// Copyright (c) 2012- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #include #include #include "HLE.h" #include "../MIPS/MIPS.h" #include "../../Core/CoreTiming.h" #include "sceKernel.h" #include "sceKernelMutex.h" #include "sceKernelThread.h" #define PSP_MUTEX_ATTR_FIFO 0 #define PSP_MUTEX_ATTR_PRIORITY 0x100 #define PSP_MUTEX_ATTR_ALLOW_RECURSIVE 0x200 #define PSP_MUTEX_ATTR_KNOWN (PSP_MUTEX_ATTR_PRIORITY | PSP_MUTEX_ATTR_ALLOW_RECURSIVE) // Not sure about the names of these #define PSP_MUTEX_ERROR_NO_SUCH_MUTEX 0x800201C3 #define PSP_MUTEX_ERROR_TRYLOCK_FAILED 0x800201C4 #define PSP_MUTEX_ERROR_NOT_LOCKED 0x800201C5 #define PSP_MUTEX_ERROR_LOCK_OVERFLOW 0x800201C6 #define PSP_MUTEX_ERROR_UNLOCK_UNDERFLOW 0x800201C7 #define PSP_MUTEX_ERROR_ALREADY_LOCKED 0x800201C8 #define PSP_LWMUTEX_ERROR_NO_SUCH_LWMUTEX 0x800201CA // Note: used only for _600. #define PSP_LWMUTEX_ERROR_TRYLOCK_FAILED 0x800201CB #define PSP_LWMUTEX_ERROR_NOT_LOCKED 0x800201CC #define PSP_LWMUTEX_ERROR_LOCK_OVERFLOW 0x800201CD #define PSP_LWMUTEX_ERROR_UNLOCK_UNDERFLOW 0x800201CE #define PSP_LWMUTEX_ERROR_ALREADY_LOCKED 0x800201CF // Guesswork - not exposed anyway struct NativeMutex { SceSize size; char name[KERNELOBJECT_MAX_NAME_LENGTH + 1]; SceUInt attr; int lockLevel; int lockThread; // The thread holding the lock }; struct Mutex : public KernelObject { const char *GetName() {return nm.name;} const char *GetTypeName() {return "Mutex";} static u32 GetMissingErrorCode() { return PSP_MUTEX_ERROR_NO_SUCH_MUTEX; } int GetIDType() const { return SCE_KERNEL_TMID_Mutex; } NativeMutex nm; std::vector waitingThreads; }; // Guesswork - not exposed anyway struct NativeLwMutex { SceSize size; char name[KERNELOBJECT_MAX_NAME_LENGTH + 1]; SceUInt attr; SceUInt workareaPtr; }; struct NativeLwMutexWorkarea { int lockLevel; SceUID lockThread; int attr; int numWaitThreads; SceUID uid; int pad[3]; void init() { memset(this, 0, sizeof(NativeLwMutexWorkarea)); } void clear() { lockLevel = 0; lockThread = -1; uid = -1; } }; struct LwMutex : public KernelObject { const char *GetName() {return nm.name;} const char *GetTypeName() {return "LwMutex";} static u32 GetMissingErrorCode() { return PSP_LWMUTEX_ERROR_NO_SUCH_LWMUTEX; } int GetIDType() const { return SCE_KERNEL_TMID_LwMutex; } NativeLwMutex nm; std::vector waitingThreads; }; bool mutexInitComplete = false; int mutexWaitTimer = 0; int lwMutexWaitTimer = 0; // Thread -> Mutex locks for thread end. typedef std::multimap MutexMap; MutexMap mutexHeldLocks; void __KernelMutexInit() { mutexWaitTimer = CoreTiming::RegisterEvent("MutexTimeout", &__KernelMutexTimeout); lwMutexWaitTimer = CoreTiming::RegisterEvent("LwMutexTimeout", &__KernelLwMutexTimeout); // TODO: Install on first mutex (if it's slow?) __KernelListenThreadEnd(&__KernelMutexThreadEnd); mutexInitComplete = true; } void __KernelMutexAcquireLock(Mutex *mutex, int count, SceUID thread) { #if _DEBUG std::pair locked = mutexHeldLocks.equal_range(thread); for (MutexMap::iterator iter = locked.first; iter != locked.second; ++iter) _dbg_assert_msg_(HLE, (*iter).second != mutex->GetUID(), "Thread %d / mutex %d wasn't removed from mutexHeldLocks properly.", thread, mutex->GetUID()); #endif mutexHeldLocks.insert(std::make_pair(thread, mutex->GetUID())); mutex->nm.lockLevel = count; mutex->nm.lockThread = thread; } void __KernelMutexAcquireLock(Mutex *mutex, int count) { __KernelMutexAcquireLock(mutex, count, __KernelGetCurThread()); } void __KernelMutexEraseLock(Mutex *mutex) { if (mutex->nm.lockThread != -1) { SceUID id = mutex->GetUID(); std::pair locked = mutexHeldLocks.equal_range(mutex->nm.lockThread); for (MutexMap::iterator iter = locked.first; iter != locked.second; ++iter) { if ((*iter).second == id) { mutexHeldLocks.erase(iter); break; } } } mutex->nm.lockThread = -1; } std::vector::iterator __KernelMutexFindPriority(std::vector &waiting) { _dbg_assert_msg_(HLE, !waiting.empty(), "__KernelMutexFindPriority: Trying to find best of no threads."); std::vector::iterator iter, end, best = waiting.end(); u32 best_prio = 0xFFFFFFFF; for (iter = waiting.begin(), end = waiting.end(); iter != end; ++iter) { u32 iter_prio = __KernelGetThreadPrio(*iter); if (iter_prio < best_prio) { best = iter; best_prio = iter_prio; } } _dbg_assert_msg_(HLE, best != waiting.end(), "__KernelMutexFindPriority: Returning invalid best thread."); return best; } int sceKernelCreateMutex(const char *name, u32 attr, int initialCount, u32 optionsPtr) { if (!mutexInitComplete) __KernelMutexInit(); if (!name) { WARN_LOG(HLE, "%08x=sceKernelCreateMutex(): invalid name", SCE_KERNEL_ERROR_ERROR); return SCE_KERNEL_ERROR_ERROR; } if (attr >= 0xC00) { WARN_LOG(HLE, "%08x=sceKernelCreateMutex(): invalid attr parameter: %08x", SCE_KERNEL_ERROR_ILLEGAL_ATTR, attr); return SCE_KERNEL_ERROR_ILLEGAL_ATTR; } if (initialCount < 0) return SCE_KERNEL_ERROR_ILLEGAL_COUNT; if ((attr & PSP_MUTEX_ATTR_ALLOW_RECURSIVE) == 0 && initialCount > 1) return SCE_KERNEL_ERROR_ILLEGAL_COUNT; Mutex *mutex = new Mutex(); SceUID id = kernelObjects.Create(mutex); mutex->nm.size = sizeof(mutex); strncpy(mutex->nm.name, name, KERNELOBJECT_MAX_NAME_LENGTH); mutex->nm.name[KERNELOBJECT_MAX_NAME_LENGTH] = 0; mutex->nm.attr = attr; if (initialCount == 0) { mutex->nm.lockLevel = 0; mutex->nm.lockThread = -1; } else __KernelMutexAcquireLock(mutex, initialCount); DEBUG_LOG(HLE, "%i=sceKernelCreateMutex(%s, %08x, %d, %08x)", id, name, attr, initialCount, optionsPtr); if (optionsPtr != 0) WARN_LOG(HLE, "sceKernelCreateMutex(%s) unsupported options parameter: %08x", name, optionsPtr); if ((attr & ~PSP_MUTEX_ATTR_KNOWN) != 0) WARN_LOG(HLE, "sceKernelCreateMutex(%s) unsupported attr parameter: %08x", name, attr); return id; } bool __KernelUnlockMutexForThread(Mutex *mutex, SceUID threadID, u32 &error, int result) { SceUID waitID = __KernelGetWaitID(threadID, WAITTYPE_MUTEX, error); u32 timeoutPtr = __KernelGetWaitTimeoutPtr(threadID, error); // The waitID may be different after a timeout. if (waitID != mutex->GetUID()) return false; // If result is an error code, we're just letting it go. if (result == 0) { int wVal = (int)__KernelGetWaitValue(threadID, error); __KernelMutexAcquireLock(mutex, wVal, threadID); } if (timeoutPtr != 0 && mutexWaitTimer != 0) { // Remove any event for this thread. u64 cyclesLeft = CoreTiming::UnscheduleEvent(mutexWaitTimer, threadID); Memory::Write_U32((u32) cyclesToUs(cyclesLeft), timeoutPtr); } __KernelResumeThreadFromWait(threadID, result); return true; } int sceKernelDeleteMutex(SceUID id) { DEBUG_LOG(HLE,"sceKernelDeleteMutex(%i)", id); u32 error; Mutex *mutex = kernelObjects.Get(id, error); if (mutex) { bool wokeThreads = false; std::vector::iterator iter, end; for (iter = mutex->waitingThreads.begin(), end = mutex->waitingThreads.end(); iter != end; ++iter) wokeThreads |= __KernelUnlockMutexForThread(mutex, *iter, error, SCE_KERNEL_ERROR_WAIT_DELETE); if (mutex->nm.lockThread != -1) __KernelMutexEraseLock(mutex); mutex->waitingThreads.clear(); if (wokeThreads) hleReSchedule("mutex deleted"); return kernelObjects.Destroy(id); } else return error; } bool __KernelLockMutex(Mutex *mutex, int count, u32 &error) { if (!error) { if (count <= 0) error = SCE_KERNEL_ERROR_ILLEGAL_COUNT; else if (count > 1 && !(mutex->nm.attr & PSP_MUTEX_ATTR_ALLOW_RECURSIVE)) error = SCE_KERNEL_ERROR_ILLEGAL_COUNT; // Two positive ints will always overflow to negative. else if (count + mutex->nm.lockLevel < 0) error = PSP_MUTEX_ERROR_LOCK_OVERFLOW; } if (error) return false; if (mutex->nm.lockLevel == 0) { __KernelMutexAcquireLock(mutex, count); // Nobody had it locked - no need to block return true; } if (mutex->nm.lockThread == __KernelGetCurThread()) { // Recursive mutex, let's just increase the lock count and keep going if (mutex->nm.attr & PSP_MUTEX_ATTR_ALLOW_RECURSIVE) { mutex->nm.lockLevel += count; return true; } else { error = PSP_MUTEX_ERROR_ALREADY_LOCKED; return false; } } return false; } bool __KernelUnlockMutex(Mutex *mutex, u32 &error) { __KernelMutexEraseLock(mutex); bool wokeThreads = false; std::vector::iterator iter; while (!wokeThreads && !mutex->waitingThreads.empty()) { if ((mutex->nm.attr & PSP_MUTEX_ATTR_PRIORITY) != 0) iter = __KernelMutexFindPriority(mutex->waitingThreads); else iter = mutex->waitingThreads.begin(); wokeThreads |= __KernelUnlockMutexForThread(mutex, *iter, error, 0); mutex->waitingThreads.erase(iter); } if (!wokeThreads) mutex->nm.lockThread = -1; return wokeThreads; } void __KernelMutexTimeout(u64 userdata, int cyclesLate) { SceUID threadID = (SceUID)userdata; u32 error; u32 timeoutPtr = __KernelGetWaitTimeoutPtr(threadID, error); if (timeoutPtr != 0) Memory::Write_U32(0, timeoutPtr); __KernelResumeThreadFromWait(threadID, SCE_KERNEL_ERROR_WAIT_TIMEOUT); // We intentionally don't remove from waitingThreads here yet. // The reason is, if it times out, but what it was waiting on is DELETED prior to it // actually running, it will get a DELETE result instead of a TIMEOUT. // So, we need to remember it or we won't be able to mark it DELETE instead later. } void __KernelMutexThreadEnd(SceUID threadID) { u32 error; // If it was waiting on the mutex, it should finish now. SceUID waitingMutexID = __KernelGetWaitID(threadID, WAITTYPE_MUTEX, error); if (waitingMutexID) { Mutex *mutex = kernelObjects.Get(waitingMutexID, error); if (mutex) mutex->waitingThreads.erase(std::remove(mutex->waitingThreads.begin(), mutex->waitingThreads.end(), threadID), mutex->waitingThreads.end()); } // Unlock all mutexes the thread had locked. std::pair locked = mutexHeldLocks.equal_range(threadID); for (MutexMap::iterator iter = locked.first; iter != locked.second; ) { // Need to increment early so erase() doesn't invalidate. SceUID mutexID = (*iter++).second; Mutex *mutex = kernelObjects.Get(mutexID, error); if (mutex) { mutex->nm.lockLevel = 0; __KernelUnlockMutex(mutex, error); } } } void __KernelWaitMutex(Mutex *mutex, u32 timeoutPtr) { if (timeoutPtr == 0 || mutexWaitTimer == 0) return; int micro = (int) Memory::Read_U32(timeoutPtr); // This happens to be how the hardware seems to time things. if (micro <= 3) micro = 15; else if (micro <= 249) micro = 250; // This should call __KernelMutexTimeout() later, unless we cancel it. CoreTiming::ScheduleEvent(usToCycles(micro), mutexWaitTimer, __KernelGetCurThread()); } // int sceKernelLockMutex(SceUID id, int count, int *timeout) int sceKernelLockMutex(SceUID id, int count, u32 timeoutPtr) { DEBUG_LOG(HLE, "sceKernelLockMutex(%i, %i, %08x)", id, count, timeoutPtr); u32 error; Mutex *mutex = kernelObjects.Get(id, error); if (__KernelLockMutex(mutex, count, error)) return 0; else if (error) return error; else { mutex->waitingThreads.push_back(__KernelGetCurThread()); __KernelWaitMutex(mutex, timeoutPtr); __KernelWaitCurThread(WAITTYPE_MUTEX, id, count, timeoutPtr, false); // Return value will be overwritten by wait. return 0; } } // int sceKernelLockMutexCB(SceUID id, int count, int *timeout) int sceKernelLockMutexCB(SceUID id, int count, u32 timeoutPtr) { DEBUG_LOG(HLE, "sceKernelLockMutexCB(%i, %i, %08x)", id, count, timeoutPtr); u32 error; Mutex *mutex = kernelObjects.Get(id, error); if (__KernelLockMutex(mutex, count, error)) { hleCheckCurrentCallbacks(); return 0; } else if (error) return error; else { mutex->waitingThreads.push_back(__KernelGetCurThread()); __KernelWaitMutex(mutex, timeoutPtr); __KernelWaitCurThread(WAITTYPE_MUTEX, id, count, timeoutPtr, true); // Return value will be overwritten by wait. return 0; } } // int sceKernelTryLockMutex(SceUID id, int count) int sceKernelTryLockMutex(SceUID id, int count) { DEBUG_LOG(HLE, "sceKernelTryLockMutex(%i, %i)", id, count); u32 error; Mutex *mutex = kernelObjects.Get(id, error); if (__KernelLockMutex(mutex, count, error)) return 0; else if (error) return error; else return PSP_MUTEX_ERROR_TRYLOCK_FAILED; } // int sceKernelUnlockMutex(SceUID id, int count) int sceKernelUnlockMutex(SceUID id, int count) { DEBUG_LOG(HLE, "sceKernelUnlockMutex(%i, %i)", id, count); u32 error; Mutex *mutex = kernelObjects.Get(id, error); if (error) return error; if (count <= 0) return SCE_KERNEL_ERROR_ILLEGAL_COUNT; if ((mutex->nm.attr & PSP_MUTEX_ATTR_ALLOW_RECURSIVE) == 0 && count > 1) return SCE_KERNEL_ERROR_ILLEGAL_COUNT; if (mutex->nm.lockLevel == 0 || mutex->nm.lockThread != __KernelGetCurThread()) return PSP_MUTEX_ERROR_NOT_LOCKED; if (mutex->nm.lockLevel < count) return PSP_MUTEX_ERROR_UNLOCK_UNDERFLOW; mutex->nm.lockLevel -= count; if (mutex->nm.lockLevel == 0) { if (__KernelUnlockMutex(mutex, error)) hleReSchedule("mutex unlocked"); } return 0; } int sceKernelCreateLwMutex(u32 workareaPtr, const char *name, u32 attr, int initialCount, u32 optionsPtr) { if (!mutexInitComplete) __KernelMutexInit(); if (!name) { WARN_LOG(HLE, "%08x=sceKernelCreateLwMutex(): invalid name", SCE_KERNEL_ERROR_ERROR); return SCE_KERNEL_ERROR_ERROR; } if (attr >= 0x400) { WARN_LOG(HLE, "%08x=sceKernelCreateLwMutex(): invalid attr parameter: %08x", SCE_KERNEL_ERROR_ILLEGAL_ATTR, attr); return SCE_KERNEL_ERROR_ILLEGAL_ATTR; } if (initialCount < 0) return SCE_KERNEL_ERROR_ILLEGAL_COUNT; if ((attr & PSP_MUTEX_ATTR_ALLOW_RECURSIVE) == 0 && initialCount > 1) return SCE_KERNEL_ERROR_ILLEGAL_COUNT; LwMutex *mutex = new LwMutex(); SceUID id = kernelObjects.Create(mutex); mutex->nm.size = sizeof(mutex); strncpy(mutex->nm.name, name, KERNELOBJECT_MAX_NAME_LENGTH); mutex->nm.name[KERNELOBJECT_MAX_NAME_LENGTH] = 0; mutex->nm.attr = attr; mutex->nm.workareaPtr = workareaPtr; NativeLwMutexWorkarea workarea; workarea.init(); workarea.lockLevel = initialCount; if (initialCount == 0) workarea.lockThread = 0; else workarea.lockThread = __KernelGetCurThread(); workarea.attr = attr; workarea.uid = id; Memory::WriteStruct(workareaPtr, &workarea); DEBUG_LOG(HLE, "sceKernelCreateLwMutex(%08x, %s, %08x, %d, %08x)", workareaPtr, name, attr, initialCount, optionsPtr); if (optionsPtr != 0) WARN_LOG(HLE, "sceKernelCreateLwMutex(%s) unsupported options parameter: %08x", name, optionsPtr); if ((attr & ~PSP_MUTEX_ATTR_KNOWN) != 0) WARN_LOG(HLE, "sceKernelCreateLwMutex(%s) unsupported attr parameter: %08x", name, attr); return 0; } bool __KernelUnlockLwMutexForThread(LwMutex *mutex, NativeLwMutexWorkarea &workarea, SceUID threadID, u32 &error, int result) { SceUID waitID = __KernelGetWaitID(threadID, WAITTYPE_LWMUTEX, error); u32 timeoutPtr = __KernelGetWaitTimeoutPtr(threadID, error); // The waitID may be different after a timeout. if (waitID != mutex->GetUID()) return false; // If result is an error code, we're just letting it go. if (result == 0) { workarea.lockLevel = (int) __KernelGetWaitValue(threadID, error); workarea.lockThread = threadID; } if (timeoutPtr != 0 && lwMutexWaitTimer != 0) { // Remove any event for this thread. u64 cyclesLeft = CoreTiming::UnscheduleEvent(lwMutexWaitTimer, threadID); Memory::Write_U32((u32) cyclesToUs(cyclesLeft), timeoutPtr); } __KernelResumeThreadFromWait(threadID, result); return true; } int sceKernelDeleteLwMutex(u32 workareaPtr) { DEBUG_LOG(HLE, "sceKernelDeleteLwMutex(%08x)", workareaPtr); if (!workareaPtr || !Memory::IsValidAddress(workareaPtr)) return SCE_KERNEL_ERROR_ILLEGAL_ADDR; NativeLwMutexWorkarea workarea; Memory::ReadStruct(workareaPtr, &workarea); u32 error; LwMutex *mutex = kernelObjects.Get(workarea.uid, error); if (mutex) { bool wokeThreads = false; std::vector::iterator iter, end; for (iter = mutex->waitingThreads.begin(), end = mutex->waitingThreads.end(); iter != end; ++iter) wokeThreads |= __KernelUnlockLwMutexForThread(mutex, workarea, *iter, error, SCE_KERNEL_ERROR_WAIT_DELETE); mutex->waitingThreads.clear(); workarea.clear(); Memory::WriteStruct(workareaPtr, &workarea); if (wokeThreads) hleReSchedule("lwmutex deleted"); return kernelObjects.Destroy(mutex->GetUID()); } else return error; } bool __KernelLockLwMutex(NativeLwMutexWorkarea &workarea, int count, u32 &error) { if (!error) { if (count <= 0) error = SCE_KERNEL_ERROR_ILLEGAL_COUNT; else if (count > 1 && !(workarea.attr & PSP_MUTEX_ATTR_ALLOW_RECURSIVE)) error = SCE_KERNEL_ERROR_ILLEGAL_COUNT; // Two positive ints will always overflow to negative. else if (count + workarea.lockLevel < 0) error = PSP_LWMUTEX_ERROR_LOCK_OVERFLOW; else if (workarea.uid == -1) error = PSP_LWMUTEX_ERROR_NO_SUCH_LWMUTEX; } if (error) return false; if (workarea.lockLevel == 0) { if (workarea.lockThread != 0) { // Validate that it actually exists so we can return an error if not. kernelObjects.Get(workarea.uid, error); if (error) return false; } workarea.lockLevel = count; workarea.lockThread = __KernelGetCurThread(); return true; } if (workarea.lockThread == __KernelGetCurThread()) { // Recursive mutex, let's just increase the lock count and keep going if (workarea.attr & PSP_MUTEX_ATTR_ALLOW_RECURSIVE) { workarea.lockLevel += count; return true; } else { error = PSP_LWMUTEX_ERROR_ALREADY_LOCKED; return false; } } return false; } bool __KernelUnlockLwMutex(NativeLwMutexWorkarea &workarea, u32 &error) { LwMutex *mutex = kernelObjects.Get(workarea.uid, error); if (error) { workarea.lockThread = 0; return false; } bool wokeThreads = false; std::vector::iterator iter; while (!wokeThreads && !mutex->waitingThreads.empty()) { if ((mutex->nm.attr & PSP_MUTEX_ATTR_PRIORITY) != 0) iter = __KernelMutexFindPriority(mutex->waitingThreads); else iter = mutex->waitingThreads.begin(); wokeThreads |= __KernelUnlockLwMutexForThread(mutex, workarea, *iter, error, 0); mutex->waitingThreads.erase(iter); } if (!wokeThreads) workarea.lockThread = 0; return wokeThreads; } void __KernelLwMutexTimeout(u64 userdata, int cyclesLate) { SceUID threadID = (SceUID)userdata; u32 error; u32 timeoutPtr = __KernelGetWaitTimeoutPtr(threadID, error); if (timeoutPtr != 0) Memory::Write_U32(0, timeoutPtr); __KernelResumeThreadFromWait(threadID, SCE_KERNEL_ERROR_WAIT_TIMEOUT); // We intentionally don't remove from waitingThreads here yet. // The reason is, if it times out, but what it was waiting on is DELETED prior to it // actually running, it will get a DELETE result instead of a TIMEOUT. // So, we need to remember it or we won't be able to mark it DELETE instead later. } void __KernelWaitLwMutex(LwMutex *mutex, u32 timeoutPtr) { if (timeoutPtr == 0 || lwMutexWaitTimer == 0) return; int micro = (int) Memory::Read_U32(timeoutPtr); // This happens to be how the hardware seems to time things. if (micro <= 3) micro = 15; else if (micro <= 249) micro = 250; // This should call __KernelLwMutexTimeout() later, unless we cancel it. CoreTiming::ScheduleEvent(usToCycles(micro), lwMutexWaitTimer, __KernelGetCurThread()); } int sceKernelTryLockLwMutex(u32 workareaPtr, int count) { DEBUG_LOG(HLE, "sceKernelTryLockLwMutex(%08x, %i)", workareaPtr, count); NativeLwMutexWorkarea workarea; Memory::ReadStruct(workareaPtr, &workarea); u32 error = 0; if (__KernelLockLwMutex(workarea, count, error)) { Memory::WriteStruct(workareaPtr, &workarea); return 0; } // Unlike sceKernelTryLockLwMutex_600, this always returns the same error. else if (error) return PSP_MUTEX_ERROR_TRYLOCK_FAILED; else return PSP_MUTEX_ERROR_TRYLOCK_FAILED; } int sceKernelTryLockLwMutex_600(u32 workareaPtr, int count) { DEBUG_LOG(HLE, "sceKernelTryLockLwMutex_600(%08x, %i)", workareaPtr, count); NativeLwMutexWorkarea workarea; Memory::ReadStruct(workareaPtr, &workarea); u32 error = 0; if (__KernelLockLwMutex(workarea, count, error)) { Memory::WriteStruct(workareaPtr, &workarea); return 0; } else if (error) return error; else return PSP_LWMUTEX_ERROR_TRYLOCK_FAILED; } int sceKernelLockLwMutex(u32 workareaPtr, int count, u32 timeoutPtr) { DEBUG_LOG(HLE, "sceKernelLockLwMutex(%08x, %i, %08x)", workareaPtr, count, timeoutPtr); NativeLwMutexWorkarea workarea; Memory::ReadStruct(workareaPtr, &workarea); u32 error = 0; if (__KernelLockLwMutex(workarea, count, error)) { Memory::WriteStruct(workareaPtr, &workarea); return 0; } else if (error) return error; else { LwMutex *mutex = kernelObjects.Get(workarea.uid, error); if (mutex) { mutex->waitingThreads.push_back(__KernelGetCurThread()); __KernelWaitLwMutex(mutex, timeoutPtr); __KernelWaitCurThread(WAITTYPE_LWMUTEX, workarea.uid, count, timeoutPtr, false); // Return value will be overwritten by wait. return 0; } else return error; } } int sceKernelLockLwMutexCB(u32 workareaPtr, int count, u32 timeoutPtr) { DEBUG_LOG(HLE, "sceKernelLockLwMutexCB(%08x, %i, %08x)", workareaPtr, count, timeoutPtr); NativeLwMutexWorkarea workarea; Memory::ReadStruct(workareaPtr, &workarea); u32 error = 0; if (__KernelLockLwMutex(workarea, count, error)) { Memory::WriteStruct(workareaPtr, &workarea); hleCheckCurrentCallbacks(); return 0; } else if (error) return error; else { LwMutex *mutex = kernelObjects.Get(workarea.uid, error); if (mutex) { mutex->waitingThreads.push_back(__KernelGetCurThread()); __KernelWaitLwMutex(mutex, timeoutPtr); __KernelWaitCurThread(WAITTYPE_LWMUTEX, workarea.uid, count, timeoutPtr, true); // Return value will be overwritten by wait. return 0; } else return error; } } int sceKernelUnlockLwMutex(u32 workareaPtr, int count) { DEBUG_LOG(HLE, "sceKernelUnlockLwMutex(%08x, %i)", workareaPtr, count); NativeLwMutexWorkarea workarea; Memory::ReadStruct(workareaPtr, &workarea); if (workarea.uid == -1) return PSP_LWMUTEX_ERROR_NO_SUCH_LWMUTEX; else if (count <= 0) return SCE_KERNEL_ERROR_ILLEGAL_COUNT; else if ((workarea.attr & PSP_MUTEX_ATTR_ALLOW_RECURSIVE) == 0 && count > 1) return SCE_KERNEL_ERROR_ILLEGAL_COUNT; else if (workarea.lockLevel == 0 || workarea.lockThread != __KernelGetCurThread()) return PSP_LWMUTEX_ERROR_NOT_LOCKED; else if (workarea.lockLevel < count) return PSP_LWMUTEX_ERROR_UNLOCK_UNDERFLOW; workarea.lockLevel -= count; if (workarea.lockLevel == 0) { u32 error; if (__KernelUnlockLwMutex(workarea, error)) hleReSchedule("lwmutex unlocked"); Memory::WriteStruct(workareaPtr, &workarea); } else Memory::WriteStruct(workareaPtr, &workarea); return 0; }