// Copyright (c) 2012- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #include #include #include "Common/Data/Convert/SmallDataConvert.h" #include "Common/Profiler/Profiler.h" #include "Common/GPU/Vulkan/VulkanRenderManager.h" #include "Common/Log.h" #include "Common/MemoryUtil.h" #include "Common/TimeUtil.h" #include "Core/MemMap.h" #include "Core/System.h" #include "Core/Reporting.h" #include "Core/Config.h" #include "Core/CoreTiming.h" #include "GPU/Math3D.h" #include "GPU/GPUState.h" #include "GPU/ge_constants.h" #include "Common/GPU/Vulkan/VulkanContext.h" #include "Common/GPU/Vulkan/VulkanMemory.h" #include "GPU/Common/SplineCommon.h" #include "GPU/Common/TransformCommon.h" #include "GPU/Common/VertexDecoderCommon.h" #include "GPU/Common/SoftwareTransformCommon.h" #include "GPU/Common/DrawEngineCommon.h" #include "GPU/Common/ShaderUniforms.h" #include "GPU/Debugger/Debugger.h" #include "GPU/Vulkan/DrawEngineVulkan.h" #include "GPU/Vulkan/TextureCacheVulkan.h" #include "GPU/Vulkan/ShaderManagerVulkan.h" #include "GPU/Vulkan/PipelineManagerVulkan.h" #include "GPU/Vulkan/FramebufferManagerVulkan.h" #include "GPU/Vulkan/GPU_Vulkan.h" using namespace PPSSPP_VK; enum { VERTEX_CACHE_SIZE = 8192 * 1024 }; #define VERTEXCACHE_DECIMATION_INTERVAL 17 #define DESCRIPTORSET_DECIMATION_INTERVAL 1 // Temporarily cut to 1. Handle reuse breaks this when textures get deleted. enum { VAI_KILL_AGE = 120, VAI_UNRELIABLE_KILL_AGE = 240, VAI_UNRELIABLE_KILL_MAX = 4 }; enum { TRANSFORMED_VERTEX_BUFFER_SIZE = VERTEX_BUFFER_MAX * sizeof(TransformedVertex) }; DrawEngineVulkan::DrawEngineVulkan(Draw::DrawContext *draw) : draw_(draw), vai_(1024) { decOptions_.expandAllWeightsToFloat = false; decOptions_.expand8BitNormalsToFloat = false; // Allocate nicely aligned memory. Maybe graphics drivers will appreciate it. // All this is a LOT of memory, need to see if we can cut down somehow. decoded = (u8 *)AllocateMemoryPages(DECODED_VERTEX_BUFFER_SIZE, MEM_PROT_READ | MEM_PROT_WRITE); decIndex = (u16 *)AllocateMemoryPages(DECODED_INDEX_BUFFER_SIZE, MEM_PROT_READ | MEM_PROT_WRITE); indexGen.Setup(decIndex); } void DrawEngineVulkan::InitDeviceObjects() { // All resources we need for PSP drawing. Usually only bindings 0 and 2-4 are populated. // TODO: Make things more flexible, so we at least have specialized layouts for input attachments and tess. // Note that it becomes a support matrix.. VkDescriptorSetLayoutBinding bindings[DRAW_BINDING_COUNT]{}; bindings[0].descriptorCount = 1; bindings[0].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; bindings[0].stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT; bindings[0].binding = DRAW_BINDING_TEXTURE; bindings[1].descriptorCount = 1; bindings[1].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; bindings[1].stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT; bindings[1].binding = DRAW_BINDING_2ND_TEXTURE; bindings[2].descriptorCount = 1; bindings[2].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; // sampler is ignored though. bindings[2].stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT; bindings[2].binding = DRAW_BINDING_DEPAL_TEXTURE; bindings[3].descriptorCount = 1; bindings[3].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC; bindings[3].stageFlags = VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT; if (gstate_c.Use(GPU_USE_GS_CULLING)) bindings[3].stageFlags |= VK_SHADER_STAGE_GEOMETRY_BIT; bindings[3].binding = DRAW_BINDING_DYNUBO_BASE; bindings[4].descriptorCount = 1; bindings[4].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC; bindings[4].stageFlags = VK_SHADER_STAGE_VERTEX_BIT; bindings[4].binding = DRAW_BINDING_DYNUBO_LIGHT; bindings[5].descriptorCount = 1; bindings[5].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC; bindings[5].stageFlags = VK_SHADER_STAGE_VERTEX_BIT; bindings[5].binding = DRAW_BINDING_DYNUBO_BONE; // Used only for hardware tessellation. bindings[6].descriptorCount = 1; bindings[6].descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER; bindings[6].stageFlags = VK_SHADER_STAGE_VERTEX_BIT; bindings[6].binding = DRAW_BINDING_TESS_STORAGE_BUF; bindings[7].descriptorCount = 1; bindings[7].descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER; bindings[7].stageFlags = VK_SHADER_STAGE_VERTEX_BIT; bindings[7].binding = DRAW_BINDING_TESS_STORAGE_BUF_WU; bindings[8].descriptorCount = 1; bindings[8].descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER; bindings[8].stageFlags = VK_SHADER_STAGE_VERTEX_BIT; bindings[8].binding = DRAW_BINDING_TESS_STORAGE_BUF_WV; bindings[9].descriptorCount = 1; bindings[9].descriptorType = VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT; bindings[9].stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT; bindings[9].binding = DRAW_BINDING_INPUT_ATTACHMENT; VulkanContext *vulkan = (VulkanContext *)draw_->GetNativeObject(Draw::NativeObject::CONTEXT); VkDevice device = vulkan->GetDevice(); VkDescriptorSetLayoutCreateInfo dsl{ VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO }; dsl.bindingCount = ARRAY_SIZE(bindings); dsl.pBindings = bindings; VkResult res = vkCreateDescriptorSetLayout(device, &dsl, nullptr, &descriptorSetLayout_); _dbg_assert_(VK_SUCCESS == res); vulkan->SetDebugName(descriptorSetLayout_, VK_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT, "drawengine_d_layout"); static constexpr int DEFAULT_DESC_POOL_SIZE = 512; std::vector dpTypes; dpTypes.resize(5); dpTypes[0].descriptorCount = DEFAULT_DESC_POOL_SIZE * 3; dpTypes[0].type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC; dpTypes[1].descriptorCount = DEFAULT_DESC_POOL_SIZE * 3; // Don't use these for tess anymore, need max three per set. dpTypes[1].type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; dpTypes[2].descriptorCount = DEFAULT_DESC_POOL_SIZE * 3; // TODO: Use a separate layout when no spline stuff is needed to reduce the need for these. dpTypes[2].type = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER; dpTypes[3].descriptorCount = DEFAULT_DESC_POOL_SIZE; // TODO: Use a separate layout when no spline stuff is needed to reduce the need for these. dpTypes[3].type = VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT; dpTypes[4].descriptorCount = DEFAULT_DESC_POOL_SIZE; // For the frame global uniform buffer. Might need to allocate multiple times. dpTypes[4].type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER; VkDescriptorPoolCreateInfo dp{ VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO }; // Don't want to mess around with individually freeing these. // We zap the whole pool every few frames. dp.flags = 0; dp.maxSets = DEFAULT_DESC_POOL_SIZE; // We are going to use one-shot descriptors in the initial implementation. Might look into caching them // if creating and updating them turns out to be expensive. for (int i = 0; i < VulkanContext::MAX_INFLIGHT_FRAMES; i++) { frame_[i].descPool.Create(vulkan, dp, dpTypes); // Note that pushUBO is also used for tessellation data (search for SetPushBuffer), and to upload // the null texture. This should be cleaned up... frame_[i].pushUBO = new VulkanPushBuffer(vulkan, "pushUBO", 8 * 1024 * 1024, VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_SRC_BIT, PushBufferType::CPU_TO_GPU); frame_[i].pushVertex = new VulkanPushBuffer(vulkan, "pushVertex", 2 * 1024 * 1024, VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, PushBufferType::CPU_TO_GPU); frame_[i].pushIndex = new VulkanPushBuffer(vulkan, "pushIndex", 1 * 1024 * 1024, VK_BUFFER_USAGE_INDEX_BUFFER_BIT, PushBufferType::CPU_TO_GPU); } VkPipelineLayoutCreateInfo pl{ VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO }; pl.pPushConstantRanges = nullptr; pl.pushConstantRangeCount = 0; VkDescriptorSetLayout frameDescSetLayout = (VkDescriptorSetLayout)draw_->GetNativeObject(Draw::NativeObject::FRAME_DATA_DESC_SET_LAYOUT); VkDescriptorSetLayout layouts[2] = { frameDescSetLayout, descriptorSetLayout_}; pl.setLayoutCount = ARRAY_SIZE(layouts); pl.pSetLayouts = layouts; pl.flags = 0; res = vkCreatePipelineLayout(device, &pl, nullptr, &pipelineLayout_); _dbg_assert_(VK_SUCCESS == res); vulkan->SetDebugName(pipelineLayout_, VK_OBJECT_TYPE_PIPELINE_LAYOUT, "drawengine_p_layout"); VkSamplerCreateInfo samp{ VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO }; samp.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; samp.addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; samp.addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; samp.magFilter = VK_FILTER_LINEAR; samp.minFilter = VK_FILTER_LINEAR; samp.maxLod = VK_LOD_CLAMP_NONE; // recommended by best practices, has no effect since we don't use mipmaps. res = vkCreateSampler(device, &samp, nullptr, &samplerSecondaryLinear_); samp.magFilter = VK_FILTER_NEAREST; samp.minFilter = VK_FILTER_NEAREST; res = vkCreateSampler(device, &samp, nullptr, &samplerSecondaryNearest_); _dbg_assert_(VK_SUCCESS == res); res = vkCreateSampler(device, &samp, nullptr, &nullSampler_); _dbg_assert_(VK_SUCCESS == res); vertexCache_ = new VulkanPushBuffer(vulkan, "pushVertexCache", VERTEX_CACHE_SIZE, VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, PushBufferType::CPU_TO_GPU); tessDataTransferVulkan = new TessellationDataTransferVulkan(vulkan); tessDataTransfer = tessDataTransferVulkan; draw_->SetInvalidationCallback(std::bind(&DrawEngineVulkan::Invalidate, this, std::placeholders::_1)); } DrawEngineVulkan::~DrawEngineVulkan() { FreeMemoryPages(decoded, DECODED_VERTEX_BUFFER_SIZE); FreeMemoryPages(decIndex, DECODED_INDEX_BUFFER_SIZE); DestroyDeviceObjects(); } void DrawEngineVulkan::FrameData::Destroy(VulkanContext *vulkan) { descPool.Destroy(); if (pushUBO) { pushUBO->Destroy(vulkan); delete pushUBO; pushUBO = nullptr; } if (pushVertex) { pushVertex->Destroy(vulkan); delete pushVertex; pushVertex = nullptr; } if (pushIndex) { pushIndex->Destroy(vulkan); delete pushIndex; pushIndex = nullptr; } } void DrawEngineVulkan::DestroyDeviceObjects() { if (!draw_) { // We've already done this from LostDevice. return; } VulkanContext *vulkan = (VulkanContext *)draw_->GetNativeObject(Draw::NativeObject::CONTEXT); draw_->SetInvalidationCallback(InvalidationCallback()); delete tessDataTransferVulkan; tessDataTransfer = nullptr; tessDataTransferVulkan = nullptr; for (int i = 0; i < VulkanContext::MAX_INFLIGHT_FRAMES; i++) { frame_[i].Destroy(vulkan); } if (samplerSecondaryNearest_ != VK_NULL_HANDLE) vulkan->Delete().QueueDeleteSampler(samplerSecondaryNearest_); if (samplerSecondaryLinear_ != VK_NULL_HANDLE) vulkan->Delete().QueueDeleteSampler(samplerSecondaryLinear_); if (nullSampler_ != VK_NULL_HANDLE) vulkan->Delete().QueueDeleteSampler(nullSampler_); if (pipelineLayout_ != VK_NULL_HANDLE) vulkan->Delete().QueueDeletePipelineLayout(pipelineLayout_); if (descriptorSetLayout_ != VK_NULL_HANDLE) vulkan->Delete().QueueDeleteDescriptorSetLayout(descriptorSetLayout_); if (vertexCache_) { vertexCache_->Destroy(vulkan); delete vertexCache_; vertexCache_ = nullptr; } // Need to clear this to get rid of all remaining references to the dead buffers. vai_.Iterate([](uint32_t hash, VertexArrayInfoVulkan *vai) { delete vai; }); vai_.Clear(); } void DrawEngineVulkan::DeviceLost() { DestroyDeviceObjects(); DirtyAllUBOs(); draw_ = nullptr; } void DrawEngineVulkan::DeviceRestore(Draw::DrawContext *draw) { draw_ = draw; InitDeviceObjects(); } void DrawEngineVulkan::BeginFrame() { gpuStats.numTrackedVertexArrays = (int)vai_.size(); lastPipeline_ = nullptr; FrameData *frame = &GetCurFrame(); // First reset all buffers, then begin. This is so that Reset can free memory and Begin can allocate it, // if growing the buffer is needed. Doing it this way will reduce fragmentation if more than one buffer // needs to grow in the same frame. The state where many buffers are reset can also be used to // defragment memory. frame->pushUBO->Reset(); frame->pushVertex->Reset(); frame->pushIndex->Reset(); VulkanContext *vulkan = (VulkanContext *)draw_->GetNativeObject(Draw::NativeObject::CONTEXT); frame->pushUBO->Begin(vulkan); frame->pushVertex->Begin(vulkan); frame->pushIndex->Begin(vulkan); frame->frameDescSetUpdated = false; tessDataTransferVulkan->SetPushBuffer(frame->pushUBO); DirtyAllUBOs(); // Wipe the vertex cache if it's grown too large. if (vertexCache_->GetTotalSize() > VERTEX_CACHE_SIZE) { vertexCache_->Destroy(vulkan); delete vertexCache_; // orphans the buffers, they'll get deleted once no longer used by an in-flight frame. vertexCache_ = new VulkanPushBuffer(vulkan, "vertexCacheR", VERTEX_CACHE_SIZE, VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, PushBufferType::CPU_TO_GPU); vai_.Iterate([&](uint32_t hash, VertexArrayInfoVulkan *vai) { delete vai; }); vai_.Clear(); } vertexCache_->BeginNoReset(); if (--descDecimationCounter_ <= 0) { frame->descPool.Reset(); descDecimationCounter_ = DESCRIPTORSET_DECIMATION_INTERVAL; } if (--decimationCounter_ <= 0) { decimationCounter_ = VERTEXCACHE_DECIMATION_INTERVAL; const int threshold = gpuStats.numFlips - VAI_KILL_AGE; const int unreliableThreshold = gpuStats.numFlips - VAI_UNRELIABLE_KILL_AGE; int unreliableLeft = VAI_UNRELIABLE_KILL_MAX; vai_.Iterate([&](uint32_t hash, VertexArrayInfoVulkan *vai) { bool kill; if (vai->status == VertexArrayInfoVulkan::VAI_UNRELIABLE) { // We limit killing unreliable so we don't rehash too often. kill = vai->lastFrame < unreliableThreshold && --unreliableLeft >= 0; } else { kill = vai->lastFrame < threshold; } if (kill) { // This is actually quite safe. vai_.Remove(hash); delete vai; } }); } vai_.Maintain(); } void DrawEngineVulkan::EndFrame() { FrameData *frame = &GetCurFrame(); stats_.pushUBOSpaceUsed = (int)frame->pushUBO->GetOffset(); stats_.pushVertexSpaceUsed = (int)frame->pushVertex->GetOffset(); stats_.pushIndexSpaceUsed = (int)frame->pushIndex->GetOffset(); frame->pushUBO->End(); frame->pushVertex->End(); frame->pushIndex->End(); vertexCache_->End(); } void DrawEngineVulkan::DecodeVertsToPushBuffer(VulkanPushBuffer *push, uint32_t *bindOffset, VkBuffer *vkbuf) { u8 *dest = decoded; // Figure out how much pushbuffer space we need to allocate. if (push) { int vertsToDecode = ComputeNumVertsToDecode(); dest = (u8 *)push->Push(vertsToDecode * dec_->GetDecVtxFmt().stride, bindOffset, vkbuf); } DecodeVerts(dest); } VkDescriptorSet DrawEngineVulkan::GetOrCreateDescriptorSet(VkImageView imageView, VkSampler sampler, VkBuffer base, VkBuffer light, VkBuffer bone, bool tess) { _dbg_assert_(base != VK_NULL_HANDLE); _dbg_assert_(light != VK_NULL_HANDLE); _dbg_assert_(bone != VK_NULL_HANDLE); DescriptorSetKey key{}; key.imageView_ = imageView; key.sampler_ = sampler; key.secondaryImageView_ = boundSecondary_; key.depalImageView_ = boundDepal_; key.base_ = base; key.light_ = light; key.bone_ = bone; key.secondaryIsInputAttachment = boundSecondaryIsInputAttachment_; FrameData &frame = GetCurFrame(); // See if we already have this descriptor set cached. if (!tess) { // Don't cache descriptors for HW tessellation. VkDescriptorSet d = frame.descSets.Get(key); if (d != VK_NULL_HANDLE) return d; } // Didn't find one in the frame descriptor set cache, let's make a new one. // We wipe the cache on every frame. VkDescriptorSet desc = frame.descPool.Allocate(1, &descriptorSetLayout_, "game_descset"); // Even in release mode, this is bad. _assert_msg_(desc != VK_NULL_HANDLE, "Ran out of descriptor space in pool. sz=%d", (int)frame.descSets.size()); // We just don't write to the slots we don't care about, which is fine. VkWriteDescriptorSet writes[DRAW_BINDING_COUNT]{}; // Main texture int n = 0; VkDescriptorImageInfo tex[3]{}; if (imageView) { _dbg_assert_(sampler != VK_NULL_HANDLE); tex[0].imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; tex[0].imageView = imageView; tex[0].sampler = sampler; writes[n].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; writes[n].pNext = nullptr; writes[n].dstBinding = DRAW_BINDING_TEXTURE; writes[n].pImageInfo = &tex[0]; writes[n].descriptorCount = 1; writes[n].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; writes[n].dstSet = desc; n++; } if (boundSecondary_) { tex[1].imageLayout = key.secondaryIsInputAttachment ? VK_IMAGE_LAYOUT_GENERAL : VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; tex[1].imageView = boundSecondary_; tex[1].sampler = samplerSecondaryNearest_; writes[n].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; writes[n].pNext = nullptr; writes[n].dstBinding = key.secondaryIsInputAttachment ? DRAW_BINDING_INPUT_ATTACHMENT : DRAW_BINDING_2ND_TEXTURE; writes[n].pImageInfo = &tex[1]; writes[n].descriptorCount = 1; writes[n].descriptorType = key.secondaryIsInputAttachment ? VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT : VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; writes[n].dstSet = desc; n++; } if (boundDepal_) { tex[2].imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; tex[2].imageView = boundDepal_; tex[2].sampler = boundDepalSmoothed_ ? samplerSecondaryLinear_ : samplerSecondaryNearest_; writes[n].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; writes[n].pNext = nullptr; writes[n].dstBinding = DRAW_BINDING_DEPAL_TEXTURE; writes[n].pImageInfo = &tex[2]; writes[n].descriptorCount = 1; writes[n].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; writes[n].dstSet = desc; n++; } // Tessellation data buffer. if (tess) { const VkDescriptorBufferInfo *bufInfo = tessDataTransferVulkan->GetBufferInfo(); // Control Points writes[n].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; writes[n].pNext = nullptr; writes[n].dstBinding = DRAW_BINDING_TESS_STORAGE_BUF; writes[n].pBufferInfo = &bufInfo[0]; writes[n].descriptorCount = 1; writes[n].descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER; writes[n].dstSet = desc; n++; // Weights U writes[n].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; writes[n].pNext = nullptr; writes[n].dstBinding = DRAW_BINDING_TESS_STORAGE_BUF_WU; writes[n].pBufferInfo = &bufInfo[1]; writes[n].descriptorCount = 1; writes[n].descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER; writes[n].dstSet = desc; n++; // Weights V writes[n].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; writes[n].pNext = nullptr; writes[n].dstBinding = DRAW_BINDING_TESS_STORAGE_BUF_WV; writes[n].pBufferInfo = &bufInfo[2]; writes[n].descriptorCount = 1; writes[n].descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER; writes[n].dstSet = desc; n++; } // Uniform buffer objects VkDescriptorBufferInfo buf[3]{}; int count = 0; buf[count].buffer = base; buf[count].offset = 0; buf[count].range = sizeof(UB_VS_FS_Base); count++; buf[count].buffer = light; buf[count].offset = 0; buf[count].range = sizeof(UB_VS_Lights); count++; buf[count].buffer = bone; buf[count].offset = 0; buf[count].range = sizeof(UB_VS_Bones); count++; for (int i = 0; i < count; i++) { writes[n].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; writes[n].pNext = nullptr; writes[n].dstBinding = DRAW_BINDING_DYNUBO_BASE + i; writes[n].dstArrayElement = 0; writes[n].pBufferInfo = &buf[i]; writes[n].dstSet = desc; writes[n].descriptorCount = 1; writes[n].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC; n++; } VulkanContext *vulkan = (VulkanContext *)draw_->GetNativeObject(Draw::NativeObject::CONTEXT); vkUpdateDescriptorSets(vulkan->GetDevice(), n, writes, 0, nullptr); if (!tess) // Again, avoid caching when HW tessellation. frame.descSets.Insert(key, desc); return desc; } void DrawEngineVulkan::DirtyAllUBOs() { baseUBOOffset = 0; lightUBOOffset = 0; boneUBOOffset = 0; baseBuf = VK_NULL_HANDLE; lightBuf = VK_NULL_HANDLE; boneBuf = VK_NULL_HANDLE; dirtyUniforms_ = DIRTY_BASE_UNIFORMS | DIRTY_LIGHT_UNIFORMS | DIRTY_BONE_UNIFORMS; imageView = VK_NULL_HANDLE; sampler = VK_NULL_HANDLE; gstate_c.Dirty(DIRTY_TEXTURE_IMAGE); } void MarkUnreliable(VertexArrayInfoVulkan *vai) { vai->status = VertexArrayInfoVulkan::VAI_UNRELIABLE; // TODO: If we change to a real allocator, free the data here. // For now we just leave it in the pushbuffer. } void DrawEngineVulkan::Invalidate(InvalidationFlags flags) { if (flags & InvalidationFlags::COMMAND_BUFFER_STATE) { GetCurFrame().frameDescSetUpdated = false; } if (flags & InvalidationFlags::RENDER_PASS_STATE) { // If have a new render pass, dirty our dynamic state so it gets re-set. // // Dirty everything that has dynamic state that will need re-recording. gstate_c.Dirty(DIRTY_VIEWPORTSCISSOR_STATE | DIRTY_DEPTHSTENCIL_STATE | DIRTY_BLEND_STATE | DIRTY_TEXTURE_IMAGE | DIRTY_TEXTURE_PARAMS); lastPipeline_ = nullptr; } } // The inline wrapper in the header checks for numDrawCalls == 0 void DrawEngineVulkan::DoFlush() { VulkanRenderManager *renderManager = (VulkanRenderManager *)draw_->GetNativeObject(Draw::NativeObject::RENDER_MANAGER); PROFILE_THIS_SCOPE("Flush"); FrameData &frameData = GetCurFrame(); gpuStats.numFlushes++; bool tess = gstate_c.submitType == SubmitType::HW_BEZIER || gstate_c.submitType == SubmitType::HW_SPLINE; bool textureNeedsApply = false; if (gstate_c.IsDirty(DIRTY_TEXTURE_IMAGE | DIRTY_TEXTURE_PARAMS) && !gstate.isModeClear() && gstate.isTextureMapEnabled()) { textureCache_->SetTexture(); gstate_c.Clean(DIRTY_TEXTURE_IMAGE | DIRTY_TEXTURE_PARAMS); textureNeedsApply = true; } else if (gstate.getTextureAddress(0) == (gstate.getFrameBufRawAddress() | 0x04000000)) { // This catches the case of clearing a texture. gstate_c.Dirty(DIRTY_TEXTURE_IMAGE); } GEPrimitiveType prim = prevPrim_; // Always use software for flat shading to fix the provoking index. bool useHWTransform = CanUseHardwareTransform(prim) && (tess || gstate.getShadeMode() != GE_SHADE_FLAT); uint32_t ibOffset; uint32_t vbOffset; if (useHWTransform) { int vertexCount = 0; bool useElements = true; // Cannot cache vertex data with morph enabled. bool useCache = g_Config.bVertexCache && !(lastVType_ & GE_VTYPE_MORPHCOUNT_MASK); // Also avoid caching when software skinning. VkBuffer vbuf = VK_NULL_HANDLE; VkBuffer ibuf = VK_NULL_HANDLE; if (decOptions_.applySkinInDecode && (lastVType_ & GE_VTYPE_WEIGHT_MASK)) { useCache = false; } if (useCache) { PROFILE_THIS_SCOPE("vcache"); u32 id = dcid_ ^ gstate.getUVGenMode(); // This can have an effect on which UV decoder we need to use! And hence what the decoded data will look like. See #9263 VertexArrayInfoVulkan *vai = vai_.Get(id); if (!vai) { vai = new VertexArrayInfoVulkan(); vai_.Insert(id, vai); } switch (vai->status) { case VertexArrayInfoVulkan::VAI_NEW: { // Haven't seen this one before. We don't actually upload the vertex data yet. uint64_t dataHash = ComputeHash(); vai->hash = dataHash; vai->minihash = ComputeMiniHash(); vai->status = VertexArrayInfoVulkan::VAI_HASHING; vai->drawsUntilNextFullHash = 0; DecodeVertsToPushBuffer(frameData.pushVertex, &vbOffset, &vbuf); // writes to indexGen vai->numVerts = indexGen.VertexCount(); vai->prim = indexGen.Prim(); vai->maxIndex = indexGen.MaxIndex(); vai->flags = gstate_c.vertexFullAlpha ? VAIVULKAN_FLAG_VERTEXFULLALPHA : 0; goto rotateVBO; } // Hashing - still gaining confidence about the buffer. // But if we get this far it's likely to be worth uploading the data. case VertexArrayInfoVulkan::VAI_HASHING: { PROFILE_THIS_SCOPE("vcachehash"); vai->numDraws++; if (vai->lastFrame != gpuStats.numFlips) { vai->numFrames++; } if (vai->drawsUntilNextFullHash == 0) { // Let's try to skip a full hash if mini would fail. const u32 newMiniHash = ComputeMiniHash(); uint64_t newHash = vai->hash; if (newMiniHash == vai->minihash) { newHash = ComputeHash(); } if (newMiniHash != vai->minihash || newHash != vai->hash) { MarkUnreliable(vai); DecodeVertsToPushBuffer(frameData.pushVertex, &vbOffset, &vbuf); goto rotateVBO; } if (vai->numVerts > 64) { // exponential backoff up to 16 draws, then every 24 vai->drawsUntilNextFullHash = std::min(24, vai->numFrames); } else { // Lower numbers seem much more likely to change. vai->drawsUntilNextFullHash = 0; } // TODO: tweak //if (vai->numFrames > 1000) { // vai->status = VertexArrayInfo::VAI_RELIABLE; //} } else { vai->drawsUntilNextFullHash--; u32 newMiniHash = ComputeMiniHash(); if (newMiniHash != vai->minihash) { MarkUnreliable(vai); DecodeVertsToPushBuffer(frameData.pushVertex, &vbOffset, &vbuf); goto rotateVBO; } } if (!vai->vb) { // Directly push to the vertex cache. DecodeVertsToPushBuffer(vertexCache_, &vai->vbOffset, &vai->vb); _dbg_assert_msg_(gstate_c.vertBounds.minV >= gstate_c.vertBounds.maxV, "Should not have checked UVs when caching."); vai->numVerts = indexGen.VertexCount(); vai->prim = indexGen.Prim(); vai->maxIndex = indexGen.MaxIndex(); vai->flags = gstate_c.vertexFullAlpha ? VAIVULKAN_FLAG_VERTEXFULLALPHA : 0; useElements = !indexGen.SeenOnlyPurePrims(); if (!useElements && indexGen.PureCount()) { vai->numVerts = indexGen.PureCount(); } if (useElements) { u32 size = sizeof(uint16_t) * indexGen.VertexCount(); void *dest = vertexCache_->Push(size, &vai->ibOffset, &vai->ib); memcpy(dest, decIndex, size); } else { vai->ib = VK_NULL_HANDLE; vai->ibOffset = 0; } } else { gpuStats.numCachedDrawCalls++; useElements = vai->ib ? true : false; gpuStats.numCachedVertsDrawn += vai->numVerts; gstate_c.vertexFullAlpha = vai->flags & VAIVULKAN_FLAG_VERTEXFULLALPHA; } vbuf = vai->vb; ibuf = vai->ib; vbOffset = vai->vbOffset; ibOffset = vai->ibOffset; vertexCount = vai->numVerts; prim = static_cast(vai->prim); break; } // Reliable - we don't even bother hashing anymore. Right now we don't go here until after a very long time. case VertexArrayInfoVulkan::VAI_RELIABLE: { vai->numDraws++; if (vai->lastFrame != gpuStats.numFlips) { vai->numFrames++; } gpuStats.numCachedDrawCalls++; gpuStats.numCachedVertsDrawn += vai->numVerts; vbuf = vai->vb; ibuf = vai->ib; vbOffset = vai->vbOffset; ibOffset = vai->ibOffset; vertexCount = vai->numVerts; prim = static_cast(vai->prim); gstate_c.vertexFullAlpha = vai->flags & VAIVULKAN_FLAG_VERTEXFULLALPHA; break; } case VertexArrayInfoVulkan::VAI_UNRELIABLE: { vai->numDraws++; if (vai->lastFrame != gpuStats.numFlips) { vai->numFrames++; } DecodeVertsToPushBuffer(frameData.pushVertex, &vbOffset, &vbuf); goto rotateVBO; } default: break; } } else { if (decOptions_.applySkinInDecode && (lastVType_ & GE_VTYPE_WEIGHT_MASK)) { // If software skinning, we've already predecoded into "decoded". So push that content. VkDeviceSize size = decodedVerts_ * dec_->GetDecVtxFmt().stride; u8 *dest = (u8 *)frameData.pushVertex->Push(size, &vbOffset, &vbuf); memcpy(dest, decoded, size); } else { // Decode directly into the pushbuffer DecodeVertsToPushBuffer(frameData.pushVertex, &vbOffset, &vbuf); } rotateVBO: gpuStats.numUncachedVertsDrawn += indexGen.VertexCount(); useElements = !indexGen.SeenOnlyPurePrims(); vertexCount = indexGen.VertexCount(); if (!useElements && indexGen.PureCount()) { vertexCount = indexGen.PureCount(); } prim = indexGen.Prim(); } bool hasColor = (lastVType_ & GE_VTYPE_COL_MASK) != GE_VTYPE_COL_NONE; if (gstate.isModeThrough()) { gstate_c.vertexFullAlpha = gstate_c.vertexFullAlpha && (hasColor || gstate.getMaterialAmbientA() == 255); } else { gstate_c.vertexFullAlpha = gstate_c.vertexFullAlpha && ((hasColor && (gstate.materialupdate & 1)) || gstate.getMaterialAmbientA() == 255) && (!gstate.isLightingEnabled() || gstate.getAmbientA() == 255); } if (textureNeedsApply) { textureCache_->ApplyTexture(); textureCache_->GetVulkanHandles(imageView, sampler); if (imageView == VK_NULL_HANDLE) imageView = (VkImageView)draw_->GetNativeObject(gstate_c.arrayTexture ? Draw::NativeObject::NULL_IMAGEVIEW_ARRAY : Draw::NativeObject::NULL_IMAGEVIEW); if (sampler == VK_NULL_HANDLE) sampler = nullSampler_; } if (!lastPipeline_ || gstate_c.IsDirty(DIRTY_BLEND_STATE | DIRTY_VIEWPORTSCISSOR_STATE | DIRTY_RASTER_STATE | DIRTY_DEPTHSTENCIL_STATE | DIRTY_VERTEXSHADER_STATE | DIRTY_FRAGMENTSHADER_STATE | DIRTY_GEOMETRYSHADER_STATE) || prim != lastPrim_) { if (prim != lastPrim_ || gstate_c.IsDirty(DIRTY_BLEND_STATE | DIRTY_VIEWPORTSCISSOR_STATE | DIRTY_RASTER_STATE | DIRTY_DEPTHSTENCIL_STATE)) { ConvertStateToVulkanKey(*framebufferManager_, shaderManager_, prim, pipelineKey_, dynState_); } VulkanVertexShader *vshader = nullptr; VulkanFragmentShader *fshader = nullptr; VulkanGeometryShader *gshader = nullptr; shaderManager_->GetShaders(prim, lastVType_, &vshader, &fshader, &gshader, pipelineState_, true, useHWTessellation_, decOptions_.expandAllWeightsToFloat, decOptions_.applySkinInDecode); if (!vshader) { // We're screwed. return; } _dbg_assert_msg_(vshader->UseHWTransform(), "Bad vshader"); VulkanPipeline *pipeline = pipelineManager_->GetOrCreatePipeline(renderManager, pipelineLayout_, pipelineKey_, &dec_->decFmt, vshader, fshader, gshader, true, 0); if (!pipeline || !pipeline->pipeline) { // Already logged, let's bail out. return; } BindShaderBlendTex(); // This might cause copies so important to do before BindPipeline. renderManager->BindPipeline(pipeline->pipeline, pipeline->pipelineFlags, pipelineLayout_); if (pipeline != lastPipeline_) { if (lastPipeline_ && !(lastPipeline_->UsesBlendConstant() && pipeline->UsesBlendConstant())) { gstate_c.Dirty(DIRTY_BLEND_STATE); } lastPipeline_ = pipeline; } ApplyDrawStateLate(renderManager, false, 0, pipeline->UsesBlendConstant()); gstate_c.Clean(DIRTY_BLEND_STATE | DIRTY_DEPTHSTENCIL_STATE | DIRTY_RASTER_STATE | DIRTY_VIEWPORTSCISSOR_STATE); gstate_c.Dirty(dirtyRequiresRecheck_); dirtyRequiresRecheck_ = 0; lastPipeline_ = pipeline; } lastPrim_ = prim; dirtyUniforms_ |= shaderManager_->UpdateUniforms(framebufferManager_->UseBufferedRendering()); UpdateUBOs(&frameData); VkDescriptorSet ds = GetOrCreateDescriptorSet(imageView, sampler, baseBuf, lightBuf, boneBuf, tess); const uint32_t dynamicUBOOffsets[3] = { baseUBOOffset, lightUBOOffset, boneUBOOffset, }; if (useElements) { if (!ibuf) { ibOffset = (uint32_t)frameData.pushIndex->Push(decIndex, sizeof(uint16_t) * indexGen.VertexCount(), &ibuf); } renderManager->DrawIndexed(ds, ARRAY_SIZE(dynamicUBOOffsets), dynamicUBOOffsets, vbuf, vbOffset, ibuf, ibOffset, vertexCount, 1, VK_INDEX_TYPE_UINT16); } else { renderManager->Draw(ds, ARRAY_SIZE(dynamicUBOOffsets), dynamicUBOOffsets, vbuf, vbOffset, vertexCount); } } else { PROFILE_THIS_SCOPE("soft"); if (!decOptions_.applySkinInDecode) { decOptions_.applySkinInDecode = true; lastVType_ |= (1 << 26); dec_ = GetVertexDecoder(lastVType_); } DecodeVerts(decoded); bool hasColor = (lastVType_ & GE_VTYPE_COL_MASK) != GE_VTYPE_COL_NONE; if (gstate.isModeThrough()) { gstate_c.vertexFullAlpha = gstate_c.vertexFullAlpha && (hasColor || gstate.getMaterialAmbientA() == 255); } else { gstate_c.vertexFullAlpha = gstate_c.vertexFullAlpha && ((hasColor && (gstate.materialupdate & 1)) || gstate.getMaterialAmbientA() == 255) && (!gstate.isLightingEnabled() || gstate.getAmbientA() == 255); } gpuStats.numUncachedVertsDrawn += indexGen.VertexCount(); prim = indexGen.Prim(); // Undo the strip optimization, not supported by the SW code yet. if (prim == GE_PRIM_TRIANGLE_STRIP) prim = GE_PRIM_TRIANGLES; u16 *inds = decIndex; SoftwareTransformResult result{}; SoftwareTransformParams params{}; params.decoded = decoded; params.transformed = transformed; params.transformedExpanded = transformedExpanded; params.fbman = framebufferManager_; params.texCache = textureCache_; // In Vulkan, we have to force drawing of primitives if !framebufferManager_->UseBufferedRendering() because Vulkan clears // do not respect scissor rects. params.allowClear = framebufferManager_->UseBufferedRendering(); params.allowSeparateAlphaClear = false; params.provokeFlatFirst = true; params.flippedY = true; params.usesHalfZ = true; // We need to update the viewport early because it's checked for flipping in SoftwareTransform. // We don't have a "DrawStateEarly" in vulkan, so... // TODO: Probably should eventually refactor this and feed the vp size into SoftwareTransform directly (Unknown's idea). if (gstate_c.IsDirty(DIRTY_VIEWPORTSCISSOR_STATE)) { ViewportAndScissor vpAndScissor; ConvertViewportAndScissor(framebufferManager_->UseBufferedRendering(), framebufferManager_->GetRenderWidth(), framebufferManager_->GetRenderHeight(), framebufferManager_->GetTargetBufferWidth(), framebufferManager_->GetTargetBufferHeight(), vpAndScissor); UpdateCachedViewportState(vpAndScissor); } int maxIndex = indexGen.MaxIndex(); SoftwareTransform swTransform(params); const Lin::Vec3 trans(gstate_c.vpXOffset, gstate_c.vpYOffset, gstate_c.vpZOffset * 0.5f + 0.5f); const Lin::Vec3 scale(gstate_c.vpWidthScale, gstate_c.vpHeightScale, gstate_c.vpDepthScale * 0.5f); swTransform.SetProjMatrix(gstate.projMatrix, gstate_c.vpWidth < 0, gstate_c.vpHeight < 0, trans, scale); swTransform.Decode(prim, dec_->VertexType(), dec_->GetDecVtxFmt(), maxIndex, &result); // Non-zero depth clears are unusual, but some drivers don't match drawn depth values to cleared values. // Games sometimes expect exact matches (see #12626, for example) for equal comparisons. if (result.action == SW_CLEAR && everUsedEqualDepth_ && gstate.isClearModeDepthMask() && result.depth > 0.0f && result.depth < 1.0f) result.action = SW_NOT_READY; if (result.action == SW_NOT_READY) { swTransform.DetectOffsetTexture(maxIndex); swTransform.BuildDrawingParams(prim, indexGen.VertexCount(), dec_->VertexType(), inds, maxIndex, &result); } if (result.setSafeSize) framebufferManager_->SetSafeSize(result.safeWidth, result.safeHeight); // Only here, where we know whether to clear or to draw primitives, should we actually set the current framebuffer! Because that gives use the opportunity // to use a "pre-clear" render pass, for high efficiency on tilers. if (result.action == SW_DRAW_PRIMITIVES) { if (textureNeedsApply) { textureCache_->ApplyTexture(); textureCache_->GetVulkanHandles(imageView, sampler); if (imageView == VK_NULL_HANDLE) imageView = (VkImageView)draw_->GetNativeObject(gstate_c.arrayTexture ? Draw::NativeObject::NULL_IMAGEVIEW_ARRAY : Draw::NativeObject::NULL_IMAGEVIEW); if (sampler == VK_NULL_HANDLE) sampler = nullSampler_; } if (!lastPipeline_ || gstate_c.IsDirty(DIRTY_BLEND_STATE | DIRTY_VIEWPORTSCISSOR_STATE | DIRTY_RASTER_STATE | DIRTY_DEPTHSTENCIL_STATE | DIRTY_VERTEXSHADER_STATE | DIRTY_FRAGMENTSHADER_STATE | DIRTY_GEOMETRYSHADER_STATE) || prim != lastPrim_) { if (prim != lastPrim_ || gstate_c.IsDirty(DIRTY_BLEND_STATE | DIRTY_VIEWPORTSCISSOR_STATE | DIRTY_RASTER_STATE | DIRTY_DEPTHSTENCIL_STATE)) { ConvertStateToVulkanKey(*framebufferManager_, shaderManager_, prim, pipelineKey_, dynState_); } VulkanVertexShader *vshader = nullptr; VulkanFragmentShader *fshader = nullptr; VulkanGeometryShader *gshader = nullptr; shaderManager_->GetShaders(prim, lastVType_, &vshader, &fshader, &gshader, pipelineState_, false, false, decOptions_.expandAllWeightsToFloat, true); _dbg_assert_msg_(!vshader->UseHWTransform(), "Bad vshader"); VulkanPipeline *pipeline = pipelineManager_->GetOrCreatePipeline(renderManager, pipelineLayout_, pipelineKey_, &dec_->decFmt, vshader, fshader, gshader, false, 0); if (!pipeline || !pipeline->pipeline) { // Already logged, let's bail out. decodedVerts_ = 0; numDrawCalls = 0; decodeCounter_ = 0; decOptions_.applySkinInDecode = g_Config.bSoftwareSkinning; return; } BindShaderBlendTex(); // This might cause copies so super important to do before BindPipeline. renderManager->BindPipeline(pipeline->pipeline, pipeline->pipelineFlags, pipelineLayout_); if (pipeline != lastPipeline_) { if (lastPipeline_ && !lastPipeline_->UsesBlendConstant() && pipeline->UsesBlendConstant()) { gstate_c.Dirty(DIRTY_BLEND_STATE); } lastPipeline_ = pipeline; } ApplyDrawStateLate(renderManager, result.setStencil, result.stencilValue, pipeline->UsesBlendConstant()); gstate_c.Clean(DIRTY_BLEND_STATE | DIRTY_DEPTHSTENCIL_STATE | DIRTY_RASTER_STATE | DIRTY_VIEWPORTSCISSOR_STATE); gstate_c.Dirty(dirtyRequiresRecheck_); dirtyRequiresRecheck_ = 0; lastPipeline_ = pipeline; } lastPrim_ = prim; dirtyUniforms_ |= shaderManager_->UpdateUniforms(framebufferManager_->UseBufferedRendering()); // Even if the first draw is through-mode, make sure we at least have one copy of these uniforms buffered UpdateUBOs(&frameData); VkDescriptorSet ds = GetOrCreateDescriptorSet(imageView, sampler, baseBuf, lightBuf, boneBuf, tess); const uint32_t dynamicUBOOffsets[3] = { baseUBOOffset, lightUBOOffset, boneUBOOffset, }; PROFILE_THIS_SCOPE("renderman_q"); if (result.drawIndexed) { VkBuffer vbuf, ibuf; vbOffset = (uint32_t)frameData.pushVertex->Push(result.drawBuffer, maxIndex * sizeof(TransformedVertex), &vbuf); ibOffset = (uint32_t)frameData.pushIndex->Push(inds, sizeof(short) * result.drawNumTrans, &ibuf); renderManager->DrawIndexed(ds, ARRAY_SIZE(dynamicUBOOffsets), dynamicUBOOffsets, vbuf, vbOffset, ibuf, ibOffset, result.drawNumTrans, 1, VK_INDEX_TYPE_UINT16); } else { VkBuffer vbuf; vbOffset = (uint32_t)frameData.pushVertex->Push(result.drawBuffer, result.drawNumTrans * sizeof(TransformedVertex), &vbuf); renderManager->Draw(ds, ARRAY_SIZE(dynamicUBOOffsets), dynamicUBOOffsets, vbuf, vbOffset, result.drawNumTrans); } } else if (result.action == SW_CLEAR) { // Note: we won't get here if the clear is alpha but not color, or color but not alpha. // We let the framebuffer manager handle the clear. It can use renderpasses to optimize on tilers. // If non-buffered though, it'll just do a plain clear. framebufferManager_->NotifyClear(gstate.isClearModeColorMask(), gstate.isClearModeAlphaMask(), gstate.isClearModeDepthMask(), result.color, result.depth); if (gstate_c.Use(GPU_USE_CLEAR_RAM_HACK) && gstate.isClearModeColorMask() && (gstate.isClearModeAlphaMask() || gstate.FrameBufFormat() == GE_FORMAT_565)) { int scissorX1 = gstate.getScissorX1(); int scissorY1 = gstate.getScissorY1(); int scissorX2 = gstate.getScissorX2() + 1; int scissorY2 = gstate.getScissorY2() + 1; framebufferManager_->ApplyClearToMemory(scissorX1, scissorY1, scissorX2, scissorY2, result.color); } } decOptions_.applySkinInDecode = g_Config.bSoftwareSkinning; } gpuStats.numDrawCalls += numDrawCalls; gpuStats.numVertsSubmitted += vertexCountInDrawCalls_; indexGen.Reset(); decodedVerts_ = 0; numDrawCalls = 0; vertexCountInDrawCalls_ = 0; decodeCounter_ = 0; dcid_ = 0; prevPrim_ = GE_PRIM_INVALID; gstate_c.vertexFullAlpha = true; framebufferManager_->SetColorUpdated(gstate_c.skipDrawReason); // Now seems as good a time as any to reset the min/max coords, which we may examine later. gstate_c.vertBounds.minU = 512; gstate_c.vertBounds.minV = 512; gstate_c.vertBounds.maxU = 0; gstate_c.vertBounds.maxV = 0; GPUDebug::NotifyDraw(); } void DrawEngineVulkan::UpdateUBOs(FrameData *frame) { if (!frame->frameDescSetUpdated) { // Push frame global constants. UB_Frame frameConstants{}; FrameUpdateUniforms(&frameConstants, framebufferManager_->UseBufferedRendering()); VkDescriptorBufferInfo frameConstantsBufInfo; frame->pushUBO->PushUBOData(frameConstants, &frameConstantsBufInfo); VulkanContext *vulkan = (VulkanContext *)draw_->GetNativeObject(Draw::NativeObject::CONTEXT); VulkanRenderManager *renderManager = (VulkanRenderManager *)draw_->GetNativeObject(Draw::NativeObject::RENDER_MANAGER); VkDescriptorSetLayout frameDescSetLayout = (VkDescriptorSetLayout)draw_->GetNativeObject(Draw::NativeObject::FRAME_DATA_DESC_SET_LAYOUT); VkDescriptorSet frameDescSet = frame->descPool.Allocate(1, &frameDescSetLayout, "frame_desc_set"); VkWriteDescriptorSet descWrite{ VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET }; descWrite.descriptorCount = 1; descWrite.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER; descWrite.dstBinding = 0; descWrite.dstSet = frameDescSet; descWrite.pBufferInfo = &frameConstantsBufInfo; vkUpdateDescriptorSets(vulkan->GetDevice(), 1, &descWrite, 0, nullptr); renderManager->BindDescriptorSet(0, frameDescSet, pipelineLayout_); frame->frameDescSetUpdated = true; } if ((dirtyUniforms_ & DIRTY_BASE_UNIFORMS) || baseBuf == VK_NULL_HANDLE) { baseUBOOffset = shaderManager_->PushBaseBuffer(frame->pushUBO, &baseBuf); dirtyUniforms_ &= ~DIRTY_BASE_UNIFORMS; } if ((dirtyUniforms_ & DIRTY_LIGHT_UNIFORMS) || lightBuf == VK_NULL_HANDLE) { lightUBOOffset = shaderManager_->PushLightBuffer(frame->pushUBO, &lightBuf); dirtyUniforms_ &= ~DIRTY_LIGHT_UNIFORMS; } if ((dirtyUniforms_ & DIRTY_BONE_UNIFORMS) || boneBuf == VK_NULL_HANDLE) { boneUBOOffset = shaderManager_->PushBoneBuffer(frame->pushUBO, &boneBuf); dirtyUniforms_ &= ~DIRTY_BONE_UNIFORMS; } } DrawEngineVulkan::FrameData &DrawEngineVulkan::GetCurFrame() { VulkanContext *vulkan = (VulkanContext *)draw_->GetNativeObject(Draw::NativeObject::CONTEXT); return frame_[vulkan->GetCurFrame()]; } void TessellationDataTransferVulkan::SendDataToShader(const SimpleVertex *const *points, int size_u, int size_v, u32 vertType, const Spline::Weight2D &weights) { // SSBOs that are not simply float1 or float2 need to be padded up to a float4 size. vec3 members // also need to be 16-byte aligned, hence the padding. struct TessData { float pos[3]; float pad1; float uv[2]; float pad2[2]; float color[4]; }; int size = size_u * size_v; int ssboAlignment = vulkan_->GetPhysicalDeviceProperties().properties.limits.minStorageBufferOffsetAlignment; uint8_t *data = (uint8_t *)push_->PushAligned(size * sizeof(TessData), (uint32_t *)&bufInfo_[0].offset, &bufInfo_[0].buffer, ssboAlignment); bufInfo_[0].range = size * sizeof(TessData); float *pos = (float *)(data); float *tex = (float *)(data + offsetof(TessData, uv)); float *col = (float *)(data + offsetof(TessData, color)); int stride = sizeof(TessData) / sizeof(float); CopyControlPoints(pos, tex, col, stride, stride, stride, points, size, vertType); using Spline::Weight; // Weights U data = (uint8_t *)push_->PushAligned(weights.size_u * sizeof(Weight), (uint32_t *)&bufInfo_[1].offset, &bufInfo_[1].buffer, ssboAlignment); memcpy(data, weights.u, weights.size_u * sizeof(Weight)); bufInfo_[1].range = weights.size_u * sizeof(Weight); // Weights V data = (uint8_t *)push_->PushAligned(weights.size_v * sizeof(Weight), (uint32_t *)&bufInfo_[2].offset, &bufInfo_[2].buffer, ssboAlignment); memcpy(data, weights.v, weights.size_v * sizeof(Weight)); bufInfo_[2].range = weights.size_v * sizeof(Weight); }