// Copyright (C) 2003 Dolphin Project / 2012 PPSSPP Project // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #include #include "base/mutex.h" #include "Common/Common.h" #include "Common/MemoryUtil.h" #ifndef __SYMBIAN32__ #include "Common/MemArena.h" #endif #include "Common/ChunkFile.h" #include "Core/MemMap.h" #include "Core/HDRemaster.h" #include "Core/MIPS/MIPS.h" #include "Core/MIPS/JitCommon/JitCommon.h" #include "Core/HLE/HLE.h" #include "Core/Core.h" #include "Core/Debugger/SymbolMap.h" #include "Core/Debugger/Breakpoints.h" #include "Core/Config.h" #include "Core/HLE/ReplaceTables.h" namespace Memory { // The base pointer to the auto-mirrored arena. u8* base = NULL; #ifdef __SYMBIAN32__ RChunk* memmap; #else // The MemArena class MemArena g_arena; #endif // ============== // 64-bit: Pointers to low-mem (sub-0x10000000) mirror // 32-bit: Same as the corresponding physical/virtual pointers. u8 *m_pRAM; u8 *m_pRAM2; u8 *m_pRAM3; u8 *m_pScratchPad; u8 *m_pVRAM; u8 *m_pPhysicalScratchPad; u8 *m_pUncachedScratchPad; // 64-bit: Pointers to high-mem mirrors // 32-bit: Same as above u8 *m_pPhysicalRAM; u8 *m_pUncachedRAM; u8 *m_pKernelRAM; // RAM mirrored up to "kernel space". Fully accessible at all times currently. u8 *m_pPhysicalRAM2; u8 *m_pUncachedRAM2; u8 *m_pKernelRAM2; u8 *m_pPhysicalRAM3; u8 *m_pUncachedRAM3; u8 *m_pKernelRAM3; // VRAM is mirrored 4 times. The second and fourth mirrors are swizzled. // In practice, a game accessing the mirrors most likely is deswizzling the depth buffer. u8 *m_pPhysicalVRAM1; u8 *m_pPhysicalVRAM2; u8 *m_pPhysicalVRAM3; u8 *m_pPhysicalVRAM4; u8 *m_pUncachedVRAM1; u8 *m_pUncachedVRAM2; u8 *m_pUncachedVRAM3; u8 *m_pUncachedVRAM4; // Holds the ending address of the PSP's user space. // Required for HD Remasters to work properly. // This replaces RAM_NORMAL_SIZE at runtime. u32 g_MemorySize; // Used to store the PSP model on game startup. u32 g_PSPModel; recursive_mutex g_shutdownLock; // We don't declare the IO region in here since its handled by other means. static MemoryView views[] = { {&m_pScratchPad, &m_pPhysicalScratchPad, 0x00010000, SCRATCHPAD_SIZE, 0}, {NULL, &m_pUncachedScratchPad, 0x40010000, SCRATCHPAD_SIZE, MV_MIRROR_PREVIOUS}, {&m_pVRAM, &m_pPhysicalVRAM1, 0x04000000, 0x00200000, 0}, {NULL, &m_pPhysicalVRAM2, 0x04200000, 0x00200000, MV_MIRROR_PREVIOUS}, {NULL, &m_pPhysicalVRAM3, 0x04400000, 0x00200000, MV_MIRROR_PREVIOUS}, {NULL, &m_pPhysicalVRAM4, 0x04600000, 0x00200000, MV_MIRROR_PREVIOUS}, {NULL, &m_pUncachedVRAM1, 0x44000000, 0x00200000, MV_MIRROR_PREVIOUS}, {NULL, &m_pUncachedVRAM2, 0x44200000, 0x00200000, MV_MIRROR_PREVIOUS}, {NULL, &m_pUncachedVRAM3, 0x44400000, 0x00200000, MV_MIRROR_PREVIOUS}, {NULL, &m_pUncachedVRAM4, 0x44600000, 0x00200000, MV_MIRROR_PREVIOUS}, {&m_pRAM, &m_pPhysicalRAM, 0x08000000, g_MemorySize, MV_IS_PRIMARY_RAM}, // only from 0x08800000 is it usable (last 24 megs) {NULL, &m_pUncachedRAM, 0x48000000, g_MemorySize, MV_MIRROR_PREVIOUS | MV_IS_PRIMARY_RAM}, {NULL, &m_pKernelRAM, 0x88000000, g_MemorySize, MV_MIRROR_PREVIOUS | MV_IS_PRIMARY_RAM}, // Starts at memory + 31 MB. {&m_pRAM2, &m_pPhysicalRAM2, 0x09F00000, g_MemorySize, MV_IS_EXTRA1_RAM}, {NULL, &m_pUncachedRAM2, 0x49F00000, g_MemorySize, MV_MIRROR_PREVIOUS | MV_IS_EXTRA1_RAM}, {NULL, &m_pKernelRAM2, 0x89F00000, g_MemorySize, MV_MIRROR_PREVIOUS | MV_IS_EXTRA1_RAM}, // Starts at memory + 31 * 2 MB. {&m_pRAM3, &m_pPhysicalRAM3, 0x0BE00000, g_MemorySize, MV_IS_EXTRA2_RAM}, {NULL, &m_pUncachedRAM3, 0x4BE00000, g_MemorySize, MV_MIRROR_PREVIOUS | MV_IS_EXTRA2_RAM}, {NULL, &m_pKernelRAM3, 0x8BE00000, g_MemorySize, MV_MIRROR_PREVIOUS | MV_IS_EXTRA2_RAM}, // TODO: There are a few swizzled mirrors of VRAM, not sure about the best way to // implement those. }; static const int num_views = sizeof(views) / sizeof(MemoryView); inline static bool CanIgnoreView(const MemoryView &view) { #if defined(_M_IX86) || defined(_M_ARM32) // Basically, 32-bit platforms can ignore views that are masked out anyway. return (view.flags & MV_MIRROR_PREVIOUS) && (view.virtual_address & ~MEMVIEW32_MASK) != 0; #else return false; #endif } // yeah, this could also be done in like two bitwise ops... #define SKIP(a_flags, b_flags) // if (!(a_flags & MV_WII_ONLY) && (b_flags & MV_WII_ONLY)) // continue; // if (!(a_flags & MV_FAKE_VMEM) && (b_flags & MV_FAKE_VMEM)) // continue; static bool Memory_TryBase(u32 flags) { // OK, we know where to find free space. Now grab it! // We just mimic the popular BAT setup. #if defined(_XBOX) void *ptr; #elif !defined(__SYMBIAN32__) size_t position = 0; size_t last_position = 0; #endif // Zero all the pointers to be sure. for (int i = 0; i < num_views; i++) { if (views[i].out_ptr_low) *views[i].out_ptr_low = 0; if (views[i].out_ptr) *views[i].out_ptr = 0; } int i; for (i = 0; i < num_views; i++) { const MemoryView &view = views[i]; if (view.size == 0) continue; SKIP(flags, view.flags); #ifdef __SYMBIAN32__ if (!CanIgnoreView(view)) { memmap->Commit(view.virtual_address & MEMVIEW32_MASK, view.size); } *(view.out_ptr) = (u8*)base + (view.virtual_address & MEMVIEW32_MASK); #elif defined(_XBOX) if (!CanIgnoreView(view)) { *(view.out_ptr_low) = (u8*)(base + view.virtual_address); ptr = VirtualAlloc(base + (view.virtual_address & MEMVIEW32_MASK), view.size, MEM_COMMIT, PAGE_READWRITE); } *(view.out_ptr) = (u8*)base + (view.virtual_address & MEMVIEW32_MASK); #else if (view.flags & MV_MIRROR_PREVIOUS) { position = last_position; } else { *(view.out_ptr_low) = (u8*)g_arena.CreateView(position, view.size); if (!*view.out_ptr_low) goto bail; } #ifdef _M_X64 *view.out_ptr = (u8*)g_arena.CreateView( position, view.size, base + view.virtual_address); #else if (CanIgnoreView(view)) { // No need to create multiple identical views. *view.out_ptr = *views[i - 1].out_ptr; } else { *view.out_ptr = (u8*)g_arena.CreateView( position, view.size, base + (view.virtual_address & MEMVIEW32_MASK)); if (!*view.out_ptr) goto bail; } #endif last_position = position; position += g_arena.roundup(view.size); #endif } return true; #if !defined(__SYMBIAN32__) bail: // Argh! ERROR! Free what we grabbed so far so we can try again. for (int j = 0; j <= i; j++) { if (views[i].size == 0) continue; SKIP(flags, views[i].flags); if (views[j].out_ptr_low && *views[j].out_ptr_low) { g_arena.ReleaseView(*views[j].out_ptr_low, views[j].size); *views[j].out_ptr_low = NULL; } if (*views[j].out_ptr) { if (!CanIgnoreView(views[j])) { g_arena.ReleaseView(*views[j].out_ptr, views[j].size); } *views[j].out_ptr = NULL; } } return false; #endif } void MemoryMap_Setup(u32 flags) { // Find a base to reserve 256MB #if defined(_XBOX) base = (u8*)VirtualAlloc(0, 0x10000000, MEM_RESERVE|MEM_LARGE_PAGES, PAGE_READWRITE); #elif defined(__SYMBIAN32__) memmap = new RChunk(); memmap->CreateDisconnectedLocal(0 , 0, 0x10000000); base = memmap->Base(); #else size_t total_mem = 0; for (int i = 0; i < num_views; i++) { if (views[i].size == 0) continue; SKIP(flags, views[i].flags); if (!CanIgnoreView(views[i])) total_mem += g_arena.roundup(views[i].size); } // Grab some pagefile backed memory out of the void ... g_arena.GrabLowMemSpace(total_mem); // 32-bit Windows retrieves base a different way #if defined(_M_X64) || !defined(_WIN32) // This really shouldn't fail - in 64-bit, there will always be enough address space. // Linux32 is fine with the x64 method, although limited to 32-bit with no automirrors. base = MemArena::Find4GBBase(); #endif #endif // Now, create views in high memory where there's plenty of space. #if defined(_WIN32) && !defined(_M_X64) // Try a whole range of possible bases. Return once we got a valid one. int base_attempts = 0; u32 max_base_addr = 0x7FFF0000 - 0x10000000; for (u32 base_addr = 0x01000000; base_addr < max_base_addr; base_addr += 0x400000) { base_attempts++; base = (u8 *)base_addr; if (Memory_TryBase(flags)) { INFO_LOG(MEMMAP, "Found valid memory base at %p after %i tries.", base, base_attempts); base_attempts = 0; break; } } if (base_attempts) PanicAlert("No possible memory base pointer found!"); #else // Try base we retrieved earlier if (!Memory_TryBase(flags)) { ERROR_LOG(MEMMAP, "MemoryMap_Setup: Failed finding a memory base."); PanicAlert("MemoryMap_Setup: Failed finding a memory base."); } #endif return; } void MemoryMap_Shutdown(u32 flags) { #ifdef __SYMBIAN32__ memmap->Decommit(0, memmap->MaxSize()); memmap->Close(); delete memmap; #else for (int i = 0; i < num_views; i++) { if (views[i].size == 0) continue; SKIP(flags, views[i].flags); if (views[i].out_ptr_low && *views[i].out_ptr_low) g_arena.ReleaseView(*views[i].out_ptr_low, views[i].size); if (*views[i].out_ptr && (!views[i].out_ptr_low || *views[i].out_ptr != *views[i].out_ptr_low)) g_arena.ReleaseView(*views[i].out_ptr, views[i].size); *views[i].out_ptr = NULL; if (views[i].out_ptr_low) *views[i].out_ptr_low = NULL; } g_arena.ReleaseSpace(); #endif } void Init() { int flags = 0; // On some 32 bit platforms, you can only map < 32 megs at a time. const static int MAX_MMAP_SIZE = 31 * 1024 * 1024; _dbg_assert_msg_(MEMMAP, g_MemorySize < MAX_MMAP_SIZE * 3, "ACK - too much memory for three mmap views."); for (size_t i = 0; i < ARRAY_SIZE(views); i++) { if (views[i].flags & MV_IS_PRIMARY_RAM) views[i].size = std::min((int)g_MemorySize, MAX_MMAP_SIZE); if (views[i].flags & MV_IS_EXTRA1_RAM) views[i].size = std::min(std::max((int)g_MemorySize - MAX_MMAP_SIZE, 0), MAX_MMAP_SIZE); if (views[i].flags & MV_IS_EXTRA2_RAM) views[i].size = std::min(std::max((int)g_MemorySize - MAX_MMAP_SIZE * 2, 0), MAX_MMAP_SIZE); } MemoryMap_Setup(flags); INFO_LOG(MEMMAP, "Memory system initialized. RAM at %p (mirror at 0 @ %p, uncached @ %p)", m_pRAM, m_pPhysicalRAM, m_pUncachedRAM); } void DoState(PointerWrap &p) { auto s = p.Section("Memory", 1, 2); if (!s) return; if (s < 2) { if (!g_RemasterMode) g_MemorySize = RAM_NORMAL_SIZE; g_PSPModel = PSP_MODEL_FAT; } else { u32 oldMemorySize = g_MemorySize; p.Do(g_PSPModel); p.DoMarker("PSPModel"); if (!g_RemasterMode) { g_MemorySize = g_PSPModel == PSP_MODEL_FAT ? RAM_NORMAL_SIZE : RAM_DOUBLE_SIZE; if (oldMemorySize < g_MemorySize) { Shutdown(); Init(); } } } p.DoArray(GetPointer(PSP_GetKernelMemoryBase()), g_MemorySize); p.DoMarker("RAM"); p.DoArray(m_pVRAM, VRAM_SIZE); p.DoMarker("VRAM"); p.DoArray(m_pScratchPad, SCRATCHPAD_SIZE); p.DoMarker("ScratchPad"); } void Shutdown() { lock_guard guard(g_shutdownLock); u32 flags = 0; MemoryMap_Shutdown(flags); base = NULL; DEBUG_LOG(MEMMAP, "Memory system shut down."); } void Clear() { if (m_pRAM) memset(GetPointerUnchecked(PSP_GetKernelMemoryBase()), 0, g_MemorySize); if (m_pScratchPad) memset(m_pScratchPad, 0, SCRATCHPAD_SIZE); if (m_pVRAM) memset(m_pVRAM, 0, VRAM_SIZE); } // Wanting to avoid include pollution, MemMap.h is included a lot. MemoryInitedLock::MemoryInitedLock() { g_shutdownLock.lock(); } MemoryInitedLock::~MemoryInitedLock() { g_shutdownLock.unlock(); } MemoryInitedLock Lock() { return MemoryInitedLock(); } static Opcode Read_Instruction(u32 address, bool resolveReplacements, Opcode inst) { if (!MIPS_IS_EMUHACK(inst.encoding)) { return inst; } if (MIPS_IS_RUNBLOCK(inst.encoding) && MIPSComp::jit) { JitBlockCache *bc = MIPSComp::jit->GetBlockCache(); int block_num = bc->GetBlockNumberFromEmuHackOp(inst, true); if (block_num >= 0) { inst = bc->GetOriginalFirstOp(block_num); if (resolveReplacements && MIPS_IS_REPLACEMENT(inst)) { u32 op; if (GetReplacedOpAt(address, &op)) { if (MIPS_IS_EMUHACK(op)) { ERROR_LOG(HLE,"WTF 1"); return Opcode(op); } else { return Opcode(op); } } else { ERROR_LOG(HLE, "Replacement, but no replacement op? %08x", inst.encoding); } } return inst; } else { return inst; } } else if (resolveReplacements && MIPS_IS_REPLACEMENT(inst.encoding)) { u32 op; if (GetReplacedOpAt(address, &op)) { if (MIPS_IS_EMUHACK(op)) { ERROR_LOG(HLE,"WTF 2"); return Opcode(op); } else { return Opcode(op); } } else { return inst; } } else { return inst; } } Opcode Read_Instruction(u32 address, bool resolveReplacements) { Opcode inst = Opcode(Read_U32(address)); return Read_Instruction(address, resolveReplacements, inst); } Opcode ReadUnchecked_Instruction(u32 address, bool resolveReplacements) { Opcode inst = Opcode(ReadUnchecked_U32(address)); return Read_Instruction(address, resolveReplacements, inst); } Opcode Read_Opcode_JIT(u32 address) { Opcode inst = Opcode(Read_U32(address)); if (MIPS_IS_RUNBLOCK(inst.encoding) && MIPSComp::jit) { JitBlockCache *bc = MIPSComp::jit->GetBlockCache(); int block_num = bc->GetBlockNumberFromEmuHackOp(inst, true); if (block_num >= 0) { return bc->GetOriginalFirstOp(block_num); } else { return inst; } } else { return inst; } } // WARNING! No checks! // We assume that _Address is cached void Write_Opcode_JIT(const u32 _Address, const Opcode _Value) { Memory::WriteUnchecked_U32(_Value.encoding, _Address); } void Memset(const u32 _Address, const u8 _iValue, const u32 _iLength) { u8 *ptr = GetPointer(_Address); if (ptr != NULL) { memset(ptr, _iValue, _iLength); } else { for (size_t i = 0; i < _iLength; i++) Write_U8(_iValue, (u32)(_Address + i)); } #ifndef MOBILE_DEVICE CBreakPoints::ExecMemCheck(_Address, true, _iLength, currentMIPS->pc); #endif } const char *GetAddressName(u32 address) { // TODO, follow GetPointer return "[mem]"; } } // namespace