perspective, easier to think of this as vror and vror32. Funct6 variant = uimm6 >= 32 ? Funct6::VROL : Funct6::VROR; Write32(EncodeIVI(vd, SignReduce32(uimm6, 5), vs2, vm, variant)); } void RiscVEmitter::VWSLL_VV(RiscVReg vd, RiscVReg vs2, RiscVReg vs1, VUseMask vm) { _assert_msg_(SupportsVectorBitmanip('b'), "%s instruction requires Zvbb", __func__); Write32(EncodeIVV(vd, vs1, vs2, vm, Funct6::VWSLL)); } void RiscVEmitter::VWSLL_VX(RiscVReg vd, RiscVReg vs2, RiscVReg rs1, VUseMask vm) { _assert_msg_(SupportsVectorBitmanip('b'), "%s instruction requires Zvbb", __func__); Write32(EncodeIVX(vd, rs1, vs2, vm, Funct6::VWSLL)); } void RiscVEmitter::VWSLL_VI(RiscVReg vd, RiscVReg vs2, u8 uimm5, VUseMask vm) { _assert_msg_(SupportsVectorBitmanip('b'), "%s instruction requires Zvbb", __func__); _assert_msg_(uimm5 < 32, "%s immediate must be 0-31", __func__); Write32(EncodeIVI(vd, SignReduce32(uimm5, 5), vs2, vm, Funct6::VWSLL)); } void RiscVEmitter::ADD_UW(RiscVReg rd, RiscVReg rs1, RiscVReg rs2) { if (BitsSupported() == 32) { ADD(rd, rs1, rs2); return; } _assert_msg_(rd != R_ZERO, "%s should avoid write to zero", __func__); _assert_msg_(SupportsBitmanip('a'), "%s instruction unsupported without B", __func__); if (AutoCompress() && SupportsCompressed('b') && CanCompress(rd) && rd == rs1 && rs2 == R_ZERO) { C_ZEXT_W(rd); return; } Write32(EncodeGR(Opcode32::OP_32, rd, Funct3::ADD, rs1, rs2, Funct7::ADDUW_ZEXT)); } void RiscVEmitter::SH_ADD(int shift, RiscVReg rd, RiscVReg rs1, RiscVReg rs2) { _assert_msg_(rd != R_ZERO, "%s should avoid write to zero", __func__); _assert_msg_(SupportsBitmanip('a'), "%s instruction unsupported without B", __func__); if (shift == 1) Write32(EncodeGR(Opcode32::OP, rd, Funct3::SH1ADD, rs1, rs2, Funct7::SH_ADD)); else if (shift == 2) Write32(EncodeGR(Opcode32::OP, rd, Funct3::SH2ADD, rs1, rs2, Funct7::SH_ADD)); else if (shift == 3) Write32(EncodeGR(Opcode32::OP, rd, Funct3::SH3ADD, rs1, rs2, Funct7::SH_ADD)); else _assert_msg_(shift >= 1 && shift <= 3, "%s shift amount must be 1-3", __func__); } void RiscVEmitter::SH_ADD_UW(int shift, RiscVReg rd, RiscVReg rs1, RiscVReg rs2) { if (BitsSupported() == 32) { SH_ADD(shift, rd, rs1, rs2); return; } _assert_msg_(rd != R_ZERO, "%s should avoid write to zero", __func__); _assert_msg_(SupportsBitmanip('a'), "%s instruction unsupported without B", __func__); if (shift == 1) Write32(EncodeGR(Opcode32::OP_32, rd, Funct3::SH1ADD, rs1, rs2, Funct7::SH_ADD)); else if (shift == 2) Write32(EncodeGR(Opcode32::OP_32, rd, Funct3::SH2ADD, rs1, rs2, Funct7::SH_ADD)); else if (shift == 3) Write32(EncodeGR(Opcode32::OP_32, rd, Funct3::SH3ADD, rs1, rs2, Funct7::SH_ADD)); else _assert_msg_(shift >= 1 && shift <= 3, "%s shift amount must be 1-3", __func__); } void RiscVEmitter::SLLI_UW(RiscVReg rd, RiscVReg rs1, u32 shamt) { if (BitsSupported() == 32) { SLLI(rd, rs1, shamt); return; } _assert_msg_(rd != R_ZERO, "%s should avoid write to zero", __func__); _assert_msg_(SupportsBitmanip('a'), "%s instruction unsupported without B", __func__); // Not sure if shamt=0 is legal or not, let's play it safe. _assert_msg_(shamt > 0 && shamt < BitsSupported(), "Shift %d out of range", shamt); Write32(EncodeGIShift(Opcode32::OP_IMM_32, rd, Funct3::SLL, rs1, shamt, Funct7::ADDUW_ZEXT)); } void RiscVEmitter::ANDN(RiscVReg rd, RiscVReg rs1, RiscVReg rs2) { _assert_msg_(rd != R_ZERO, "%s should avoid write to zero", __func__); _assert_msg_(SupportsBitmanip('b'), "%s instruction unsupported without B", __func__); Write32(EncodeGR(Opcode32::OP, rd, Funct3::AND, rs1, rs2, Funct7::NOT)); } void RiscVEmitter::ORN(RiscVReg rd, RiscVReg rs1, RiscVReg rs2) { _assert_msg_(rd != R_ZERO, "%s should avoid write to zero", __func__); _assert_msg_(SupportsBitmanip('b'), "%s instruction unsupported without B", __func__); Write32(EncodeGR(Opcode32::OP, rd, Funct3::OR, rs1, rs2, Funct7::NOT)); } void RiscVEmitter::XNOR(RiscVReg rd, RiscVReg rs1, RiscVReg rs2) { _assert_msg_(rd != R_ZERO, "%s should avoid write to zero", __func__); _assert_msg_(SupportsBitmanip('b'), "%s instruction unsupported without B", __func__); Write32(EncodeGR(Opcode32::OP, rd, Funct3::XOR, rs1, rs2, Funct7::NOT)); } void RiscVEmitter::CLZ(RiscVReg rd, RiscVReg rs) { _assert_msg_(rd != R_ZERO, "%s should avoid write to zero", __func__); _assert_msg_(SupportsBitmanip('b'), "%s instruction unsupported without B", __func__); Write32(EncodeGR(Opcode32::OP_IMM, rd, Funct3::COUNT_SEXT_ROL, rs, Funct5::CLZ, Funct7::COUNT_SEXT_ROT)); } void RiscVEmitter::CLZW(RiscVReg rd, RiscVReg rs) { if (BitsSupported() == 32) { CLZ(rd, rs); return; } _assert_msg_(rd != R_ZERO, "%s should avoid write to zero", __func__); _assert_msg_(SupportsBitmanip('b'), "%s instruction unsupported without B", __func__); Write32(EncodeGR(Opcode32::OP_IMM_32, rd, Funct3::COUNT_SEXT_ROL, rs, Funct5::CLZ, Funct7::COUNT_SEXT_ROT)); } void RiscVEmitter::CTZ(RiscVReg rd, RiscVReg rs) { _assert_msg_(rd != R_ZERO, "%s should avoid write to zero", __func__); _assert_msg_(SupportsBitmanip('b'), "%s instruction unsupported without B", __func__); Write32(EncodeGR(Opcode32::OP_IMM, rd, Funct3::COUNT_SEXT_ROL, rs, Funct5::CTZ, Funct7::COUNT_SEXT_ROT)); } void RiscVEmitter::CTZW(RiscVReg rd, RiscVReg rs) { if (BitsSupported() == 32) { CTZ(rd, rs); return; } _assert_msg_(rd != R_ZERO, "%s should avoid write to zero", __func__); _assert_msg_(SupportsBitmanip('b'), "%s instruction unsupported without B", __func__); Write32(EncodeGR(Opcode32::OP_IMM_32, rd, Funct3::COUNT_SEXT_ROL, rs, Funct5::CTZ, Funct7::COUNT_SEXT_ROT)); } void RiscVEmitter::CPOP(RiscVReg rd, RiscVReg rs) { _assert_msg_(rd != R_ZERO, "%s should avoid write to zero", __func__); _assert_msg_(SupportsBitmanip('b'), "%s instruction unsupported without B", __func__); Write32(EncodeGR(Opcode32::OP_IMM, rd, Funct3::COUNT_SEXT_ROL, rs, Funct5::CPOP, Funct7::COUNT_SEXT_ROT)); } void RiscVEmitter::CPOPW(RiscVReg rd, RiscVReg rs) { if (BitsSupported() == 32) { CPOP(rd, rs); return; } _assert_msg_(rd != R_ZERO, "%s should avoid write to zero", __func__); _assert_msg_(SupportsBitmanip('b'), "%s instruction unsupported without B", __func__); Write32(EncodeGR(Opcode32::OP_IMM_32, rd, Funct3::COUNT_SEXT_ROL, rs, Funct5::CPOP, Funct7::COUNT_SEXT_ROT)); } void RiscVEmitter::MAX(RiscVReg rd, RiscVReg rs1, RiscVReg rs2) { _assert_msg_(rd != R_ZERO, "%s should avoid write to zero", __func__); _assert_msg_(SupportsBitmanip('b'), "%s instruction unsupported without B", __func__); Write32(EncodeGR(Opcode32::OP, rd, Funct3::MAX, rs1, rs2, Funct7::MINMAX_CLMUL)); } void RiscVEmitter::MAXU(RiscVReg rd, RiscVReg rs1, RiscVReg rs2) { _assert_msg_(rd != R_ZERO, "%s should avoid write to zero", __func__); _assert_msg_(SupportsBitmanip('b'), "%s instruction unsupported without B", __func__); Write32(EncodeGR(Opcode32::OP, rd, Funct3::MAXU, rs1, rs2, Funct7::MINMAX_CLMUL)); } void RiscVEmitter::MIN(RiscVReg rd, RiscVReg rs1, RiscVReg rs2) { _assert_msg_(rd != R_ZERO, "%s should avoid write to zero", __func__); _assert_msg_(SupportsBitmanip('b'), "%s instruction unsupported without B", __func__); Write32(EncodeGR(Opcode32::OP, rd, Funct3::MIN, rs1, rs2, Funct7::MINMAX_CLMUL)); } void RiscVEmitter::MINU(RiscVReg rd, RiscVReg rs1, RiscVReg rs2) { _assert_msg_(rd != R_ZERO, "%s should avoid write to zero", __func__); _assert_msg_(SupportsBitmanip('b'), "%s instruction unsupported without B", __func__); Write32(EncodeGR(Opcode32::OP, rd, Funct3::MINU, rs1, rs2, Funct7::MINMAX_CLMUL)); } void RiscVEmitter::SEXT_B(RiscVReg rd, RiscVReg rs) { _assert_msg_(rd != R_ZERO, "%s should avoid write to zero", __func__); _assert_msg_(SupportsBitmanip('b'), "%s instruction unsupported without B", __func__); if (AutoCompress() && SupportsCompressed('b') && CanCompress(rd) && rd == rs) { C_SEXT_B(rd); return; } Write32(EncodeGR(Opcode32::OP_IMM, rd, Funct3::COUNT_SEXT_ROL, rs, Funct5::SEXT_B, Funct7::COUNT_SEXT_ROT)); } void RiscVEmitter::SEXT_H(RiscVReg rd, RiscVReg rs) { _assert_msg_(rd != R_ZERO, "%s should avoid write to zero", __func__); _assert_msg_(SupportsBitmanip('b'), "%s instruction unsupported without B", __func__); if (AutoCompress() && SupportsCompressed('b') && CanCompress(rd) && rd == rs) { C_SEXT_H(rd); return; } Write32(EncodeGR(Opcode32::OP_IMM, rd, Funct3::COUNT_SEXT_ROL, rs, Funct5::SEXT_H, Funct7::COUNT_SEXT_ROT)); } void RiscVEmitter::ZEXT_H(RiscVReg rd, RiscVReg rs) { _assert_msg_(rd != R_ZERO, "%s should avoid write to zero", __func__); _assert_msg_(SupportsBitmanip('b'), "%s instruction unsupported without B", __func__); if (AutoCompress() && SupportsCompressed('b') && CanCompress(rd) && rd == rs) { C_ZEXT_H(rd); return; } if (BitsSupported() == 32) Write32(EncodeGR(Opcode32::OP, rd, Funct3::ZEXT, rs, R_ZERO, Funct7::ADDUW_ZEXT)); else Write32(EncodeGR(Opcode32::OP_32, rd, Funct3::ZEXT, rs, R_ZERO, Funct7::ADDUW_ZEXT)); } void RiscVEmitter::ROL(RiscVReg rd, RiscVReg rs1, RiscVReg rs2) { _assert_msg_(rd != R_ZERO, "%s should avoid write to zero", __func__); _assert_msg_(SupportsBitmanip('b'), "%s instruction unsupported without B", __func__); Write32(EncodeGR(Opcode32::OP, rd, Funct3::COUNT_SEXT_ROL, rs1, rs2, Funct7::COUNT_SEXT_ROT)); } void RiscVEmitter::ROLW(RiscVReg rd, RiscVReg rs1, RiscVReg rs2) { if (BitsSupported() == 32) { ROL(rd, rs1, rs2); return; } _assert_msg_(rd != R_ZERO, "%s should avoid write to zero", __func__); _assert_msg_(SupportsBitmanip('b'), "%s instruction unsupported without B", __func__); Write32(EncodeGR(Opcode32::OP_32, rd, Funct3::COUNT_SEXT_ROL, rs1, rs2, Funct7::COUNT_SEXT_ROT)); } void RiscVEmitter::ROR(RiscVReg rd, RiscVReg rs1, RiscVReg rs2) { _assert_msg_(rd != R_ZERO, "%s should avoid write to zero", __func__); _assert_msg_(SupportsBitmanip('b'), "%s instruction unsupported without B", __func__); Write32(EncodeGR(Opcode32::OP, rd, Funct3::ROR, rs1, rs2, Funct7::COUNT_SEXT_ROT)); } void RiscVEmitter::RORW(RiscVReg rd, RiscVReg rs1, RiscVReg rs2) { if (BitsSupported() == 32) { ROR(rd, rs1, rs2); return; } _assert_msg_(rd != R_ZERO, "%s should avoid write to zero", __func__); _assert_msg_(SupportsBitmanip('b'), "%s instruction unsupported without B", __func__); Write32(EncodeGR(Opcode32::OP_32, rd, Funct3::ROR, rs1, rs2, Funct7::COUNT_SEXT_ROT)); } void RiscVEmitter::RORI(RiscVReg rd, RiscVReg rs1, u32 shamt) { _assert_msg_(rd != R_ZERO, "%s should avoid write to zero", __func__); _assert_msg_(SupportsBitmanip('b'), "%s instruction unsupported without B", __func__); // Not sure if shamt=0 is legal or not, let's play it safe. _assert_msg_(shamt > 0 && shamt < BitsSupported(), "Shift %d out of range", shamt); Write32(EncodeGIShift(Opcode32::OP_IMM, rd, Funct3::ROR, rs1, shamt, Funct7::COUNT_SEXT_ROT)); } void RiscVEmitter::RORIW(RiscVReg rd, RiscVReg rs1, u32 shamt) { if (BitsSupported() == 32) { RORI(rd, rs1, shamt); return; } _assert_msg_(rd != R_ZERO, "%s should avoid write to zero", __func__); _assert_msg_(SupportsBitmanip('b'), "%s instruction unsupported without B", __func__); // Not sure if shamt=0 is legal or not, let's play it safe. _assert_msg_(shamt > 0 && shamt < 32, "Shift %d out of range", shamt); Write32(EncodeGIShift(Opcode32::OP_IMM_32, rd, Funct3::ROR, rs1, shamt, Funct7::COUNT_SEXT_ROT)); } void RiscVEmitter::ORC_B(RiscVReg rd, RiscVReg rs) { _assert_msg_(rd != R_ZERO, "%s should avoid write to zero", __func__); _assert_msg_(SupportsBitmanip('b'), "%s instruction unsupported without B", __func__); Write32(EncodeGR(Opcode32::OP_IMM, rd, Funct3::BEXT, rs, Funct5::ORC_B, Funct7::BSET_ORC)); } void RiscVEmitter::REV8(RiscVReg rd, RiscVReg rs) { _assert_msg_(rd != R_ZERO, "%s should avoid write to zero", __func__); _assert_msg_(SupportsBitmanip('b'), "%s instruction unsupported without B", __func__); const u32 shamt = BitsSupported() - 8; Write32(EncodeGIShift(Opcode32::OP_IMM, rd, Funct3::ROR, rs, shamt, Funct7::BINV_REV)); } void RiscVEmitter::CLMUL(RiscVReg rd, RiscVReg rs1, RiscVReg rs2) { _assert_msg_(rd != R_ZERO, "%s should avoid write to zero", __func__); _assert_msg_(SupportsBitmanip('c'), "%s instruction unsupported without B", __func__); Write32(EncodeGR(Opcode32::OP, rd, Funct3::CLMUL, rs1, rs2, Funct7::MINMAX_CLMUL)); } void RiscVEmitter::CLMULH(RiscVReg rd, RiscVReg rs1, RiscVReg rs2) { _assert_msg_(rd != R_ZERO, "%s should avoid write to zero", __func__); _assert_msg_(SupportsBitmanip('c'), "%s instruction unsupported without B", __func__); Write32(EncodeGR(Opcode32::OP, rd, Funct3::CLMULH, rs1, rs2, Funct7::MINMAX_CLMUL)); } void RiscVEmitter::CLMULR(RiscVReg rd, RiscVReg rs1, RiscVReg rs2) { _assert_msg_(rd != R_ZERO, "%s should avoid write to zero", __func__); _assert_msg_(SupportsBitmanip('c'), "%s instruction unsupported without B", __func__); Write32(EncodeGR(Opcode32::OP, rd, Funct3::CLMULR, rs1, rs2, Funct7::MINMAX_CLMUL)); } void RiscVEmitter::BCLR(RiscVReg rd, RiscVReg rs1, RiscVReg rs2) { _assert_msg_(rd != R_ZERO, "%s should avoid write to zero", __func__); _assert_msg_(SupportsBitmanip('s'), "%s instruction unsupported without B", __func__); Write32(EncodeGR(Opcode32::OP, rd, Funct3::BSET, rs1, rs2, Funct7::BCLREXT)); } void RiscVEmitter::BCLRI(RiscVReg rd, RiscVReg rs1, u32 shamt) { _assert_msg_(rd != R_ZERO, "%s should avoid write to zero", __func__); _assert_msg_(SupportsBitmanip('s'), "%s instruction unsupported without B", __func__); Write32(EncodeGIShift(Opcode32::OP_IMM, rd, Funct3::BSET, rs1, shamt, Funct7::BCLREXT)); } void RiscVEmitter::BEXT(RiscVReg rd, RiscVReg rs1, RiscVReg rs2) { _assert_msg_(rd != R_ZERO, "%s should avoid write to zero", __func__); _assert_msg_(SupportsBitmanip('s'), "%s instruction unsupported without B", __func__); Write32(EncodeGR(Opcode32::OP, rd, Funct3::BEXT, rs1, rs2, Funct7::BCLREXT)); } void RiscVEmitter::BEXTI(RiscVReg rd, RiscVReg rs1, u32 shamt) { _assert_msg_(rd != R_ZERO, "%s should avoid write to zero", __func__); _assert_msg_(SupportsBitmanip('s'), "%s instruction unsupported without B", __func__); Write32(EncodeGIShift(Opcode32::OP_IMM, rd, Funct3::BEXT, rs1, shamt, Funct7::BCLREXT)); } void RiscVEmitter::BINV(RiscVReg rd, RiscVReg rs1, RiscVReg rs2) { _assert_msg_(rd != R_ZERO, "%s should avoid write to zero", __func__); _assert_msg_(SupportsBitmanip('s'), "%s instruction unsupported without B", __func__); Write32(EncodeGR(Opcode32::OP, rd, Funct3::BSET, rs1, rs2, Funct7::BINV_REV)); } void RiscVEmitter::BINVI(RiscVReg rd, RiscVReg rs1, u32 shamt) { _assert_msg_(rd != R_ZERO, "%s should avoid write to zero", __func__); _assert_msg_(SupportsBitmanip('s'), "%s instruction unsupported without B", __func__); Write32(EncodeGIShift(Opcode32::OP_IMM, rd, Funct3::BSET, rs1, shamt, Funct7::BINV_REV)); } void RiscVEmitter::BSET(RiscVReg rd, RiscVReg rs1, RiscVReg rs2) { _assert_msg_(rd != R_ZERO, "%s should avoid write to zero", __func__); _assert_msg_(SupportsBitmanip('s'), "%s instruction unsupported without B", __func__); Write32(EncodeGR(Opcode32::OP, rd, Funct3::BSET, rs1, rs2, Funct7::BSET_ORC)); } void RiscVEmitter::BSETI(RiscVReg rd, RiscVReg rs1, u32 shamt) { _assert_msg_(rd != R_ZERO, "%s should avoid write to zero", __func__); _assert_msg_(SupportsBitmanip('s'), "%s instruction unsupported without B", __func__); Write32(EncodeGIShift(Opcode32::OP_IMM, rd, Funct3::BSET, rs1, shamt, Funct7::BSET_ORC)); } void RiscVEmitter::CZERO_EQZ(RiscVReg rd, RiscVReg rs1, RiscVReg rs2) { _assert_msg_(rd != R_ZERO, "%s should avoid write to zero", __func__); _assert_msg_(SupportsIntConditional(), "%s instruction unsupported without Zicond", __func__); Write32(EncodeR(Opcode32::OP, rd, Funct3::CZERO_EQZ, rs1, rs2, Funct7::CZERO)); } void RiscVEmitter::CZERO_NEZ(RiscVReg rd, RiscVReg rs1, RiscVReg rs2) { _assert_msg_(rd != R_ZERO, "%s should avoid write to zero", __func__); _assert_msg_(SupportsIntConditional(), "%s instruction unsupported without Zicond", __func__); Write32(EncodeR(Opcode32::OP, rd, Funct3::CZERO_NEZ, rs1, rs2, Funct7::CZERO)); } bool RiscVEmitter::AutoCompress() const { return SupportsCompressed() && autoCompress_; } void RiscVEmitter::C_ADDI4SPN(RiscVReg rd, u32 uimm10) { _assert_msg_(IsGPR(rd) && CanCompress(rd), "%s requires rd as GPR between X8 and X15", __func__); _assert_msg_((uimm10 & 0x03FC) == uimm10 && uimm10 != 0, "%s offset must fit in 10 bits and be a non-zero multiple of 4: %d", __func__, (int)uimm10); u8 imm2_3 = (ImmBit8(uimm10, 2) << 1) | ImmBit8(uimm10, 3); u8 imm9_8_7_6 = ImmBits8(uimm10, 6, 4); u8 imm5_4 = ImmBits8(uimm10, 4, 2); u8 imm_5_4_9_8_7_6_2_3 = (imm5_4 << 6) | (imm9_8_7_6 << 2) | imm2_3; Write16(EncodeCIW(Opcode16::C0, CompressReg(rd), imm_5_4_9_8_7_6_2_3, Funct3::C_ADDI4SPN)); } void RiscVEmitter::C_FLD(RiscVReg rd, RiscVReg rs1, u8 uimm8) { _assert_msg_(BitsSupported() <= 64 && FloatBitsSupported() == 64, "%s is only valid with RV32DC/RV64DC", __func__); _assert_msg_(IsFPR(rd) && CanCompress(rd), "%s requires rd as FPR between X8 and X15", __func__); _assert_msg_(IsGPR(rs1) && CanCompress(rs1), "%s requires rs1 as GPR between X8 and X15", __func__); Write16(EncodeCL8(Opcode16::C0, CompressReg(rd), CompressReg(rs1), uimm8, Funct3::C_FLD)); } void RiscVEmitter::C_LW(RiscVReg rd, RiscVReg rs1, u8 uimm7) { _assert_msg_(IsGPR(rd) && CanCompress(rd), "%s requires rd as GPR between X8 and X15", __func__); _assert_msg_(IsGPR(rs1) && CanCompress(rs1), "%s requires rs1 as GPR between X8 and X15", __func__); Write16(EncodeCL4(Opcode16::C0, CompressReg(rd), CompressReg(rs1), uimm7, Funct3::C_LW)); } void RiscVEmitter::C_FLW(RiscVReg rd, RiscVReg rs1, u8 uimm7) { _assert_msg_(BitsSupported() == 32 && FloatBitsSupported() >= 32, "%s is only valid with RV32FC", __func__); _assert_msg_(IsFPR(rd) && CanCompress(rd), "%s requires rd as FPR between X8 and X15", __func__); _assert_msg_(IsGPR(rs1) && CanCompress(rs1), "%s requires rs1 as GPR between X8 and X15", __func__); Write16(EncodeCL4(Opcode16::C0, CompressReg(rd), CompressReg(rs1), uimm7, Funct3::C_FLW)); } void RiscVEmitter::C_LD(RiscVReg rd, RiscVReg rs1, u8 uimm8) { _assert_msg_(BitsSupported() == 64 || BitsSupported() == 128, "%s is only valid with RV64/RV128", __func__); _assert_msg_(IsGPR(rd) && CanCompress(rd), "%s requires rd as GPR between X8 and X15", __func__); _assert_msg_(IsGPR(rs1) && CanCompress(rs1), "%s requires rs1 as GPR between X8 and X15", __func__); Write16(EncodeCL8(Opcode16::C0, CompressReg(rd), CompressReg(rs1), uimm8, Funct3::C_LD)); } void RiscVEmitter::C_FSD(RiscVReg rs2, RiscVReg rs1, u8 uimm8) { _assert_msg_(BitsSupported() <= 64 && FloatBitsSupported() == 64, "%s is only valid with RV32DC/RV64DC", __func__); _assert_msg_(IsFPR(rs2) && CanCompress(rs2), "%s requires rs2 as FPR between X8 and X15", __func__); _assert_msg_(IsGPR(rs1) && CanCompress(rs1), "%s requires rs1 as GPR between X8 and X15", __func__); Write16(EncodeCL8(Opcode16::C0, CompressReg(rs2), CompressReg(rs1), uimm8, Funct3::C_FSD)); } void RiscVEmitter::C_SW(RiscVReg rs2, RiscVReg rs1, u8 uimm7) { _assert_msg_(IsGPR(rs2) && CanCompress(rs2), "%s requires rs2 as GPR between X8 and X15", __func__); _assert_msg_(IsGPR(rs1) && CanCompress(rs1), "%s requires rs1 as GPR between X8 and X15", __func__); Write16(EncodeCS4(Opcode16::C0, CompressReg(rs2), CompressReg(rs1), uimm7, Funct3::C_SW)); } void RiscVEmitter::C_FSW(RiscVReg rs2, RiscVReg rs1, u8 uimm7) { _assert_msg_(BitsSupported() == 32 && FloatBitsSupported() >= 32, "%s is only valid with RV32FC", __func__); _assert_msg_(IsFPR(rs2) && CanCompress(rs2), "%s requires rs2 as FPR between X8 and X15", __func__); _assert_msg_(IsGPR(rs1) && CanCompress(rs1), "%s requires rs1 as GPR between X8 and X15", __func__); Write16(EncodeCS4(Opcode16::C0, CompressReg(rs2), CompressReg(rs1), uimm7, Funct3::C_FSW)); } void RiscVEmitter::C_SD(RiscVReg rs2, RiscVReg rs1, u8 uimm8) { _assert_msg_(BitsSupported() == 64 || BitsSupported() == 128, "%s is only valid with RV64/RV128", __func__); _assert_msg_(IsGPR(rs2) && CanCompress(rs2), "%s requires rs2 as GPR between X8 and X15", __func__); _assert_msg_(IsGPR(rs1) && CanCompress(rs1), "%s requires rs1 as GPR between X8 and X15", __func__); Write16(EncodeCS8(Opcode16::C0, CompressReg(rs2), CompressReg(rs1), uimm8, Funct3::C_SD)); } void RiscVEmitter::C_NOP() { Write16(EncodeCI(Opcode16::C1, 0, R_ZERO, Funct3::C_ADDI)); } void RiscVEmitter::C_ADDI(RiscVReg rd, s8 simm6) { _assert_msg_(IsGPR(rd) && rd != R_ZERO, "%s must write to GPR other than X0", __func__); _assert_msg_(simm6 != 0 && SignReduce32(simm6, 6) == (s32)simm6, "%s immediate must be non-zero and s5.0: %d", __func__, simm6); Write16(EncodeCI(Opcode16::C1, ImmBits8(simm6, 0, 6), rd, Funct3::C_ADDI)); } void RiscVEmitter::C_JAL(const void *dst) { _assert_msg_(BitsSupported() == 32, "%s is only valid with RV32C", __func__); _assert_msg_(CJInRange(GetCodePointer(), dst), "C_JAL destination is too far away (%p -> %p)", GetCodePointer(), dst); _assert_msg_(((intptr_t)dst & 1) == 0, "C_JAL destination should be aligned"); ptrdiff_t distance = (intptr_t)dst - (intptr_t)GetCodePointer(); Write32(EncodeCJ(Opcode16::C1, (s32)distance, Funct3::C_JAL)); } FixupBranch RiscVEmitter::C_JAL() { _assert_msg_(BitsSupported() == 32, "%s is only valid with RV32C", __func__); FixupBranch fixup{ GetCodePointer(), FixupBranchType::CJ }; Write16(EncodeCJ(Opcode16::C1, 0, Funct3::C_JAL)); return fixup; } void RiscVEmitter::C_ADDIW(RiscVReg rd, s8 simm6) { if (BitsSupported() == 32) { C_ADDI(rd, simm6); return; } _assert_msg_(IsGPR(rd) && rd != R_ZERO, "%s must write to GPR other than X0", __func__); _assert_msg_(SignReduce32(simm6, 6) == (s32)simm6, "%s immediate must be s5.0: %d", __func__, simm6); Write16(EncodeCI(Opcode16::C1, ImmBits8(simm6, 0, 6), rd, Funct3::C_ADDIW)); } void RiscVEmitter::C_LI(RiscVReg rd, s8 simm6) { _assert_msg_(IsGPR(rd) && rd != R_ZERO, "%s must write to GPR other than X0", __func__); _assert_msg_(SignReduce32(simm6, 6) == (s32)simm6, "%s immediate must be s5.0: %d", __func__, simm6); Write16(EncodeCI(Opcode16::C1, ImmBits8(simm6, 0, 6), rd, Funct3::C_LI)); } void RiscVEmitter::C_ADDI16SP(s32 simm10) { _assert_msg_(simm10 != 0 && SignReduce32(simm10, 10) == simm10, "%s immediate must be non-zero and s9.0: %d", __func__, simm10); _assert_msg_((simm10 & 0xF) == 0, "%s immediate must be multiple of 16: %d", __func__, simm10); u8 imm8_7_5 = (ImmBits8(simm10, 7, 2) << 1) | ImmBit8(simm10, 5); u8 imm4_6 = (ImmBit8(simm10, 4) << 1) | ImmBit8(simm10, 6); u8 imm9_4_6_8_7_5 = (ImmBit8(simm10, 9) << 5) | (imm4_6 << 3) | imm8_7_5; Write16(EncodeCI(Opcode16::C1, imm9_4_6_8_7_5, R_SP, Funct3::C_LUI)); } void RiscVEmitter::C_LUI(RiscVReg rd, s32 simm18) { _assert_msg_(IsGPR(rd) && rd != R_ZERO && rd != R_SP, "%s must write to GPR other than X0/X2", __func__); _assert_msg_(simm18 != 0 && SignReduce32(simm18, 18) == simm18, "%s immediate must be non-zero and s17.0: %d", __func__, simm18); _assert_msg_((simm18 & 0x0FFF) == 0, "%s immediate must not have lower 12 bits set: %d", __func__, simm18); u8 imm17_12 = ImmBits8(simm18, 12, 6); Write16(EncodeCI(Opcode16::C1, imm17_12, rd, Funct3::C_LUI)); } void RiscVEmitter::C_SRLI(RiscVReg rd, u8 uimm6) { _assert_msg_(IsGPR(rd), "%s must write to GPR", __func__); _assert_msg_(uimm6 != 0 && uimm6 <= (BitsSupported() == 64 ? 63 : 31), "%s immediate must be between 1 and %d: %d", __func__, BitsSupported() == 64 ? 63 : 31, uimm6); Write16(EncodeCB(Opcode16::C1, uimm6, CompressReg(rd), Funct2::C_SRLI, Funct3::C_ARITH)); } void RiscVEmitter::C_SRAI(RiscVReg rd, u8 uimm6) { _assert_msg_(IsGPR(rd), "%s must write to GPR", __func__); _assert_msg_(uimm6 != 0 && uimm6 <= (BitsSupported() == 64 ? 63 : 31), "%s immediate must be between 1 and %d: %d", __func__, BitsSupported() == 64 ? 63 : 31, uimm6); Write16(EncodeCB(Opcode16::C1, uimm6, CompressReg(rd), Funct2::C_SRAI, Funct3::C_ARITH)); } void RiscVEmitter::C_ANDI(RiscVReg rd, s8 simm6) { _assert_msg_(IsGPR(rd), "%s must write to GPR", __func__); // It seems like a mistake that this allows simm6 == 0 when c.li can be used... _assert_msg_(SignReduce32(simm6, 6) == (s32)simm6, "%s immediate must be s5.0: %d", __func__, simm6); Write16(EncodeCB(Opcode16::C1, ImmBits8(simm6, 0, 6), CompressReg(rd), Funct2::C_ANDI, Funct3::C_ARITH)); } void RiscVEmitter::C_SUB(RiscVReg rd, RiscVReg rs2) { _assert_msg_(IsGPR(rd) && IsGPR(rs2), "%s must use GPRs", __func__); Write16(EncodeCA(Opcode16::C1, CompressReg(rs2), Funct2::C_SUB, CompressReg(rd), Funct6::C_OP)); } void RiscVEmitter::C_XOR(RiscVReg rd, RiscVReg rs2) { _assert_msg_(IsGPR(rd) && IsGPR(rs2), "%s must use GPRs", __func__); Write16(EncodeCA(Opcode16::C1, CompressReg(rs2), Funct2::C_XOR, CompressReg(rd), Funct6::C_OP)); } void RiscVEmitter::C_OR(RiscVReg rd, RiscVReg rs2) { _assert_msg_(IsGPR(rd) && IsGPR(rs2), "%s must use GPRs", __func__); Write16(EncodeCA(Opcode16::C1, CompressReg(rs2), Funct2::C_OR, CompressReg(rd), Funct6::C_OP)); } void RiscVEmitter::C_AND(RiscVReg rd, RiscVReg rs2) { _assert_msg_(IsGPR(rd) && IsGPR(rs2), "%s must use GPRs", __func__); Write16(EncodeCA(Opcode16::C1, CompressReg(rs2), Funct2::C_AND, CompressReg(rd), Funct6::C_OP)); } void RiscVEmitter::C_SUBW(RiscVReg rd, RiscVReg rs2) { if (BitsSupported() == 32) { C_SUB(rd, rs2); return; } _assert_msg_(IsGPR(rd) && IsGPR(rs2), "%s must use GPRs", __func__); Write16(EncodeCA(Opcode16::C1, CompressReg(rs2), Funct2::C_SUBW, CompressReg(rd), Funct6::C_OP_32)); } void RiscVEmitter::C_ADDW(RiscVReg rd, RiscVReg rs2) { if (BitsSupported() == 32) { C_ADD(rd, rs2); return; } _assert_msg_(IsGPR(rd) && IsGPR(rs2), "%s must use GPRs", __func__); Write16(EncodeCA(Opcode16::C1, CompressReg(rs2), Funct2::C_ADDW, CompressReg(rd), Funct6::C_OP_32)); } void RiscVEmitter::C_J(const void *dst) { _assert_msg_(CJInRange(GetCodePointer(), dst), "C_J destination is too far away (%p -> %p)", GetCodePointer(), dst); _assert_msg_(((intptr_t)dst & 1) == 0, "C_J destination should be aligned"); ptrdiff_t distance = (intptr_t)dst - (intptr_t)GetCodePointer(); Write16(EncodeCJ(Opcode16::C1, (s32)distance, Funct3::C_J)); } void RiscVEmitter::C_BEQZ(RiscVReg rs1, const void *dst) { _assert_msg_(IsGPR(rs1), "%s must use a GPR", __func__); _assert_msg_(CBInRange(GetCodePointer(), dst), "%s destination is too far away (%p -> %p)", __func__, GetCodePointer(), dst); ptrdiff_t distance = (intptr_t)dst - (intptr_t)GetCodePointer(); Write16(EncodeCB(Opcode16::C1, (s32)distance, CompressReg(rs1), Funct3::C_BEQZ)); } void RiscVEmitter::C_BNEZ(RiscVReg rs1, const void *dst) { _assert_msg_(IsGPR(rs1), "%s must use a GPR", __func__); _assert_msg_(CBInRange(GetCodePointer(), dst), "%s destination is too far away (%p -> %p)", __func__, GetCodePointer(), dst); ptrdiff_t distance = (intptr_t)dst - (intptr_t)GetCodePointer(); Write16(EncodeCB(Opcode16::C1, (s32)distance, CompressReg(rs1), Funct3::C_BNEZ)); } FixupBranch RiscVEmitter::C_J() { FixupBranch fixup{ GetCodePointer(), FixupBranchType::CJ }; Write16(EncodeCJ(Opcode16::C1, 0, Funct3::C_J)); return fixup; } FixupBranch RiscVEmitter::C_BEQZ(RiscVReg rs1) { _assert_msg_(IsGPR(rs1), "%s must use a GPR", __func__); FixupBranch fixup{ GetCodePointer(), FixupBranchType::CB }; Write16(EncodeCB(Opcode16::C1, 0, CompressReg(rs1), Funct3::C_BEQZ)); return fixup; } FixupBranch RiscVEmitter::C_BNEZ(RiscVReg rs1) { _assert_msg_(IsGPR(rs1), "%s must use a GPR", __func__); FixupBranch fixup{ GetCodePointer(), FixupBranchType::CB }; Write16(EncodeCB(Opcode16::C1, 0, CompressReg(rs1), Funct3::C_BNEZ)); return fixup; } void RiscVEmitter::C_SLLI(RiscVReg rd, u8 uimm6) { _assert_msg_(IsGPR(rd) && rd != R_ZERO, "%s must write to GPR other than X0", __func__); _assert_msg_(uimm6 != 0 && uimm6 <= (BitsSupported() == 64 ? 63 : 31), "%s immediate must be between 1 and %d: %d", __func__, BitsSupported() == 64 ? 63 : 31, uimm6); Write16(EncodeCI(Opcode16::C2, uimm6, rd, Funct3::C_SLLI)); } void RiscVEmitter::C_FLDSP(RiscVReg rd, u32 uimm9) { _assert_msg_(BitsSupported() <= 64 && FloatBitsSupported() == 64, "%s is only valid with RV32DC/RV64DC", __func__); _assert_msg_(IsFPR(rd), "%s must write to FPR", __func__); _assert_msg_((uimm9 & 0x01F8) == uimm9, "%s offset must fit in 9 bits and be a multiple of 8: %d", __func__, (int)uimm9); u8 imm8_7_6 = ImmBits8(uimm9, 6, 3); u8 imm5_4_3 = ImmBits8(uimm9, 3, 3); u8 imm5_4_3_8_7_6 = (imm5_4_3 << 3) | imm8_7_6; Write16(EncodeCI(Opcode16::C2, imm5_4_3_8_7_6, rd, Funct3::C_FLDSP)); } void RiscVEmitter::C_LWSP(RiscVReg rd, u8 uimm8) { _assert_msg_(IsGPR(rd) && rd != R_ZERO, "%s must write to GPR other than X0", __func__); _assert_msg_((uimm8 & 0xFC) == uimm8, "%s offset must fit in 8 bits and be a multiple of 4: %d", __func__, (int)uimm8); u8 imm7_6 = ImmBits8(uimm8, 6, 2); u8 imm5_4_3_2 = ImmBits8(uimm8, 2, 4); u8 imm5_4_3_2_7_6 = (imm5_4_3_2 << 2) | imm7_6; Write16(EncodeCI(Opcode16::C2, imm5_4_3_2_7_6, rd, Funct3::C_LWSP)); } void RiscVEmitter::C_FLWSP(RiscVReg rd, u8 uimm8) { _assert_msg_(BitsSupported() == 32 && FloatBitsSupported() >= 32, "%s is only valid with RV32FC", __func__); _assert_msg_(IsFPR(rd), "%s must write to FPR", __func__); _assert_msg_((uimm8 & 0xFC) == uimm8, "%s offset must fit in 8 bits and be a multiple of 4: %d", __func__, (int)uimm8); u8 imm7_6 = ImmBits8(uimm8, 6, 2); u8 imm5_4_3_2 = ImmBits8(uimm8, 2, 4); u8 imm5_4_3_2_7_6 = (imm5_4_3_2 << 2) | imm7_6; Write16(EncodeCI(Opcode16::C2, imm5_4_3_2_7_6, rd, Funct3::C_FLWSP)); } void RiscVEmitter::C_LDSP(RiscVReg rd, u32 uimm9) { _assert_msg_(BitsSupported() == 64 || BitsSupported() == 128, "%s is only valid with RV64/RV128", __func__); _assert_msg_(IsGPR(rd) && rd != R_ZERO, "%s must write to GPR other than X0", __func__); _assert_msg_((uimm9 & 0x01F8) == uimm9, "%s offset must fit in 9 bits and be a multiple of 8: %d", __func__, (int)uimm9); u8 imm8_7_6 = ImmBits8(uimm9, 6, 3); u8 imm5_4_3 = ImmBits8(uimm9, 3, 3); u8 imm5_4_3_8_7_6 = (imm5_4_3 << 3) | imm8_7_6; Write16(EncodeCI(Opcode16::C2, imm5_4_3_8_7_6, rd, Funct3::C_LDSP)); } void RiscVEmitter::C_JR(RiscVReg rs1) { _assert_msg_(IsGPR(rs1) && rs1 != R_ZERO, "%s must read from GPR other than X0", __func__); Write16(EncodeCR(Opcode16::C2, R_ZERO, rs1, Funct4::C_JR)); } void RiscVEmitter::C_MV(RiscVReg rd, RiscVReg rs2) { _assert_msg_(IsGPR(rd) && rd != R_ZERO, "%s must write to GPR other than X0", __func__); _assert_msg_(IsGPR(rs2) && rs2 != R_ZERO, "%s must read from GPR other than X0", __func__); Write16(EncodeCR(Opcode16::C2, rs2, rd, Funct4::C_MV)); } void RiscVEmitter::C_EBREAK() { Write16(EncodeCR(Opcode16::C2, R_ZERO, R_ZERO, Funct4::C_JALR)); } void RiscVEmitter::C_JALR(RiscVReg rs1) { _assert_msg_(IsGPR(rs1) && rs1 != R_ZERO, "%s must read from GPR other than X0", __func__); Write16(EncodeCR(Opcode16::C2, R_ZERO, rs1, Funct4::C_JALR)); } void RiscVEmitter::C_ADD(RiscVReg rd, RiscVReg rs2) { _assert_msg_(IsGPR(rd) && rd != R_ZERO, "%s must write to GPR other than X0", __func__); _assert_msg_(IsGPR(rs2) && rs2 != R_ZERO, "%s must read from a GPR other than X0", __func__); Write16(EncodeCR(Opcode16::C2, rs2, rd, Funct4::C_ADD)); } void RiscVEmitter::C_FSDSP(RiscVReg rs2, u32 uimm9) { _assert_msg_(BitsSupported() <= 64 && FloatBitsSupported() == 64, "%s is only valid with RV32DC/RV64DC", __func__); _assert_msg_(IsFPR(rs2), "%s must read from FPR", __func__); _assert_msg_((uimm9 & 0x01F8) == uimm9, "%s offset must fit in 9 bits and be a multiple of 8: %d", __func__, (int)uimm9); u8 imm8_7_6 = ImmBits8(uimm9, 6, 3); u8 imm5_4_3 = ImmBits8(uimm9, 3, 3); u8 imm5_4_3_8_7_6 = (imm5_4_3 << 3) | imm8_7_6; Write16(EncodeCSS(Opcode16::C2, rs2, imm5_4_3_8_7_6, Funct3::C_FSDSP)); } void RiscVEmitter::C_SWSP(RiscVReg rs2, u8 uimm8) { _assert_msg_(IsGPR(rs2), "%s must read from GPR", __func__); _assert_msg_((uimm8 & 0xFC) == uimm8, "%s offset must fit in 8 bits and be a multiple of 4: %d", __func__, (int)uimm8); u8 imm7_6 = ImmBits8(uimm8, 6, 2); u8 imm5_4_3_2 = ImmBits8(uimm8, 2, 4); u8 imm5_4_3_2_7_6 = (imm5_4_3_2 << 2) | imm7_6; Write16(EncodeCSS(Opcode16::C2, rs2, imm5_4_3_2_7_6, Funct3::C_SWSP)); } void RiscVEmitter::C_FSWSP(RiscVReg rs2, u8 uimm8) { _assert_msg_(BitsSupported() == 32 && FloatBitsSupported() >= 32, "%s is only valid with RV32FC", __func__); _assert_msg_(IsFPR(rs2), "%s must read from FPR", __func__); _assert_msg_((uimm8 & 0xFC) == uimm8, "%s offset must fit in 8 bits and be a multiple of 4: %d", __func__, (int)uimm8); u8 imm7_6 = ImmBits8(uimm8, 6, 2); u8 imm5_4_3_2 = ImmBits8(uimm8, 2, 4); u8 imm5_4_3_2_7_6 = (imm5_4_3_2 << 2) | imm7_6; Write16(EncodeCSS(Opcode16::C2, rs2, imm5_4_3_2_7_6, Funct3::C_FSWSP)); } void RiscVEmitter::C_SDSP(RiscVReg rs2, u32 uimm9) { _assert_msg_(BitsSupported() == 64 || BitsSupported() == 128, "%s is only valid with RV64/RV128", __func__); _assert_msg_(IsGPR(rs2), "%s must read from GPR", __func__); _assert_msg_((uimm9 & 0x01F8) == uimm9, "%s offset must fit in 9 bits and be a multiple of 8: %d", __func__, (int)uimm9); u8 imm8_7_6 = ImmBits8(uimm9, 6, 3); u8 imm5_4_3 = ImmBits8(uimm9, 3, 3); u8 imm5_4_3_8_7_6 = (imm5_4_3 << 3) | imm8_7_6; Write16(EncodeCSS(Opcode16::C2, rs2, imm5_4_3_8_7_6, Funct3::C_SDSP)); } void RiscVEmitter::C_LBU(RiscVReg rd, RiscVReg rs1, u8 uimm2) { _assert_msg_(SupportsCompressed('b'), "Zcb compressed instructions unsupported"); _assert_msg_(IsGPR(rd) && IsGPR(rs1), "%s must use GPRs", __func__); _assert_msg_((uimm2 & 3) == uimm2, "%s offset must be 0-3", __func__); Write16(EncodeCLB(Opcode16::C0, CompressReg(rd), uimm2, CompressReg(rs1), Funct6::C_LBU)); } void RiscVEmitter::C_LHU(RiscVReg rd, RiscVReg rs1, u8 uimm2) { _assert_msg_(SupportsCompressed('b'), "Zcb compressed instructions unsupported"); _assert_msg_(IsGPR(rd) && IsGPR(rs1), "%s must use GPRs", __func__); _assert_msg_((uimm2 & 2) == uimm2, "%s offset must be 0 or 2", __func__); Write16(EncodeCLH(Opcode16::C0, CompressReg(rd), uimm2 >> 1, false, CompressReg(rs1), Funct6::C_LH)); } void RiscVEmitter::C_LH(RiscVReg rd, RiscVReg rs1, u8 uimm2) { _assert_msg_(SupportsCompressed('b'), "Zcb compressed instructions unsupported"); _assert_msg_(IsGPR(rd) && IsGPR(rs1), "%s must use GPRs", __func__); _assert_msg_((uimm2 & 2) == uimm2, "%s offset must be 0 or 2", __func__); Write16(EncodeCLH(Opcode16::C0, CompressReg(rd), uimm2 >> 1, true, CompressReg(rs1), Funct6::C_LH)); } void RiscVEmitter::C_SB(RiscVReg rs2, RiscVReg rs1, u8 uimm2) { _assert_msg_(SupportsCompressed('b'), "Zcb compressed instructions unsupported"); _assert_msg_(IsGPR(rs2) && IsGPR(rs1), "%s must use GPRs", __func__); _assert_msg_((uimm2 & 3) == uimm2, "%s offset must be 0-3", __func__); Write16(EncodeCSB(Opcode16::C0, CompressReg(rs2), uimm2, CompressReg(rs1), Funct6::C_SB)); } void RiscVEmitter::C_SH(RiscVReg rs2, RiscVReg rs1, u8 uimm2) { _assert_msg_(SupportsCompressed('b'), "Zcb compressed instructions unsupported"); _assert_msg_(IsGPR(rs2) && IsGPR(rs1), "%s must use GPRs", __func__); _assert_msg_((uimm2 & 2) == uimm2, "%s offset must be 0 or 2", __func__); Write16(EncodeCSH(Opcode16::C0, CompressReg(rs2), uimm2 >> 1, false, CompressReg(rs1), Funct6::C_SH)); } void RiscVEmitter::C_ZEXT_B(RiscVReg rd) { _assert_msg_(SupportsCompressed('b'), "Zcb compressed instructions unsupported"); _assert_msg_(IsGPR(rd), "%s must use GPRs", __func__); Write16(EncodeCU(Opcode16::C1, Funct5::C_ZEXT_B, CompressReg(rd), Funct6::C_OP_32)); } void RiscVEmitter::C_SEXT_B(RiscVReg rd) { _assert_msg_(SupportsCompressed('b'), "Zcb compressed instructions unsupported"); _assert_msg_(SupportsBitmanip('b'), "Zbb bitmanip instructions unsupported"); _assert_msg_(IsGPR(rd), "%s must use GPRs", __func__); Write16(EncodeCU(Opcode16::C1, Funct5::C_SEXT_B, CompressReg(rd), Funct6::C_OP_32)); } void RiscVEmitter::C_ZEXT_H(RiscVReg rd) { _assert_msg_(SupportsCompressed('b'), "Zcb compressed instructions unsupported"); _assert_msg_(SupportsBitmanip('b'), "Zbb bitmanip instructions unsupported"); _assert_msg_(IsGPR(rd), "%s must use GPRs", __func__); Write16(EncodeCU(Opcode16::C1, Funct5::C_ZEXT_H, CompressReg(rd), Funct6::C_OP_32)); } void RiscVEmitter::C_SEXT_H(RiscVReg rd) { _assert_msg_(SupportsCompressed('b'), "Zcb compressed instructions unsupported"); _assert_msg_(SupportsBitmanip('b'), "Zbb bitmanip instructions unsupported"); _assert_msg_(IsGPR(rd), "%s must use GPRs", __func__); Write16(EncodeCU(Opcode16::C1, Funct5::C_SEXT_H, CompressReg(rd), Funct6::C_OP_32)); } void RiscVEmitter::C_ZEXT_W(RiscVReg rd) { _assert_msg_(SupportsCompressed('b'), "Zcb compressed instructions unsupported"); _assert_msg_(SupportsBitmanip('a'), "Zba bitmanip instructions unsupported"); _assert_msg_(IsGPR(rd), "%s must use GPRs", __func__); Write16(EncodeCU(Opcode16::C1, Funct5::C_ZEXT_W, CompressReg(rd), Funct6::C_OP_32)); } void RiscVEmitter::C_NOT(RiscVReg rd) { _assert_msg_(SupportsCompressed('b'), "Zcb compressed instructions unsupported"); _assert_msg_(IsGPR(rd), "%s must use GPRs", __func__); Write16(EncodeCU(Opcode16::C1, Funct5::C_NOT, CompressReg(rd), Funct6::C_OP_32)); } void RiscVEmitter::C_MUL(RiscVReg rd, RiscVReg rs2) { _assert_msg_(SupportsCompressed('b'), "Zcb compressed instructions unsupported"); _assert_msg_(SupportsMulDiv(true), "%s instruction unsupported without M/Zmmul", __func__); _assert_msg_(IsGPR(rd), "%s must use GPRs", __func__); Write16(EncodeCA(Opcode16::C1, CompressReg(rs2), Funct2::C_MUL, CompressReg(rd), Funct6::C_OP_32)); } void RiscVCodeBlock::PoisonMemory(int offset) { // So we can adjust region to writable space. Might be zero. ptrdiff_t writable = writable_ - code_; u32 *ptr = (u32 *)(region + offset + writable); u32 *maxptr = (u32 *)(region + region_size - offset + writable); // This will only write an even multiple of u32, but not much else to do. // RiscV: 0x00100073 = EBREAK, 0x9002 = C.EBREAK while (ptr + 1 <= maxptr) *ptr++ = 0x00100073; if (SupportsCompressed() && ptr < maxptr && (intptr_t)maxptr - (intptr_t)ptr >= 2) *(u16 *)ptr = 0x9002; } };