// Copyright (c) 2013- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #include #include #include "Common/Common.h" #include "Common/CPUDetect.h" #include "Common/Math/math_util.h" #include "Common/MemoryUtil.h" #include "Common/Profiler/Profiler.h" #include "Core/Config.h" #include "GPU/GPUState.h" #include "GPU/Common/DrawEngineCommon.h" #include "GPU/Common/VertexDecoderCommon.h" #include "GPU/Common/SplineCommon.h" #include "GPU/Common/TextureDecoder.h" #include "GPU/Debugger/Debugger.h" #include "GPU/Software/BinManager.h" #include "GPU/Software/Clipper.h" #include "GPU/Software/FuncId.h" #include "GPU/Software/Lighting.h" #include "GPU/Software/Rasterizer.h" #include "GPU/Software/RasterizerRectangle.h" #include "GPU/Software/TransformUnit.h" #define TRANSFORM_BUF_SIZE (65536 * 48) TransformUnit::TransformUnit() { decoded_ = (u8 *)AllocateMemoryPages(TRANSFORM_BUF_SIZE, MEM_PROT_READ | MEM_PROT_WRITE); binner_ = new BinManager(); } TransformUnit::~TransformUnit() { FreeMemoryPages(decoded_, DECODED_VERTEX_BUFFER_SIZE); delete binner_; } SoftwareDrawEngine::SoftwareDrawEngine() { // All this is a LOT of memory, need to see if we can cut down somehow. Used for splines. decoded = (u8 *)AllocateMemoryPages(DECODED_VERTEX_BUFFER_SIZE, MEM_PROT_READ | MEM_PROT_WRITE); decIndex = (u16 *)AllocateMemoryPages(DECODED_INDEX_BUFFER_SIZE, MEM_PROT_READ | MEM_PROT_WRITE); } SoftwareDrawEngine::~SoftwareDrawEngine() { FreeMemoryPages(decoded, DECODED_VERTEX_BUFFER_SIZE); FreeMemoryPages(decIndex, DECODED_INDEX_BUFFER_SIZE); } void SoftwareDrawEngine::DispatchFlush() { transformUnit.Flush("debug"); } void SoftwareDrawEngine::DispatchSubmitPrim(void *verts, void *inds, GEPrimitiveType prim, int vertexCount, u32 vertTypeID, int cullMode, int *bytesRead) { _assert_msg_(cullMode == gstate.getCullMode(), "Mixed cull mode not supported."); transformUnit.SubmitPrimitive(verts, inds, prim, vertexCount, vertTypeID, bytesRead, this); } void SoftwareDrawEngine::DispatchSubmitImm(void *verts, void *inds, GEPrimitiveType prim, int vertexCount, u32 vertTypeID, int cullMode, int *bytesRead) { _assert_msg_(cullMode == gstate.getCullMode(), "Mixed cull mode not supported."); // TODO: For now, just setting all dirty. transformUnit.SetDirty(SoftDirty(-1)); transformUnit.SubmitPrimitive(verts, inds, prim, vertexCount, vertTypeID, bytesRead, this); // TODO: Should really clear, but the vertex type is faked so things might need resetting... transformUnit.SetDirty(SoftDirty(-1)); } VertexDecoder *SoftwareDrawEngine::FindVertexDecoder(u32 vtype) { const u32 vertTypeID = (vtype & 0xFFFFFF) | (gstate.getUVGenMode() << 24); return DrawEngineCommon::GetVertexDecoder(vertTypeID); } WorldCoords TransformUnit::ModelToWorld(const ModelCoords &coords) { return Vec3ByMatrix43(coords, gstate.worldMatrix); } WorldCoords TransformUnit::ModelToWorldNormal(const ModelCoords &coords) { return Norm3ByMatrix43(coords, gstate.worldMatrix); } ViewCoords TransformUnit::WorldToView(const WorldCoords &coords) { return Vec3ByMatrix43(coords, gstate.viewMatrix); } ClipCoords TransformUnit::ViewToClip(const ViewCoords &coords) { return Vec3ByMatrix44(coords, gstate.projMatrix); } template static ScreenCoords ClipToScreenInternal(Vec3f scaled, const ClipCoords &coords, bool *outside_range_flag) { ScreenCoords ret; // Account for rounding for X and Y. // TODO: Validate actual rounding range. const float SCREEN_BOUND = 4095.0f + (15.5f / 16.0f); // This matches hardware tests - depth is clamped when this flag is on. if (depthClamp) { // Note: if the depth is clipped (z/w <= -1.0), the outside_range_flag should NOT be set, even for x and y. if (writeOutsideFlag && coords.z > -coords.w && (scaled.x >= SCREEN_BOUND || scaled.y >= SCREEN_BOUND || scaled.x < 0 || scaled.y < 0)) { *outside_range_flag = true; } if (scaled.z < 0.f) scaled.z = 0.f; else if (scaled.z > 65535.0f) scaled.z = 65535.0f; } else if (writeOutsideFlag && (scaled.x > SCREEN_BOUND || scaled.y >= SCREEN_BOUND || scaled.x < 0 || scaled.y < 0)) { *outside_range_flag = true; } // 16 = 0xFFFF / 4095.9375 // Round up at 0.625 to the nearest subpixel. static_assert(SCREEN_SCALE_FACTOR == 16, "Currently only supports scale 16"); int x = (int)(scaled.x * 16.0f + 0.375f - gstate.getOffsetX16()); int y = (int)(scaled.y * 16.0f + 0.375f - gstate.getOffsetY16()); return ScreenCoords(x, y, scaled.z); } static inline ScreenCoords ClipToScreenInternal(const ClipCoords &coords, bool *outside_range_flag) { // Parameters here can seem invalid, but the PSP is fine with negative viewport widths etc. // The checking that OpenGL and D3D do is actually quite superflous as the calculations still "work" // with some pretty crazy inputs, which PSP games are happy to do at times. float xScale = gstate.getViewportXScale(); float xCenter = gstate.getViewportXCenter(); float yScale = gstate.getViewportYScale(); float yCenter = gstate.getViewportYCenter(); float zScale = gstate.getViewportZScale(); float zCenter = gstate.getViewportZCenter(); float x = coords.x * xScale / coords.w + xCenter; float y = coords.y * yScale / coords.w + yCenter; float z = coords.z * zScale / coords.w + zCenter; if (gstate.isDepthClampEnabled()) { if (outside_range_flag) return ClipToScreenInternal(Vec3f(x, y, z), coords, outside_range_flag); return ClipToScreenInternal(Vec3f(x, y, z), coords, outside_range_flag); } if (outside_range_flag) return ClipToScreenInternal(Vec3f(x, y, z), coords, outside_range_flag); return ClipToScreenInternal(Vec3f(x, y, z), coords, outside_range_flag); } ScreenCoords TransformUnit::ClipToScreen(const ClipCoords &coords) { return ClipToScreenInternal(coords, nullptr); } ScreenCoords TransformUnit::DrawingToScreen(const DrawingCoords &coords, u16 z) { ScreenCoords ret; ret.x = (u32)coords.x * SCREEN_SCALE_FACTOR; ret.y = (u32)coords.y * SCREEN_SCALE_FACTOR; ret.z = z; return ret; } enum class MatrixMode { NONE = 0, POS_TO_CLIP = 1, POS_TO_VIEW = 2, WORLD_TO_CLIP = 3, }; struct TransformState { Lighting::State lightingState; float fogEnd; float fogSlope; float matrix[16]; Vec3f screenScale; Vec3f screenAdd; ScreenCoords(*roundToScreen)(Vec3f scaled, const ClipCoords &coords, bool *outside_range_flag); struct { bool enableTransform : 1; bool enableLighting : 1; bool enableFog : 1; bool readUV : 1; bool readWeights : 1; bool negateNormals : 1; uint8_t uvGenMode : 2; uint8_t matrixMode : 2; }; }; void ComputeTransformState(TransformState *state, const VertexReader &vreader) { state->enableTransform = !gstate.isModeThrough(); state->enableLighting = gstate.isLightingEnabled(); state->enableFog = gstate.isFogEnabled(); state->readUV = !gstate.isModeClear() && gstate.isTextureMapEnabled() && vreader.hasUV(); state->readWeights = vertTypeIsSkinningEnabled(gstate.vertType) && state->enableTransform; state->negateNormals = gstate.areNormalsReversed(); state->uvGenMode = gstate.getUVGenMode(); if (state->enableTransform) { if (state->enableFog) { state->fogEnd = getFloat24(gstate.fog1); state->fogSlope = getFloat24(gstate.fog2); // Same fixup as in ShaderManagerGLES.cpp if (my_isnanorinf(state->fogEnd)) { state->fogEnd = std::signbit(state->fogEnd) ? -INFINITY : INFINITY; } if (my_isnanorinf(state->fogSlope)) { state->fogSlope = std::signbit(state->fogSlope) ? -INFINITY : INFINITY; } } bool canSkipWorldPos = true; bool canSkipViewPos = !state->enableFog; if (state->enableLighting) { Lighting::ComputeState(&state->lightingState, vreader.hasColor0()); for (int i = 0; i < 4; ++i) { if (!state->lightingState.lights[i].enabled) continue; if (!state->lightingState.lights[i].directional) canSkipWorldPos = false; } } float world[16]; float view[16]; if (canSkipWorldPos && canSkipViewPos) { state->matrixMode = (uint8_t)MatrixMode::POS_TO_CLIP; ConvertMatrix4x3To4x4(world, gstate.worldMatrix); ConvertMatrix4x3To4x4(view, gstate.viewMatrix); float worldview[16]; Matrix4ByMatrix4(worldview, world, view); Matrix4ByMatrix4(state->matrix, worldview, gstate.projMatrix); } else if (canSkipWorldPos) { state->matrixMode = (uint8_t)MatrixMode::POS_TO_VIEW; ConvertMatrix4x3To4x4(world, gstate.worldMatrix); ConvertMatrix4x3To4x4(view, gstate.viewMatrix); Matrix4ByMatrix4(state->matrix, world, view); } else if (canSkipViewPos) { state->matrixMode = (uint8_t)MatrixMode::WORLD_TO_CLIP; ConvertMatrix4x3To4x4(view, gstate.viewMatrix); Matrix4ByMatrix4(state->matrix, view, gstate.projMatrix); } else { state->matrixMode = (uint8_t)MatrixMode::NONE; } state->screenScale = Vec3f(gstate.getViewportXScale(), gstate.getViewportYScale(), gstate.getViewportZScale()); state->screenAdd = Vec3f(gstate.getViewportXCenter(), gstate.getViewportYCenter(), gstate.getViewportZCenter()); } if (gstate.isDepthClampEnabled()) state->roundToScreen = &ClipToScreenInternal; else state->roundToScreen = &ClipToScreenInternal; } VertexData TransformUnit::ReadVertex(VertexReader &vreader, const TransformState &state, bool &outside_range_flag) { PROFILE_THIS_SCOPE("read_vert"); VertexData vertex; ModelCoords pos; // VertexDecoder normally scales z, but we want it unscaled. vreader.ReadPosThroughZ16(pos.AsArray()); if (state.readUV) { vreader.ReadUV(vertex.texturecoords.AsArray()); } Vec3 normal; if (vreader.hasNormal()) { vreader.ReadNrm(normal.AsArray()); if (state.negateNormals) normal = -normal; } if (state.readWeights) { float W[8] = { 1.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f }; vreader.ReadWeights(W); Vec3 tmppos(0.f, 0.f, 0.f); Vec3 tmpnrm(0.f, 0.f, 0.f); for (int i = 0; i < vertTypeGetNumBoneWeights(gstate.vertType); ++i) { Vec3 step = Vec3ByMatrix43(pos, gstate.boneMatrix + i * 12); tmppos += step * W[i]; if (vreader.hasNormal()) { step = Norm3ByMatrix43(normal, gstate.boneMatrix + i * 12); tmpnrm += step * W[i]; } } pos = tmppos; if (vreader.hasNormal()) normal = tmpnrm; } if (vreader.hasColor0()) { #ifdef _M_SSE vreader.ReadColor0_8888((u8 *)vertex.color0.AsArray()); vertex.color0.ivec = _mm_unpacklo_epi8(vertex.color0.ivec, _mm_setzero_si128()); vertex.color0.ivec = _mm_unpacklo_epi16(vertex.color0.ivec, _mm_setzero_si128()); #else float col[4]; vreader.ReadColor0(col); vertex.color0 = Vec4(col[0]*255, col[1]*255, col[2]*255, col[3]*255); #endif } else { vertex.color0 = Vec4::FromRGBA(gstate.getMaterialAmbientRGBA()); } #ifdef _M_SSE vertex.color1 = _mm_setzero_si128(); #else vertex.color1 = Vec3(0, 0, 0); #endif if (state.enableTransform) { WorldCoords worldpos; ModelCoords viewpos; switch (MatrixMode(state.matrixMode)) { case MatrixMode::NONE: worldpos = TransformUnit::ModelToWorld(pos); viewpos = TransformUnit::WorldToView(worldpos); vertex.clippos = TransformUnit::ViewToClip(viewpos); break; case MatrixMode::POS_TO_CLIP: vertex.clippos = Vec3ByMatrix44(pos, state.matrix); break; case MatrixMode::POS_TO_VIEW: #ifdef _M_SSE viewpos = Vec3ByMatrix44(pos, state.matrix).vec; #else viewpos = Vec3ByMatrix44(pos, state.matrix).rgb(); #endif vertex.clippos = TransformUnit::ViewToClip(viewpos); break; case MatrixMode::WORLD_TO_CLIP: worldpos = TransformUnit::ModelToWorld(pos); vertex.clippos = Vec3ByMatrix44(worldpos, state.matrix); break; } Vec3f screenScaled; #ifdef _M_SSE screenScaled.vec = _mm_mul_ps(vertex.clippos.vec, state.screenScale.vec); screenScaled.vec = _mm_div_ps(screenScaled.vec, _mm_shuffle_ps(vertex.clippos.vec, vertex.clippos.vec, _MM_SHUFFLE(3, 3, 3, 3))); screenScaled.vec = _mm_add_ps(screenScaled.vec, state.screenAdd.vec); #else screenScaled = vertex.clippos.xyz() * state.screenScale / vertex.clippos.w + state.screenAdd; #endif vertex.screenpos = state.roundToScreen(screenScaled, vertex.clippos, &outside_range_flag); if (outside_range_flag) return vertex; if (state.enableFog) { vertex.fogdepth = (viewpos.z + state.fogEnd) * state.fogSlope; } else { vertex.fogdepth = 1.0f; } Vec3 worldnormal; if (vreader.hasNormal()) { worldnormal = TransformUnit::ModelToWorldNormal(normal); worldnormal.NormalizeOr001(); } else { worldnormal = Vec3(0.0f, 0.0f, 1.0f); } // Time to generate some texture coords. Lighting will handle shade mapping. if (state.uvGenMode == GE_TEXMAP_TEXTURE_MATRIX) { Vec3f source; switch (gstate.getUVProjMode()) { case GE_PROJMAP_POSITION: source = pos; break; case GE_PROJMAP_UV: source = Vec3f(vertex.texturecoords, 0.0f); break; case GE_PROJMAP_NORMALIZED_NORMAL: source = normal.NormalizedOr001(cpu_info.bSSE4_1); break; case GE_PROJMAP_NORMAL: source = normal; break; default: source = Vec3f::AssignToAll(0.0f); ERROR_LOG_REPORT(G3D, "Software: Unsupported UV projection mode %x", gstate.getUVProjMode()); break; } // TODO: What about uv scale and offset? Vec3 stq = Vec3ByMatrix43(source, gstate.tgenMatrix); float z_recip = 1.0f / stq.z; vertex.texturecoords = Vec2f(stq.x * z_recip, stq.y * z_recip); } else if (state.uvGenMode == GE_TEXMAP_ENVIRONMENT_MAP) { Lighting::GenerateLightST(vertex, worldnormal); } PROFILE_THIS_SCOPE("light"); if (state.enableLighting) Lighting::Process(vertex, worldpos, worldnormal, state.lightingState); } else { vertex.screenpos.x = (int)(pos[0] * SCREEN_SCALE_FACTOR); vertex.screenpos.y = (int)(pos[1] * SCREEN_SCALE_FACTOR); vertex.screenpos.z = pos[2]; vertex.clippos.w = 1.f; vertex.fogdepth = 1.f; } return vertex; } void TransformUnit::SetDirty(SoftDirty flags) { binner_->SetDirty(flags); } SoftDirty TransformUnit::GetDirty() { return binner_->GetDirty(); } enum class CullType { CW, CCW, OFF, }; void TransformUnit::SubmitPrimitive(void* vertices, void* indices, GEPrimitiveType prim_type, int vertex_count, u32 vertex_type, int *bytesRead, SoftwareDrawEngine *drawEngine) { VertexDecoder &vdecoder = *drawEngine->FindVertexDecoder(vertex_type); const DecVtxFormat &vtxfmt = vdecoder.GetDecVtxFmt(); if (bytesRead) *bytesRead = vertex_count * vdecoder.VertexSize(); // Frame skipping. if (gstate_c.skipDrawReason & SKIPDRAW_SKIPFRAME) { return; } // Throughmode never draws 8-bit primitives, maybe because they can't fully specify the screen? if ((vertex_type & GE_VTYPE_THROUGH_MASK) != 0 && (vertex_type & GE_VTYPE_POS_MASK) == GE_VTYPE_POS_8BIT) return; // Vertices without position are just entirely culled. if ((vertex_type & GE_VTYPE_POS_MASK) == 0) return; u16 index_lower_bound = 0; u16 index_upper_bound = vertex_count - 1; IndexConverter ConvertIndex(vertex_type, indices); if (indices) GetIndexBounds(indices, vertex_count, vertex_type, &index_lower_bound, &index_upper_bound); vdecoder.DecodeVerts(decoded_, vertices, index_lower_bound, index_upper_bound); VertexReader vreader(decoded_, vtxfmt, vertex_type); static VertexData data[4]; // Normally max verts per prim is 3, but we temporarily need 4 to detect rectangles from strips. // This is the index of the next vert in data (or higher, may need modulus.) static int data_index = 0; static GEPrimitiveType prev_prim = GE_PRIM_POINTS; if (prim_type != GE_PRIM_KEEP_PREVIOUS) { data_index = 0; prev_prim = prim_type; } else { prim_type = prev_prim; } int vtcs_per_prim; switch (prim_type) { case GE_PRIM_POINTS: vtcs_per_prim = 1; break; case GE_PRIM_LINES: vtcs_per_prim = 2; break; case GE_PRIM_TRIANGLES: vtcs_per_prim = 3; break; case GE_PRIM_RECTANGLES: vtcs_per_prim = 2; break; default: vtcs_per_prim = 0; break; } // TODO: Do this in two passes - first process the vertices (before indexing/stripping), // then resolve the indices. This lets us avoid transforming shared vertices twice. binner_->UpdateState(); static TransformState transformState; if (binner_->HasDirty(SoftDirty::LIGHT_ALL | SoftDirty::TRANSFORM_ALL)) { ComputeTransformState(&transformState, vreader); binner_->ClearDirty(SoftDirty::LIGHT_ALL | SoftDirty::TRANSFORM_ALL); } bool skipCull = !gstate.isCullEnabled() || gstate.isModeClear(); const CullType cullType = skipCull ? CullType::OFF : (gstate.getCullMode() ? CullType::CCW : CullType::CW); bool outside_range_flag = false; switch (prim_type) { case GE_PRIM_POINTS: case GE_PRIM_LINES: case GE_PRIM_TRIANGLES: { for (int vtx = 0; vtx < vertex_count; ++vtx) { if (indices) { vreader.Goto(ConvertIndex(vtx) - index_lower_bound); } else { vreader.Goto(vtx); } data[data_index++] = ReadVertex(vreader, transformState, outside_range_flag); if (data_index < vtcs_per_prim) { // Keep reading. Note: an incomplete prim will stay read for GE_PRIM_KEEP_PREVIOUS. continue; } // Okay, we've got enough verts. Reset the index for next time. data_index = 0; if (outside_range_flag) { // Cull the prim if it was outside, and move to the next prim. outside_range_flag = false; continue; } switch (prim_type) { case GE_PRIM_TRIANGLES: { if (cullType == CullType::OFF) { Clipper::ProcessTriangle(data[0], data[1], data[2], data[2], *binner_); Clipper::ProcessTriangle(data[2], data[1], data[0], data[2], *binner_); } else if (cullType == CullType::CW) { Clipper::ProcessTriangle(data[2], data[1], data[0], data[2], *binner_); } else { Clipper::ProcessTriangle(data[0], data[1], data[2], data[2], *binner_); } break; } case GE_PRIM_LINES: Clipper::ProcessLine(data[0], data[1], *binner_); break; case GE_PRIM_POINTS: Clipper::ProcessPoint(data[0], *binner_); break; default: _dbg_assert_msg_(false, "Unexpected prim type: %d", prim_type); } } break; } case GE_PRIM_RECTANGLES: for (int vtx = 0; vtx < vertex_count; ++vtx) { if (indices) { vreader.Goto(ConvertIndex(vtx) - index_lower_bound); } else { vreader.Goto(vtx); } data[data_index++] = ReadVertex(vreader, transformState, outside_range_flag); if (outside_range_flag) { outside_range_flag = false; // Note: this is the post increment index. If odd, we set the first vert. if (data_index & 1) { // Skip the next one and forget this one. vtx++; data_index--; } else { // Forget both of the last 2. data_index -= 2; } } if (data_index == 4 && gstate.isModeThrough() && cullType == CullType::OFF) { if (Rasterizer::DetectRectangleThroughModeSlices(binner_->State(), data)) { data[1] = data[3]; data_index = 2; } } if (data_index == 4) { Clipper::ProcessRect(data[0], data[1], *binner_); Clipper::ProcessRect(data[2], data[3], *binner_); data_index = 0; } } if (data_index >= 2) { Clipper::ProcessRect(data[0], data[1], *binner_); data_index -= 2; } break; case GE_PRIM_LINE_STRIP: { // Don't draw a line when loading the first vertex. // If data_index is 1 or 2, etc., it means we're continuing a line strip. int skip_count = data_index == 0 ? 1 : 0; for (int vtx = 0; vtx < vertex_count; ++vtx) { if (indices) { vreader.Goto(ConvertIndex(vtx) - index_lower_bound); } else { vreader.Goto(vtx); } data[(data_index++) & 1] = ReadVertex(vreader, transformState, outside_range_flag); if (outside_range_flag) { // Drop all primitives containing the current vertex skip_count = 2; outside_range_flag = false; continue; } if (skip_count) { --skip_count; } else { // We already incremented data_index, so data_index & 1 is previous one. Clipper::ProcessLine(data[data_index & 1], data[(data_index & 1) ^ 1], *binner_); } } break; } case GE_PRIM_TRIANGLE_STRIP: { // Don't draw a triangle when loading the first two vertices. int skip_count = data_index >= 2 ? 0 : 2 - data_index; // If index count == 4, check if we can convert to a rectangle. // This is for Darkstalkers (and should speed up many 2D games). if (data_index == 0 && vertex_count == 4 && cullType == CullType::OFF) { for (int vtx = 0; vtx < 4; ++vtx) { if (indices) { vreader.Goto(ConvertIndex(vtx) - index_lower_bound); } else { vreader.Goto(vtx); } data[vtx] = ReadVertex(vreader, transformState, outside_range_flag); } // If a strip is effectively a rectangle, draw it as such! int tl = -1, br = -1; if (!outside_range_flag && Rasterizer::DetectRectangleFromStrip(binner_->State(), data, &tl, &br)) { Clipper::ProcessRect(data[tl], data[br], *binner_); break; } } outside_range_flag = false; for (int vtx = 0; vtx < vertex_count; ++vtx) { if (indices) { vreader.Goto(ConvertIndex(vtx) - index_lower_bound); } else { vreader.Goto(vtx); } int provoking_index = (data_index++) % 3; data[provoking_index] = ReadVertex(vreader, transformState, outside_range_flag); if (outside_range_flag) { // Drop all primitives containing the current vertex skip_count = 2; outside_range_flag = false; continue; } if (skip_count) { --skip_count; continue; } if (cullType == CullType::OFF) { Clipper::ProcessTriangle(data[0], data[1], data[2], data[provoking_index], *binner_); Clipper::ProcessTriangle(data[2], data[1], data[0], data[provoking_index], *binner_); } else if ((!(int)cullType) ^ ((data_index - 1) % 2)) { // We need to reverse the vertex order for each second primitive, // but we additionally need to do that for every primitive if CCW cullmode is used. Clipper::ProcessTriangle(data[2], data[1], data[0], data[provoking_index], *binner_); } else { Clipper::ProcessTriangle(data[0], data[1], data[2], data[provoking_index], *binner_); } } break; } case GE_PRIM_TRIANGLE_FAN: { // Don't draw a triangle when loading the first two vertices. // (this doesn't count the central one.) int skip_count = data_index <= 1 ? 1 : 0; int start_vtx = 0; // Only read the central vertex if we're not continuing. if (data_index == 0) { if (indices) { vreader.Goto(ConvertIndex(0) - index_lower_bound); } else { vreader.Goto(0); } data[0] = ReadVertex(vreader, transformState, outside_range_flag); data_index++; start_vtx = 1; // If the central vertex is outside range, all the points are toast. if (outside_range_flag) break; } if (data_index == 1 && vertex_count == 4 && cullType == CullType::OFF) { for (int vtx = start_vtx; vtx < vertex_count; ++vtx) { if (indices) { vreader.Goto(ConvertIndex(vtx) - index_lower_bound); } else { vreader.Goto(vtx); } data[vtx] = ReadVertex(vreader, transformState, outside_range_flag); } int tl = -1, br = -1; if (!outside_range_flag && Rasterizer::DetectRectangleFromFan(binner_->State(), data, vertex_count, &tl, &br)) { Clipper::ProcessRect(data[tl], data[br], *binner_); break; } } outside_range_flag = false; for (int vtx = start_vtx; vtx < vertex_count; ++vtx) { if (indices) { vreader.Goto(ConvertIndex(vtx) - index_lower_bound); } else { vreader.Goto(vtx); } int provoking_index = 2 - ((data_index++) % 2); data[provoking_index] = ReadVertex(vreader, transformState, outside_range_flag); if (outside_range_flag) { // Drop all primitives containing the current vertex skip_count = 2; outside_range_flag = false; continue; } if (skip_count) { --skip_count; continue; } if (cullType == CullType::OFF) { Clipper::ProcessTriangle(data[0], data[1], data[2], data[provoking_index], *binner_); Clipper::ProcessTriangle(data[2], data[1], data[0], data[provoking_index], *binner_); } else if ((!(int)cullType) ^ ((data_index - 1) % 2)) { // We need to reverse the vertex order for each second primitive, // but we additionally need to do that for every primitive if CCW cullmode is used. Clipper::ProcessTriangle(data[2], data[1], data[0], data[provoking_index], *binner_); } else { Clipper::ProcessTriangle(data[0], data[1], data[2], data[provoking_index], *binner_); } } break; } default: ERROR_LOG(G3D, "Unexpected prim type: %d", prim_type); break; } } void TransformUnit::Flush(const char *reason) { binner_->Flush(reason); GPUDebug::NotifyDraw(); } void TransformUnit::GetStats(char *buffer, size_t bufsize) { // TODO: More stats? binner_->GetStats(buffer, bufsize); } void TransformUnit::FlushIfOverlap(const char *reason, uint32_t addr, uint32_t stride, uint32_t w, uint32_t h) { if (binner_->HasPendingWrite(addr, stride, w, h)) Flush(reason); } void TransformUnit::NotifyClutUpdate(const void *src) { binner_->UpdateClut(src); } // TODO: This probably is not the best interface. // Also, we should try to merge this into the similar function in DrawEngineCommon. bool TransformUnit::GetCurrentSimpleVertices(int count, std::vector &vertices, std::vector &indices) { // This is always for the current vertices. u16 indexLowerBound = 0; u16 indexUpperBound = count - 1; if (count > 0 && (gstate.vertType & GE_VTYPE_IDX_MASK) != GE_VTYPE_IDX_NONE) { const u8 *inds = Memory::GetPointer(gstate_c.indexAddr); const u16_le *inds16 = (const u16_le *)inds; const u32_le *inds32 = (const u32_le *)inds; if (inds) { GetIndexBounds(inds, count, gstate.vertType, &indexLowerBound, &indexUpperBound); indices.resize(count); switch (gstate.vertType & GE_VTYPE_IDX_MASK) { case GE_VTYPE_IDX_8BIT: for (int i = 0; i < count; ++i) { indices[i] = inds[i]; } break; case GE_VTYPE_IDX_16BIT: for (int i = 0; i < count; ++i) { indices[i] = inds16[i]; } break; case GE_VTYPE_IDX_32BIT: WARN_LOG_REPORT_ONCE(simpleIndexes32, G3D, "SimpleVertices: Decoding 32-bit indexes"); for (int i = 0; i < count; ++i) { // These aren't documented and should be rare. Let's bounds check each one. if (inds32[i] != (u16)inds32[i]) { ERROR_LOG_REPORT_ONCE(simpleIndexes32Bounds, G3D, "SimpleVertices: Index outside 16-bit range"); } indices[i] = (u16)inds32[i]; } break; } } else { indices.clear(); } } else { indices.clear(); } static std::vector temp_buffer; static std::vector simpleVertices; temp_buffer.resize(std::max((int)indexUpperBound, 8192) * 128 / sizeof(u32)); simpleVertices.resize(indexUpperBound + 1); VertexDecoder vdecoder; VertexDecoderOptions options{}; vdecoder.SetVertexType(gstate.vertType, options); if (!Memory::IsValidRange(gstate_c.vertexAddr, (indexUpperBound + 1) * vdecoder.VertexSize())) return false; DrawEngineCommon::NormalizeVertices((u8 *)(&simpleVertices[0]), (u8 *)(&temp_buffer[0]), Memory::GetPointer(gstate_c.vertexAddr), &vdecoder, indexLowerBound, indexUpperBound, gstate.vertType); float world[16]; float view[16]; float worldview[16]; float worldviewproj[16]; ConvertMatrix4x3To4x4(world, gstate.worldMatrix); ConvertMatrix4x3To4x4(view, gstate.viewMatrix); Matrix4ByMatrix4(worldview, world, view); Matrix4ByMatrix4(worldviewproj, worldview, gstate.projMatrix); vertices.resize(indexUpperBound + 1); for (int i = indexLowerBound; i <= indexUpperBound; ++i) { const SimpleVertex &vert = simpleVertices[i]; if (gstate.isModeThrough()) { if (gstate.vertType & GE_VTYPE_TC_MASK) { vertices[i].u = vert.uv[0]; vertices[i].v = vert.uv[1]; } else { vertices[i].u = 0.0f; vertices[i].v = 0.0f; } vertices[i].x = vert.pos.x; vertices[i].y = vert.pos.y; vertices[i].z = vert.pos.z; } else { float clipPos[4]; Vec3ByMatrix44(clipPos, vert.pos.AsArray(), worldviewproj); ScreenCoords screenPos = ClipToScreen(clipPos); DrawingCoords drawPos = ScreenToDrawing(screenPos); if (gstate.vertType & GE_VTYPE_TC_MASK) { vertices[i].u = vert.uv[0] * (float)gstate.getTextureWidth(0); vertices[i].v = vert.uv[1] * (float)gstate.getTextureHeight(0); } else { vertices[i].u = 0.0f; vertices[i].v = 0.0f; } vertices[i].x = drawPos.x; vertices[i].y = drawPos.y; vertices[i].z = screenPos.z; } if (gstate.vertType & GE_VTYPE_COL_MASK) { memcpy(vertices[i].c, vert.color, sizeof(vertices[i].c)); } else { memset(vertices[i].c, 0, sizeof(vertices[i].c)); } vertices[i].nx = vert.nrm.x; vertices[i].ny = vert.nrm.y; vertices[i].nz = vert.nrm.z; } // The GE debugger expects these to be set. gstate_c.curTextureWidth = gstate.getTextureWidth(0); gstate_c.curTextureHeight = gstate.getTextureHeight(0); return true; }