/* 100% free public domain implementation of the SHA-1 algorithm by Dominik Reichl Web: http://www.dominik-reichl.de/ See header file for version history and test vectors. */ // If compiling with MFC, you might want to add #include "StdAfx.h" #include "sha1.h" #ifdef SHA1_UTILITY_FUNCTIONS #define SHA1_MAX_FILE_BUFFER (32 * 20 * 820) #endif // Rotate _val32 by _nBits bits to the left #ifndef ROL32 #ifdef _MSC_VER #define ROL32(_val32,_nBits) _rotl(_val32,_nBits) #else #define ROL32(_val32,_nBits) (((_val32)<<(_nBits))|((_val32)>>(32-(_nBits)))) #endif #endif #ifdef SHA1_LITTLE_ENDIAN #define SHABLK0(i) (m_block->l[i] = \ (ROL32(m_block->l[i],24) & 0xFF00FF00) | (ROL32(m_block->l[i],8) & 0x00FF00FF)) #else #define SHABLK0(i) (m_block->l[i]) #endif #define SHABLK(i) (m_block->l[i&15] = ROL32(m_block->l[(i+13)&15] ^ \ m_block->l[(i+8)&15] ^ m_block->l[(i+2)&15] ^ m_block->l[i&15],1)) // SHA-1 rounds #define _R0(v,w,x,y,z,i) {z+=((w&(x^y))^y)+SHABLK0(i)+0x5A827999+ROL32(v,5);w=ROL32(w,30);} #define _R1(v,w,x,y,z,i) {z+=((w&(x^y))^y)+SHABLK(i)+0x5A827999+ROL32(v,5);w=ROL32(w,30);} #define _R2(v,w,x,y,z,i) {z+=(w^x^y)+SHABLK(i)+0x6ED9EBA1+ROL32(v,5);w=ROL32(w,30);} #define _R3(v,w,x,y,z,i) {z+=(((w|x)&y)|(w&x))+SHABLK(i)+0x8F1BBCDC+ROL32(v,5);w=ROL32(w,30);} #define _R4(v,w,x,y,z,i) {z+=(w^x^y)+SHABLK(i)+0xCA62C1D6+ROL32(v,5);w=ROL32(w,30);} #ifdef _MSC_VER #pragma warning(push) // Disable compiler warning 'Conditional expression is constant' #pragma warning(disable: 4127) #endif CSHA1::CSHA1() { m_block = (SHA1_WORKSPACE_BLOCK*)m_workspace; Reset(); } CSHA1::~CSHA1() { Reset(); } void CSHA1::Reset() { // SHA1 initialization constants m_state[0] = 0x67452301; m_state[1] = 0xEFCDAB89; m_state[2] = 0x98BADCFE; m_state[3] = 0x10325476; m_state[4] = 0xC3D2E1F0; m_count[0] = 0; m_count[1] = 0; } void CSHA1::Transform(UINT_32* pState, const UINT_8* pBuffer) { UINT_32 a = pState[0], b = pState[1], c = pState[2], d = pState[3], e = pState[4]; memcpy(m_block, pBuffer, 64); // 4 rounds of 20 operations each, loop unrolled _R0(a,b,c,d,e, 0); _R0(e,a,b,c,d, 1); _R0(d,e,a,b,c, 2); _R0(c,d,e,a,b, 3); _R0(b,c,d,e,a, 4); _R0(a,b,c,d,e, 5); _R0(e,a,b,c,d, 6); _R0(d,e,a,b,c, 7); _R0(c,d,e,a,b, 8); _R0(b,c,d,e,a, 9); _R0(a,b,c,d,e,10); _R0(e,a,b,c,d,11); _R0(d,e,a,b,c,12); _R0(c,d,e,a,b,13); _R0(b,c,d,e,a,14); _R0(a,b,c,d,e,15); _R1(e,a,b,c,d,16); _R1(d,e,a,b,c,17); _R1(c,d,e,a,b,18); _R1(b,c,d,e,a,19); _R2(a,b,c,d,e,20); _R2(e,a,b,c,d,21); _R2(d,e,a,b,c,22); _R2(c,d,e,a,b,23); _R2(b,c,d,e,a,24); _R2(a,b,c,d,e,25); _R2(e,a,b,c,d,26); _R2(d,e,a,b,c,27); _R2(c,d,e,a,b,28); _R2(b,c,d,e,a,29); _R2(a,b,c,d,e,30); _R2(e,a,b,c,d,31); _R2(d,e,a,b,c,32); _R2(c,d,e,a,b,33); _R2(b,c,d,e,a,34); _R2(a,b,c,d,e,35); _R2(e,a,b,c,d,36); _R2(d,e,a,b,c,37); _R2(c,d,e,a,b,38); _R2(b,c,d,e,a,39); _R3(a,b,c,d,e,40); _R3(e,a,b,c,d,41); _R3(d,e,a,b,c,42); _R3(c,d,e,a,b,43); _R3(b,c,d,e,a,44); _R3(a,b,c,d,e,45); _R3(e,a,b,c,d,46); _R3(d,e,a,b,c,47); _R3(c,d,e,a,b,48); _R3(b,c,d,e,a,49); _R3(a,b,c,d,e,50); _R3(e,a,b,c,d,51); _R3(d,e,a,b,c,52); _R3(c,d,e,a,b,53); _R3(b,c,d,e,a,54); _R3(a,b,c,d,e,55); _R3(e,a,b,c,d,56); _R3(d,e,a,b,c,57); _R3(c,d,e,a,b,58); _R3(b,c,d,e,a,59); _R4(a,b,c,d,e,60); _R4(e,a,b,c,d,61); _R4(d,e,a,b,c,62); _R4(c,d,e,a,b,63); _R4(b,c,d,e,a,64); _R4(a,b,c,d,e,65); _R4(e,a,b,c,d,66); _R4(d,e,a,b,c,67); _R4(c,d,e,a,b,68); _R4(b,c,d,e,a,69); _R4(a,b,c,d,e,70); _R4(e,a,b,c,d,71); _R4(d,e,a,b,c,72); _R4(c,d,e,a,b,73); _R4(b,c,d,e,a,74); _R4(a,b,c,d,e,75); _R4(e,a,b,c,d,76); _R4(d,e,a,b,c,77); _R4(c,d,e,a,b,78); _R4(b,c,d,e,a,79); // Add the working vars back into state pState[0] += a; pState[1] += b; pState[2] += c; pState[3] += d; pState[4] += e; // Wipe variables #ifdef SHA1_WIPE_VARIABLES a = b = c = d = e = 0; #endif } void CSHA1::Update(const UINT_8* pbData, UINT_32 uLen) { UINT_32 j = ((m_count[0] >> 3) & 0x3F); if((m_count[0] += (uLen << 3)) < (uLen << 3)) ++m_count[1]; // Overflow m_count[1] += (uLen >> 29); UINT_32 i; if((j + uLen) > 63) { i = 64 - j; memcpy(&m_buffer[j], pbData, i); Transform(m_state, m_buffer); for( ; (i + 63) < uLen; i += 64) Transform(m_state, &pbData[i]); j = 0; } else i = 0; if((uLen - i) != 0) memcpy(&m_buffer[j], &pbData[i], uLen - i); } #ifdef SHA1_UTILITY_FUNCTIONS bool CSHA1::HashFile(const TCHAR* tszFileName) { if(tszFileName == NULL) return false; FILE* fpIn = _tfopen(tszFileName, _T("rb")); if(fpIn == NULL) return false; UINT_8* pbData = new UINT_8[SHA1_MAX_FILE_BUFFER]; if(pbData == NULL) { fclose(fpIn); return false; } bool bSuccess = true; while(true) { const size_t uRead = fread(pbData, 1, SHA1_MAX_FILE_BUFFER, fpIn); if(uRead > 0) Update(pbData, static_cast(uRead)); if(uRead < SHA1_MAX_FILE_BUFFER) { if(feof(fpIn) == 0) bSuccess = false; break; } } fclose(fpIn); delete[] pbData; return bSuccess; } #endif void CSHA1::Final() { UINT_32 i; UINT_8 finalcount[8]; for(i = 0; i < 8; ++i) finalcount[i] = (UINT_8)((m_count[((i >= 4) ? 0 : 1)] >> ((3 - (i & 3)) * 8) ) & 255); // Endian independent Update((UINT_8*)"\200", 1); while ((m_count[0] & 504) != 448) Update((UINT_8*)"\0", 1); Update(finalcount, 8); // Cause a SHA1Transform() for(i = 0; i < 20; ++i) m_digest[i] = (UINT_8)((m_state[i >> 2] >> ((3 - (i & 3)) * 8)) & 0xFF); // Wipe variables for security reasons #ifdef SHA1_WIPE_VARIABLES memset(m_buffer, 0, 64); memset(m_state, 0, 20); memset(m_count, 0, 8); memset(finalcount, 0, 8); Transform(m_state, m_buffer); #endif } #ifdef SHA1_UTILITY_FUNCTIONS bool CSHA1::ReportHash(TCHAR* tszReport, REPORT_TYPE rtReportType) const { if(tszReport == NULL) return false; TCHAR tszTemp[16]; if((rtReportType == REPORT_HEX) || (rtReportType == REPORT_HEX_SHORT)) { _sntprintf(tszTemp, 15, _T("%02X"), m_digest[0]); _tcscpy(tszReport, tszTemp); const TCHAR* lpFmt = ((rtReportType == REPORT_HEX) ? _T(" %02X") : _T("%02X")); for(size_t i = 1; i < 20; ++i) { _sntprintf(tszTemp, 15, lpFmt, m_digest[i]); _tcscat(tszReport, tszTemp); } } else if(rtReportType == REPORT_DIGIT) { _sntprintf(tszTemp, 15, _T("%u"), m_digest[0]); _tcscpy(tszReport, tszTemp); for(size_t i = 1; i < 20; ++i) { _sntprintf(tszTemp, 15, _T(" %u"), m_digest[i]); _tcscat(tszReport, tszTemp); } } else return false; return true; } #endif #ifdef SHA1_STL_FUNCTIONS bool CSHA1::ReportHashStl(std::basic_string& strOut, REPORT_TYPE rtReportType) const { TCHAR tszOut[84]; const bool bResult = ReportHash(tszOut, rtReportType); if(bResult) strOut = tszOut; return bResult; } #endif bool CSHA1::GetHash(UINT_8* pbDest20) const { if(pbDest20 == NULL) return false; memcpy(pbDest20, m_digest, 20); return true; } #ifdef _MSC_VER #pragma warning(pop) #endif