// Copyright (c) 2011 Google, Inc. // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. // // CityHash, by Geoff Pike and Jyrki Alakuijala // // This file provides CityHash64() and related functions. // // It's probably possible to create even faster hash functions by // writing a program that systematically explores some of the space of // possible hash functions, by using SIMD instructions, or by // compromising on hash quality. #include "city.h" #include #include // To check for glibc #include // for memcpy and memset #include using namespace std; static uint64 UNALIGNED_LOAD64(const char *p) { uint64 result; memcpy(&result, p, sizeof(result)); return result; } static uint32 UNALIGNED_LOAD32(const char *p) { uint32 result; memcpy(&result, p, sizeof(result)); return result; } #ifdef _MSC_VER #define bswap_32(x) _byteswap_ulong(x) #define bswap_64(x) _byteswap_uint64(x) #elif defined(__GLIBC__) || defined(__ANDROID__) #include #elif defined(__APPLE__) // Mac OS X / Darwin features #include #define bswap_32(x) OSSwapInt32(x) #define bswap_64(x) OSSwapInt64(x) #elif defined(__sun) || defined(sun) #include #define bswap_32(x) BSWAP_32(x) #define bswap_64(x) BSWAP_64(x) #elif defined(__DragonFly__) || defined(__FreeBSD__) #include #define bswap_32(x) bswap32(x) #define bswap_64(x) bswap64(x) #elif defined(__Bitrig__) || defined(__OpenBSD__) #include #define bswap_32(x) swap32(x) #define bswap_64(x) swap64(x) #elif defined(__NetBSD__) #include #include #if defined(__BSWAP_RENAME) && !defined(__bswap_32) #define bswap_32(x) bswap32(x) #define bswap_64(x) bswap64(x) #endif #else #define bswap_32(x) (0 | (((x) & 0x000000ff) << 24) \ | (((x) & 0x0000ff00) << 8) \ | (((x) & 0x00ff0000) >> 8) \ | (((x) & 0xff000000) >> 24)) #define bswap_64(x) (0 | (((x) & 0x00000000000000ffULL) << 56) \ | (((x) & 0x000000000000ff00ULL) << 40) \ | (((x) & 0x0000000000ff0000ULL) << 24) \ | (((x) & 0x00000000ff000000ULL) << 8) \ | (((x) & 0x000000ff00000000ULL) >> 8) \ | (((x) & 0x0000ff0000000000ULL) >> 24) \ | (((x) & 0x00ff000000000000ULL) >> 40) \ | (((x) & 0xff00000000000000ULL) >> 56)) #endif #ifdef WORDS_BIGENDIAN #define uint32_in_expected_order(x) (bswap_32(x)) #define uint64_in_expected_order(x) (bswap_64(x)) #else #define uint32_in_expected_order(x) (x) #define uint64_in_expected_order(x) (x) #endif #if !defined(LIKELY) #if HAVE_BUILTIN_EXPECT #define LIKELY(x) (__builtin_expect(!!(x), 1)) #else #define LIKELY(x) (x) #endif #endif static uint64 Fetch64(const char *p) { return uint64_in_expected_order(UNALIGNED_LOAD64(p)); } static uint32 Fetch32(const char *p) { return uint32_in_expected_order(UNALIGNED_LOAD32(p)); } // Some primes between 2^63 and 2^64 for various uses. static const uint64 k0 = 0xc3a5c85c97cb3127ULL; static const uint64 k1 = 0xb492b66fbe98f273ULL; static const uint64 k2 = 0x9ae16a3b2f90404fULL; // Magic numbers for 32-bit hashing. Copied from Murmur3. static const uint32 c1 = 0xcc9e2d51; static const uint32 c2 = 0x1b873593; // A 32-bit to 32-bit integer hash copied from Murmur3. static uint32 fmix(uint32 h) { h ^= h >> 16; h *= 0x85ebca6b; h ^= h >> 13; h *= 0xc2b2ae35; h ^= h >> 16; return h; } static uint32 Rotate32(uint32 val, int shift) { // Avoid shifting by 32: doing so yields an undefined result. return shift == 0 ? val : ((val >> shift) | (val << (32 - shift))); } #undef PERMUTE3 #define PERMUTE3(a, b, c) do { std::swap(a, b); std::swap(a, c); } while (0) static uint32 Mur(uint32 a, uint32 h) { // Helper from Murmur3 for combining two 32-bit values. a *= c1; a = Rotate32(a, 17); a *= c2; h ^= a; h = Rotate32(h, 19); return h * 5 + 0xe6546b64; } static uint32 Hash32Len13to24(const char *s, size_t len) { uint32 a = Fetch32(s - 4 + (len >> 1)); uint32 b = Fetch32(s + 4); uint32 c = Fetch32(s + len - 8); uint32 d = Fetch32(s + (len >> 1)); uint32 e = Fetch32(s); uint32 f = Fetch32(s + len - 4); uint32 h = (uint32)len; return fmix(Mur(f, Mur(e, Mur(d, Mur(c, Mur(b, Mur(a, h))))))); } static uint32 Hash32Len0to4(const char *s, size_t len) { uint32 b = 0; uint32 c = 9; for (size_t i = 0; i < len; i++) { signed char v = s[i]; b = b * c1 + v; c ^= b; } return fmix(Mur(b, Mur((uint32)len, c))); } static uint32 Hash32Len5to12(const char *s, size_t len) { uint32 a = (uint32)len, b = (uint32)len * 5, c = 9, d = b; a += Fetch32(s); b += Fetch32(s + len - 4); c += Fetch32(s + ((len >> 1) & 4)); return fmix(Mur(c, Mur(b, Mur(a, d)))); } uint32 CityHash32(const char *s, size_t len) { if (len <= 24) { return len <= 12 ? (len <= 4 ? Hash32Len0to4(s, len) : Hash32Len5to12(s, len)) : Hash32Len13to24(s, len); } // len > 24 uint32 h = (uint32)len, g = c1 * (uint32)len, f = g; uint32 a0 = Rotate32(Fetch32(s + len - 4) * c1, 17) * c2; uint32 a1 = Rotate32(Fetch32(s + len - 8) * c1, 17) * c2; uint32 a2 = Rotate32(Fetch32(s + len - 16) * c1, 17) * c2; uint32 a3 = Rotate32(Fetch32(s + len - 12) * c1, 17) * c2; uint32 a4 = Rotate32(Fetch32(s + len - 20) * c1, 17) * c2; h ^= a0; h = Rotate32(h, 19); h = h * 5 + 0xe6546b64; h ^= a2; h = Rotate32(h, 19); h = h * 5 + 0xe6546b64; g ^= a1; g = Rotate32(g, 19); g = g * 5 + 0xe6546b64; g ^= a3; g = Rotate32(g, 19); g = g * 5 + 0xe6546b64; f += a4; f = Rotate32(f, 19); f = f * 5 + 0xe6546b64; size_t iters = (len - 1) / 20; do { uint32 a0 = Rotate32(Fetch32(s) * c1, 17) * c2; uint32 a1 = Fetch32(s + 4); uint32 a2 = Rotate32(Fetch32(s + 8) * c1, 17) * c2; uint32 a3 = Rotate32(Fetch32(s + 12) * c1, 17) * c2; uint32 a4 = Fetch32(s + 16); h ^= a0; h = Rotate32(h, 18); h = h * 5 + 0xe6546b64; f += a1; f = Rotate32(f, 19); f = f * c1; g += a2; g = Rotate32(g, 18); g = g * 5 + 0xe6546b64; h ^= a3 + a1; h = Rotate32(h, 19); h = h * 5 + 0xe6546b64; g ^= a4; g = bswap_32(g) * 5; h += a4 * 5; h = bswap_32(h); f += a0; PERMUTE3(f, h, g); s += 20; } while (--iters != 0); g = Rotate32(g, 11) * c1; g = Rotate32(g, 17) * c1; f = Rotate32(f, 11) * c1; f = Rotate32(f, 17) * c1; h = Rotate32(h + g, 19); h = h * 5 + 0xe6546b64; h = Rotate32(h, 17) * c1; h = Rotate32(h + f, 19); h = h * 5 + 0xe6546b64; h = Rotate32(h, 17) * c1; return h; } // Bitwise right rotate. Normally this will compile to a single // instruction, especially if the shift is a manifest constant. static uint64 Rotate(uint64 val, int shift) { // Avoid shifting by 64: doing so yields an undefined result. return shift == 0 ? val : ((val >> shift) | (val << (64 - shift))); } static uint64 ShiftMix(uint64 val) { return val ^ (val >> 47); } static uint64 HashLen16(uint64 u, uint64 v) { return Hash128to64(uint128(u, v)); } static uint64 HashLen16(uint64 u, uint64 v, uint64 mul) { // Murmur-inspired hashing. uint64 a = (u ^ v) * mul; a ^= (a >> 47); uint64 b = (v ^ a) * mul; b ^= (b >> 47); b *= mul; return b; } static uint64 HashLen0to16(const char *s, size_t len) { if (len >= 8) { uint64 mul = k2 + len * 2; uint64 a = Fetch64(s) + k2; uint64 b = Fetch64(s + len - 8); uint64 c = Rotate(b, 37) * mul + a; uint64 d = (Rotate(a, 25) + b) * mul; return HashLen16(c, d, mul); } if (len >= 4) { uint64 mul = k2 + len * 2; uint64 a = Fetch32(s); return HashLen16(len + (a << 3), Fetch32(s + len - 4), mul); } if (len > 0) { uint8 a = s[0]; uint8 b = s[len >> 1]; uint8 c = s[len - 1]; uint32 y = static_cast(a) + (static_cast(b) << 8); uint32 z = (uint32)len + (static_cast(c) << 2); return ShiftMix(y * k2 ^ z * k0) * k2; } return k2; } // This probably works well for 16-byte strings as well, but it may be overkill // in that case. static uint64 HashLen17to32(const char *s, size_t len) { uint64 mul = k2 + len * 2; uint64 a = Fetch64(s) * k1; uint64 b = Fetch64(s + 8); uint64 c = Fetch64(s + len - 8) * mul; uint64 d = Fetch64(s + len - 16) * k2; return HashLen16(Rotate(a + b, 43) + Rotate(c, 30) + d, a + Rotate(b + k2, 18) + c, mul); } // Return a 16-byte hash for 48 bytes. Quick and dirty. // Callers do best to use "random-looking" values for a and b. static pair WeakHashLen32WithSeeds( uint64 w, uint64 x, uint64 y, uint64 z, uint64 a, uint64 b) { a += w; b = Rotate(b + a + z, 21); uint64 c = a; a += x; a += y; b += Rotate(a, 44); return make_pair(a + z, b + c); } // Return a 16-byte hash for s[0] ... s[31], a, and b. Quick and dirty. static pair WeakHashLen32WithSeeds( const char* s, uint64 a, uint64 b) { return WeakHashLen32WithSeeds(Fetch64(s), Fetch64(s + 8), Fetch64(s + 16), Fetch64(s + 24), a, b); } // Return an 8-byte hash for 33 to 64 bytes. static uint64 HashLen33to64(const char *s, size_t len) { uint64 mul = k2 + len * 2; uint64 a = Fetch64(s) * k2; uint64 b = Fetch64(s + 8); uint64 c = Fetch64(s + len - 24); uint64 d = Fetch64(s + len - 32); uint64 e = Fetch64(s + 16) * k2; uint64 f = Fetch64(s + 24) * 9; uint64 g = Fetch64(s + len - 8); uint64 h = Fetch64(s + len - 16) * mul; uint64 u = Rotate(a + g, 43) + (Rotate(b, 30) + c) * 9; uint64 v = ((a + g) ^ d) + f + 1; uint64 w = bswap_64((u + v) * mul) + h; uint64 x = Rotate(e + f, 42) + c; uint64 y = (bswap_64((v + w) * mul) + g) * mul; uint64 z = e + f + c; a = bswap_64((x + z) * mul + y) + b; b = ShiftMix((z + a) * mul + d + h) * mul; return b + x; } uint64 CityHash64(const char *s, size_t len) { if (len <= 32) { if (len <= 16) { return HashLen0to16(s, len); } else { return HashLen17to32(s, len); } } else if (len <= 64) { return HashLen33to64(s, len); } // For strings over 64 bytes we hash the end first, and then as we // loop we keep 56 bytes of state: v, w, x, y, and z. uint64 x = Fetch64(s + len - 40); uint64 y = Fetch64(s + len - 16) + Fetch64(s + len - 56); uint64 z = HashLen16(Fetch64(s + len - 48) + len, Fetch64(s + len - 24)); pair v = WeakHashLen32WithSeeds(s + len - 64, len, z); pair w = WeakHashLen32WithSeeds(s + len - 32, y + k1, x); x = x * k1 + Fetch64(s); // Decrease len to the nearest multiple of 64, and operate on 64-byte chunks. len = (len - 1) & ~static_cast(63); do { x = Rotate(x + y + v.first + Fetch64(s + 8), 37) * k1; y = Rotate(y + v.second + Fetch64(s + 48), 42) * k1; x ^= w.second; y += v.first + Fetch64(s + 40); z = Rotate(z + w.first, 33) * k1; v = WeakHashLen32WithSeeds(s, v.second * k1, x + w.first); w = WeakHashLen32WithSeeds(s + 32, z + w.second, y + Fetch64(s + 16)); std::swap(z, x); s += 64; len -= 64; } while (len != 0); return HashLen16(HashLen16(v.first, w.first) + ShiftMix(y) * k1 + z, HashLen16(v.second, w.second) + x); } uint64 CityHash64WithSeed(const char *s, size_t len, uint64 seed) { return CityHash64WithSeeds(s, len, k2, seed); } uint64 CityHash64WithSeeds(const char *s, size_t len, uint64 seed0, uint64 seed1) { return HashLen16(CityHash64(s, len) - seed0, seed1); } // A subroutine for CityHash128(). Returns a decent 128-bit hash for strings // of any length representable in signed long. Based on City and Murmur. static uint128 CityMurmur(const char *s, size_t len, uint128 seed) { uint64 a = Uint128Low64(seed); uint64 b = Uint128High64(seed); uint64 c = 0; uint64 d = 0; signed long l = (signed long)len - 16; if (l <= 0) { // len <= 16 a = ShiftMix(a * k1) * k1; c = b * k1 + HashLen0to16(s, len); d = ShiftMix(a + (len >= 8 ? Fetch64(s) : c)); } else { // len > 16 c = HashLen16(Fetch64(s + len - 8) + k1, a); d = HashLen16(b + len, c + Fetch64(s + len - 16)); a += d; do { a ^= ShiftMix(Fetch64(s) * k1) * k1; a *= k1; b ^= a; c ^= ShiftMix(Fetch64(s + 8) * k1) * k1; c *= k1; d ^= c; s += 16; l -= 16; } while (l > 0); } a = HashLen16(a, c); b = HashLen16(d, b); return uint128(a ^ b, HashLen16(b, a)); } uint128 CityHash128WithSeed(const char *s, size_t len, uint128 seed) { if (len < 128) { return CityMurmur(s, len, seed); } // We expect len >= 128 to be the common case. Keep 56 bytes of state: // v, w, x, y, and z. pair v, w; uint64 x = Uint128Low64(seed); uint64 y = Uint128High64(seed); uint64 z = len * k1; v.first = Rotate(y ^ k1, 49) * k1 + Fetch64(s); v.second = Rotate(v.first, 42) * k1 + Fetch64(s + 8); w.first = Rotate(y + z, 35) * k1 + x; w.second = Rotate(x + Fetch64(s + 88), 53) * k1; // This is the same inner loop as CityHash64(), manually unrolled. do { x = Rotate(x + y + v.first + Fetch64(s + 8), 37) * k1; y = Rotate(y + v.second + Fetch64(s + 48), 42) * k1; x ^= w.second; y += v.first + Fetch64(s + 40); z = Rotate(z + w.first, 33) * k1; v = WeakHashLen32WithSeeds(s, v.second * k1, x + w.first); w = WeakHashLen32WithSeeds(s + 32, z + w.second, y + Fetch64(s + 16)); std::swap(z, x); s += 64; x = Rotate(x + y + v.first + Fetch64(s + 8), 37) * k1; y = Rotate(y + v.second + Fetch64(s + 48), 42) * k1; x ^= w.second; y += v.first + Fetch64(s + 40); z = Rotate(z + w.first, 33) * k1; v = WeakHashLen32WithSeeds(s, v.second * k1, x + w.first); w = WeakHashLen32WithSeeds(s + 32, z + w.second, y + Fetch64(s + 16)); std::swap(z, x); s += 64; len -= 128; } while (LIKELY(len >= 128)); x += Rotate(v.first + z, 49) * k0; y = y * k0 + Rotate(w.second, 37); z = z * k0 + Rotate(w.first, 27); w.first *= 9; v.first *= k0; // If 0 < len < 128, hash up to 4 chunks of 32 bytes each from the end of s. for (size_t tail_done = 0; tail_done < len; ) { tail_done += 32; y = Rotate(x + y, 42) * k0 + v.second; w.first += Fetch64(s + len - tail_done + 16); x = x * k0 + w.first; z += w.second + Fetch64(s + len - tail_done); w.second += v.first; v = WeakHashLen32WithSeeds(s + len - tail_done, v.first + z, v.second); v.first *= k0; } // At this point our 56 bytes of state should contain more than // enough information for a strong 128-bit hash. We use two // different 56-byte-to-8-byte hashes to get a 16-byte final result. x = HashLen16(x, v.first); y = HashLen16(y + z, w.first); return uint128(HashLen16(x + v.second, w.second) + y, HashLen16(x + w.second, y + v.second)); } uint128 CityHash128(const char *s, size_t len) { return len >= 16 ? CityHash128WithSeed(s + 16, len - 16, uint128(Fetch64(s), Fetch64(s + 8) + k0)) : CityHash128WithSeed(s, len, uint128(k0, k1)); } #if defined(__x86_64__) && defined(__SSE4_2__) #include "citycrc.h" #include // Requires len >= 240. static void CityHashCrc256Long(const char *s, size_t len, uint32 seed, uint64 *result) { uint64 a = Fetch64(s + 56) + k0; uint64 b = Fetch64(s + 96) + k0; uint64 c = result[0] = HashLen16(b, len); uint64 d = result[1] = Fetch64(s + 120) * k0 + len; uint64 e = Fetch64(s + 184) + seed; uint64 f = 0; uint64 g = 0; uint64 h = c + d; uint64 x = seed; uint64 y = 0; uint64 z = 0; // 240 bytes of input per iter. size_t iters = len / 240; len -= iters * 240; do { #undef CHUNK #define CHUNK(r) \ PERMUTE3(x, z, y); \ b += Fetch64(s); \ c += Fetch64(s + 8); \ d += Fetch64(s + 16); \ e += Fetch64(s + 24); \ f += Fetch64(s + 32); \ a += b; \ h += f; \ b += c; \ f += d; \ g += e; \ e += z; \ g += x; \ z = _mm_crc32_u64(z, b + g); \ y = _mm_crc32_u64(y, e + h); \ x = _mm_crc32_u64(x, f + a); \ e = Rotate(e, r); \ c += e; \ s += 40 CHUNK(0); PERMUTE3(a, h, c); CHUNK(33); PERMUTE3(a, h, f); CHUNK(0); PERMUTE3(b, h, f); CHUNK(42); PERMUTE3(b, h, d); CHUNK(0); PERMUTE3(b, h, e); CHUNK(33); PERMUTE3(a, h, e); } while (--iters > 0); while (len >= 40) { CHUNK(29); e ^= Rotate(a, 20); h += Rotate(b, 30); g ^= Rotate(c, 40); f += Rotate(d, 34); PERMUTE3(c, h, g); len -= 40; } if (len > 0) { s = s + len - 40; CHUNK(33); e ^= Rotate(a, 43); h += Rotate(b, 42); g ^= Rotate(c, 41); f += Rotate(d, 40); } result[0] ^= h; result[1] ^= g; g += h; a = HashLen16(a, g + z); x += y << 32; b += x; c = HashLen16(c, z) + h; d = HashLen16(d, e + result[0]); g += e; h += HashLen16(x, f); e = HashLen16(a, d) + g; z = HashLen16(b, c) + a; y = HashLen16(g, h) + c; result[0] = e + z + y + x; a = ShiftMix((a + y) * k0) * k0 + b; result[1] += a + result[0]; a = ShiftMix(a * k0) * k0 + c; result[2] = a + result[1]; a = ShiftMix((a + e) * k0) * k0; result[3] = a + result[2]; } // Requires len < 240. static void CityHashCrc256Short(const char *s, size_t len, uint64 *result) { char buf[240]; memcpy(buf, s, len); memset(buf + len, 0, 240 - len); CityHashCrc256Long(buf, 240, ~static_cast(len), result); } void CityHashCrc256(const char *s, size_t len, uint64 *result) { if (LIKELY(len >= 240)) { CityHashCrc256Long(s, len, 0, result); } else { CityHashCrc256Short(s, len, result); } } uint128 CityHashCrc128WithSeed(const char *s, size_t len, uint128 seed) { if (len <= 900) { return CityHash128WithSeed(s, len, seed); } else { uint64 result[4]; CityHashCrc256(s, len, result); uint64 u = Uint128High64(seed) + result[0]; uint64 v = Uint128Low64(seed) + result[1]; return uint128(HashLen16(u, v + result[2]), HashLen16(Rotate(v, 32), u * k0 + result[3])); } } uint128 CityHashCrc128(const char *s, size_t len) { if (len <= 900) { return CityHash128(s, len); } else { uint64 result[4]; CityHashCrc256(s, len, result); return uint128(result[2], result[3]); } } #endif