#include #include "ShaderUniforms.h" #include "base/display.h" #include "math/dataconv.h" #include "math/lin/matrix4x4.h" #include "math/math_util.h" #include "math/lin/vec3.h" #include "GPU/GPUState.h" #include "GPU/Common/GPUStateUtils.h" #include "GPU/Math3D.h" #include "Core/Reporting.h" #include "Core/Config.h" static void ConvertProjMatrixToVulkan(Matrix4x4 &in) { const Vec3 trans(0, 0, gstate_c.vpZOffset * 0.5f + 0.5f); const Vec3 scale(gstate_c.vpWidthScale, gstate_c.vpHeightScale, gstate_c.vpDepthScale * 0.5f); in.translateAndScale(trans, scale); } static void ConvertProjMatrixToD3D11(Matrix4x4 &in) { const Vec3 trans(0, 0, gstate_c.vpZOffset * 0.5f + 0.5f); const Vec3 scale(gstate_c.vpWidthScale, -gstate_c.vpHeightScale, gstate_c.vpDepthScale * 0.5f); in.translateAndScale(trans, scale); } void BaseUpdateUniforms(UB_VS_FS_Base *ub, uint64_t dirtyUniforms, bool flipViewport) { if (dirtyUniforms & DIRTY_TEXENV) { Uint8x3ToFloat4(ub->texEnvColor, gstate.texenvcolor); } if (dirtyUniforms & DIRTY_ALPHACOLORREF) { Uint8x3ToInt4_Alpha(ub->alphaColorRef, gstate.getColorTestRef(), gstate.getAlphaTestRef() & gstate.getAlphaTestMask()); } if (dirtyUniforms & DIRTY_ALPHACOLORMASK) { Uint8x3ToInt4_Alpha(ub->colorTestMask, gstate.getColorTestMask(), gstate.getAlphaTestMask()); } if (dirtyUniforms & DIRTY_FOGCOLOR) { Uint8x3ToFloat4(ub->fogColor, gstate.fogcolor); } if (dirtyUniforms & DIRTY_SHADERBLEND) { Uint8x3ToFloat4(ub->blendFixA, gstate.getFixA()); Uint8x3ToFloat4(ub->blendFixB, gstate.getFixB()); } if (dirtyUniforms & DIRTY_TEXCLAMP) { const float invW = 1.0f / (float)gstate_c.curTextureWidth; const float invH = 1.0f / (float)gstate_c.curTextureHeight; const int w = gstate.getTextureWidth(0); const int h = gstate.getTextureHeight(0); const float widthFactor = (float)w * invW; const float heightFactor = (float)h * invH; // First wrap xy, then half texel xy (for clamp.) ub->texClamp[0] = widthFactor; ub->texClamp[1] = heightFactor; ub->texClamp[2] = invW * 0.5f; ub->texClamp[3] = invH * 0.5f; ub->texClampOffset[0] = gstate_c.curTextureXOffset * invW; ub->texClampOffset[1] = gstate_c.curTextureYOffset * invH; } if (dirtyUniforms & DIRTY_PROJMATRIX) { Matrix4x4 flippedMatrix; memcpy(&flippedMatrix, gstate.projMatrix, 16 * sizeof(float)); const bool invertedY = gstate_c.vpHeight < 0; if (invertedY) { flippedMatrix[1] = -flippedMatrix[1]; flippedMatrix[5] = -flippedMatrix[5]; flippedMatrix[9] = -flippedMatrix[9]; flippedMatrix[13] = -flippedMatrix[13]; } const bool invertedX = gstate_c.vpWidth < 0; if (invertedX) { flippedMatrix[0] = -flippedMatrix[0]; flippedMatrix[4] = -flippedMatrix[4]; flippedMatrix[8] = -flippedMatrix[8]; flippedMatrix[12] = -flippedMatrix[12]; } if (flipViewport) { ConvertProjMatrixToD3D11(flippedMatrix); } else { ConvertProjMatrixToVulkan(flippedMatrix); } if (g_Config.iRenderingMode == 0 && g_display_rotation != DisplayRotation::ROTATE_0) { flippedMatrix = flippedMatrix * g_display_rot_matrix; } CopyMatrix4x4(ub->proj, flippedMatrix.getReadPtr()); } if (dirtyUniforms & DIRTY_PROJTHROUGHMATRIX) { Matrix4x4 proj_through; if (flipViewport) { proj_through.setOrthoD3D(0.0f, gstate_c.curRTWidth, gstate_c.curRTHeight, 0, 0, 1); } else { proj_through.setOrthoVulkan(0.0f, gstate_c.curRTWidth, 0, gstate_c.curRTHeight, 0, 1); } if (g_Config.iRenderingMode == 0 && g_display_rotation != DisplayRotation::ROTATE_0) { proj_through = proj_through * g_display_rot_matrix; } CopyMatrix4x4(ub->proj_through, proj_through.getReadPtr()); } // Transform if (dirtyUniforms & DIRTY_WORLDMATRIX) { ConvertMatrix4x3To3x4Transposed(ub->world, gstate.worldMatrix); } if (dirtyUniforms & DIRTY_VIEWMATRIX) { ConvertMatrix4x3To3x4Transposed(ub->view, gstate.viewMatrix); } if (dirtyUniforms & DIRTY_TEXMATRIX) { ConvertMatrix4x3To3x4Transposed(ub->tex, gstate.tgenMatrix); } if (dirtyUniforms & DIRTY_FOGCOEF) { float fogcoef[2] = { getFloat24(gstate.fog1), getFloat24(gstate.fog2), }; if (my_isinf(fogcoef[1])) { // not really sure what a sensible value might be. fogcoef[1] = fogcoef[1] < 0.0f ? -10000.0f : 10000.0f; } else if (my_isnan(fogcoef[1])) { // Workaround for https://github.com/hrydgard/ppsspp/issues/5384#issuecomment-38365988 // Just put the fog far away at a large finite distance. // Infinities and NaNs are rather unpredictable in shaders on many GPUs // so it's best to just make it a sane calculation. fogcoef[0] = 100000.0f; fogcoef[1] = 1.0f; } #ifndef MOBILE_DEVICE else if (my_isnanorinf(fogcoef[1]) || my_isnanorinf(fogcoef[0])) { ERROR_LOG_REPORT_ONCE(fognan, G3D, "Unhandled fog NaN/INF combo: %f %f", fogcoef[0], fogcoef[1]); } #endif CopyFloat2(ub->fogCoef, fogcoef); } if (dirtyUniforms & DIRTY_STENCILREPLACEVALUE) { ub->stencil = (float)gstate.getStencilTestRef() / 255.0; } // Note - this one is not in lighting but in transformCommon as it has uses beyond lighting if (dirtyUniforms & DIRTY_MATAMBIENTALPHA) { Uint8x3ToFloat4_AlphaUint8(ub->matAmbient, gstate.materialambient, gstate.getMaterialAmbientA()); } // Texturing if (dirtyUniforms & DIRTY_UVSCALEOFFSET) { const float invW = 1.0f / (float)gstate_c.curTextureWidth; const float invH = 1.0f / (float)gstate_c.curTextureHeight; const int w = gstate.getTextureWidth(0); const int h = gstate.getTextureHeight(0); const float widthFactor = (float)w * invW; const float heightFactor = (float)h * invH; if (gstate_c.bezier || gstate_c.spline) { // When we are generating UV coordinates through the bezier/spline, we need to apply the scaling. // However, this is missing a check that we're not getting our UV:s supplied for us in the vertices. ub->uvScaleOffset[0] = gstate_c.uv.uScale * widthFactor; ub->uvScaleOffset[1] = gstate_c.uv.vScale * heightFactor; ub->uvScaleOffset[2] = gstate_c.uv.uOff * widthFactor; ub->uvScaleOffset[3] = gstate_c.uv.vOff * heightFactor; } else { ub->uvScaleOffset[0] = widthFactor; ub->uvScaleOffset[1] = heightFactor; ub->uvScaleOffset[2] = 0.0f; ub->uvScaleOffset[3] = 0.0f; } } if (dirtyUniforms & DIRTY_DEPTHRANGE) { // Same formulas as D3D9 now. Should work for both Vulkan and D3D11. // Depth is [0, 1] mapping to [minz, maxz], not too hard. float vpZScale = gstate.getViewportZScale(); float vpZCenter = gstate.getViewportZCenter(); // These are just the reverse of the formulas in GPUStateUtils. float halfActualZRange = vpZScale / gstate_c.vpDepthScale; float minz = -((gstate_c.vpZOffset * halfActualZRange) - vpZCenter) - halfActualZRange; float viewZScale = halfActualZRange * 2.0f; // Account for the half pixel offset. float viewZCenter = minz + (DepthSliceFactor() / 256.0f) * 0.5f; float viewZInvScale; if (viewZScale != 0.0) { viewZInvScale = 1.0f / viewZScale; } else { viewZInvScale = 0.0; } float data[4] = { viewZScale, viewZCenter, viewZCenter, viewZInvScale }; ub->depthRange[0] = viewZScale; ub->depthRange[1] = viewZCenter; ub->depthRange[2] = viewZCenter; ub->depthRange[3] = viewZInvScale; } if (dirtyUniforms & DIRTY_BEZIERSPLINE) { ub->spline_count_u = gstate_c.spline_count_u; ub->spline_count_v = gstate_c.spline_count_v; ub->spline_type_u = gstate_c.spline_type_u; ub->spline_type_v = gstate_c.spline_type_v; } } void LightUpdateUniforms(UB_VS_Lights *ub, uint64_t dirtyUniforms) { // Lighting if (dirtyUniforms & DIRTY_AMBIENT) { Uint8x3ToFloat4_AlphaUint8(ub->ambientColor, gstate.ambientcolor, gstate.getAmbientA()); } if (dirtyUniforms & DIRTY_MATDIFFUSE) { Uint8x3ToFloat4(ub->materialDiffuse, gstate.materialdiffuse); } if (dirtyUniforms & DIRTY_MATSPECULAR) { Uint8x3ToFloat4_Alpha(ub->materialSpecular, gstate.materialspecular, std::max(0.0f, getFloat24(gstate.materialspecularcoef))); } if (dirtyUniforms & DIRTY_MATEMISSIVE) { Uint8x3ToFloat4(ub->materialEmissive, gstate.materialemissive); } for (int i = 0; i < 4; i++) { if (dirtyUniforms & (DIRTY_LIGHT0 << i)) { if (gstate.isDirectionalLight(i)) { // Prenormalize float x = getFloat24(gstate.lpos[i * 3 + 0]); float y = getFloat24(gstate.lpos[i * 3 + 1]); float z = getFloat24(gstate.lpos[i * 3 + 2]); float len = sqrtf(x*x + y*y + z*z); if (len == 0.0f) len = 1.0f; else len = 1.0f / len; float vec[3] = { x * len, y * len, z * len }; CopyFloat3To4(ub->lpos[i], vec); } else { ExpandFloat24x3ToFloat4(ub->lpos[i], &gstate.lpos[i * 3]); } ExpandFloat24x3ToFloat4(ub->ldir[i], &gstate.ldir[i * 3]); ExpandFloat24x3ToFloat4(ub->latt[i], &gstate.latt[i * 3]); float lightAngle_spotCoef[2] = { getFloat24(gstate.lcutoff[i]), getFloat24(gstate.lconv[i]) }; CopyFloat2To4(ub->lightAngle_SpotCoef[i], lightAngle_spotCoef); Uint8x3ToFloat4(ub->lightAmbient[i], gstate.lcolor[i * 3]); Uint8x3ToFloat4(ub->lightDiffuse[i], gstate.lcolor[i * 3 + 1]); Uint8x3ToFloat4(ub->lightSpecular[i], gstate.lcolor[i * 3 + 2]); } } } void BoneUpdateUniforms(UB_VS_Bones *ub, uint64_t dirtyUniforms) { for (int i = 0; i < 8; i++) { if (dirtyUniforms & (DIRTY_BONEMATRIX0 << i)) { ConvertMatrix4x3To3x4Transposed(ub->bones[i], gstate.boneMatrix + 12 * i); } } }