#include "ppsspp_config.h" #if defined(_M_SSE) #include #endif #if PPSSPP_ARCH(ARM_NEON) #if defined(_MSC_VER) && PPSSPP_ARCH(ARM64) #include #else #include #endif #endif #include #include "Common/Profiler/Profiler.h" #include "Common/GraphicsContext.h" #include "Common/LogReporting.h" #include "Common/Serialize/Serializer.h" #include "Common/Serialize/SerializeFuncs.h" #include "Common/Serialize/SerializeList.h" #include "Common/TimeUtil.h" #include "GPU/GeDisasm.h" #include "GPU/GPU.h" #include "GPU/GPUCommon.h" #include "GPU/GPUState.h" #include "Core/Config.h" #include "Core/CoreTiming.h" #include "Core/Debugger/MemBlockInfo.h" #include "Core/MemMap.h" #include "Core/Reporting.h" #include "Core/HLE/HLE.h" #include "Core/HLE/sceKernelMemory.h" #include "Core/HLE/sceKernelInterrupt.h" #include "Core/HLE/sceKernelThread.h" #include "Core/HLE/sceGe.h" #include "Core/HW/Display.h" #include "Core/Util/PPGeDraw.h" #include "Core/MemMapHelpers.h" #include "GPU/Common/DrawEngineCommon.h" #include "GPU/Common/FramebufferManagerCommon.h" #include "GPU/Common/TextureCacheCommon.h" #include "GPU/Debugger/Debugger.h" #include "GPU/Debugger/Record.h" void GPUCommon::Flush() { drawEngineCommon_->DispatchFlush(); } void GPUCommon::DispatchFlush() { drawEngineCommon_->DispatchFlush(); } GPUCommon::GPUCommon(GraphicsContext *gfxCtx, Draw::DrawContext *draw) : gfxCtx_(gfxCtx), draw_(draw) { // This assert failed on GCC x86 32-bit (but not MSVC 32-bit!) before adding the // "padding" field at the end. This is important for save state compatibility. // The compiler was not rounding the struct size up to an 8 byte boundary, which // you'd expect due to the int64 field, but the Linux ABI apparently does not require that. static_assert(sizeof(DisplayList) == 456, "Bad DisplayList size"); Reinitialize(); gstate.Reset(); gstate_c.Reset(); gpuStats.Reset(); UpdateVsyncInterval(true); PPGeSetDrawContext(draw); ResetMatrices(); } void GPUCommon::BeginHostFrame() { UpdateVsyncInterval(displayResized_); ReapplyGfxState(); // TODO: Assume config may have changed - maybe move to resize. gstate_c.Dirty(DIRTY_ALL); UpdateCmdInfo(); UpdateMSAALevel(draw_); CheckConfigChanged(); CheckDisplayResized(); CheckRenderResized(); } void GPUCommon::EndHostFrame() { // Probably not necessary. if (draw_) { draw_->Invalidate(InvalidationFlags::CACHED_RENDER_STATE); } } void GPUCommon::Reinitialize() { memset(dls, 0, sizeof(dls)); for (int i = 0; i < DisplayListMaxCount; ++i) { dls[i].state = PSP_GE_DL_STATE_NONE; dls[i].waitTicks = 0; } nextListID = 0; currentList = nullptr; isbreak = false; drawCompleteTicks = 0; busyTicks = 0; timeSpentStepping_ = 0.0; interruptsEnabled_ = true; if (textureCache_) textureCache_->Clear(true); if (framebufferManager_) framebufferManager_->DestroyAllFBOs(); } void GPUCommon::UpdateVsyncInterval(bool force) { #if !(PPSSPP_PLATFORM(ANDROID) || defined(USING_QT_UI) || PPSSPP_PLATFORM(UWP) || PPSSPP_PLATFORM(IOS)) int desiredVSyncInterval = g_Config.bVSync ? 1 : 0; if (PSP_CoreParameter().fastForward) { desiredVSyncInterval = 0; } if (PSP_CoreParameter().fpsLimit != FPSLimit::NORMAL) { int limit; if (PSP_CoreParameter().fpsLimit == FPSLimit::CUSTOM1) limit = g_Config.iFpsLimit1; else if (PSP_CoreParameter().fpsLimit == FPSLimit::CUSTOM2) limit = g_Config.iFpsLimit2; else limit = PSP_CoreParameter().analogFpsLimit; // For an alternative speed that is a clean factor of 60, the user probably still wants vsync. if (limit == 0 || (limit >= 0 && limit != 15 && limit != 30 && limit != 60)) { desiredVSyncInterval = 0; } } if (desiredVSyncInterval != lastVsync_ || force) { // Disabled EXT_swap_control_tear for now, it never seems to settle at the correct timing // so it just keeps tearing. Not what I hoped for... (gl_extensions.EXT_swap_control_tear) // See http://developer.download.nvidia.com/opengl/specs/WGL_EXT_swap_control_tear.txt if (gfxCtx_) gfxCtx_->SwapInterval(desiredVSyncInterval); lastVsync_ = desiredVSyncInterval; } #endif } int GPUCommon::EstimatePerVertexCost() { // TODO: This is transform cost, also account for rasterization cost somehow... although it probably // runs in parallel with transform. // Also, this is all pure guesswork. If we can find a way to do measurements, that would be great. // GTA wants a low value to run smooth, GoW wants a high value (otherwise it thinks things // went too fast and starts doing all the work over again). int cost = 20; if (gstate.isLightingEnabled()) { cost += 10; for (int i = 0; i < 4; i++) { if (gstate.isLightChanEnabled(i)) cost += 7; } } if (gstate.getUVGenMode() != GE_TEXMAP_TEXTURE_COORDS) { cost += 20; } int morphCount = gstate.getNumMorphWeights(); if (morphCount > 1) { cost += 5 * morphCount; } return cost; } void GPUCommon::PopDLQueue() { if(!dlQueue.empty()) { dlQueue.pop_front(); if(!dlQueue.empty()) { bool running = currentList->state == PSP_GE_DL_STATE_RUNNING; currentList = &dls[dlQueue.front()]; if (running) currentList->state = PSP_GE_DL_STATE_RUNNING; } else { currentList = nullptr; } } } bool GPUCommon::BusyDrawing() { u32 state = DrawSync(1); if (state == PSP_GE_LIST_DRAWING || state == PSP_GE_LIST_STALLING) { if (currentList && currentList->state != PSP_GE_DL_STATE_PAUSED) { return true; } } return false; } void GPUCommon::NotifyConfigChanged() { configChanged_ = true; } void GPUCommon::NotifyRenderResized() { renderResized_ = true; } void GPUCommon::NotifyDisplayResized() { displayResized_ = true; } // Called once per frame. Might also get called during the pause screen // if "transparent". void GPUCommon::CheckConfigChanged() { if (configChanged_) { ClearCacheNextFrame(); gstate_c.SetUseFlags(CheckGPUFeatures()); drawEngineCommon_->NotifyConfigChanged(); textureCache_->NotifyConfigChanged(); framebufferManager_->NotifyConfigChanged(); BuildReportingInfo(); configChanged_ = false; } // Check needed when running tests. if (framebufferManager_) { framebufferManager_->CheckPostShaders(); } } void GPUCommon::CheckDisplayResized() { if (displayResized_) { framebufferManager_->NotifyDisplayResized(); displayResized_ = false; } } void GPUCommon::DumpNextFrame() { dumpNextFrame_ = true; } u32 GPUCommon::DrawSync(int mode) { gpuStats.numDrawSyncs++; if (mode < 0 || mode > 1) return SCE_KERNEL_ERROR_INVALID_MODE; if (mode == 0) { if (!__KernelIsDispatchEnabled()) { return SCE_KERNEL_ERROR_CAN_NOT_WAIT; } if (__IsInInterrupt()) { return SCE_KERNEL_ERROR_ILLEGAL_CONTEXT; } if (drawCompleteTicks > CoreTiming::GetTicks()) { __GeWaitCurrentThread(GPU_SYNC_DRAW, 1, "GeDrawSync"); } else { for (int i = 0; i < DisplayListMaxCount; ++i) { if (dls[i].state == PSP_GE_DL_STATE_COMPLETED) { dls[i].state = PSP_GE_DL_STATE_NONE; } } } return 0; } // If there's no current list, it must be complete. DisplayList *top = NULL; for (auto it = dlQueue.begin(), end = dlQueue.end(); it != end; ++it) { if (dls[*it].state != PSP_GE_DL_STATE_COMPLETED) { top = &dls[*it]; break; } } if (!top || top->state == PSP_GE_DL_STATE_COMPLETED) return PSP_GE_LIST_COMPLETED; if (currentList->pc == currentList->stall) return PSP_GE_LIST_STALLING; return PSP_GE_LIST_DRAWING; } void GPUCommon::CheckDrawSync() { if (dlQueue.empty()) { for (int i = 0; i < DisplayListMaxCount; ++i) dls[i].state = PSP_GE_DL_STATE_NONE; } } int GPUCommon::ListSync(int listid, int mode) { gpuStats.numListSyncs++; if (listid < 0 || listid >= DisplayListMaxCount) return SCE_KERNEL_ERROR_INVALID_ID; if (mode < 0 || mode > 1) return SCE_KERNEL_ERROR_INVALID_MODE; DisplayList& dl = dls[listid]; if (mode == 1) { switch (dl.state) { case PSP_GE_DL_STATE_QUEUED: if (dl.interrupted) return PSP_GE_LIST_PAUSED; return PSP_GE_LIST_QUEUED; case PSP_GE_DL_STATE_RUNNING: if (dl.pc == dl.stall) return PSP_GE_LIST_STALLING; return PSP_GE_LIST_DRAWING; case PSP_GE_DL_STATE_COMPLETED: return PSP_GE_LIST_COMPLETED; case PSP_GE_DL_STATE_PAUSED: return PSP_GE_LIST_PAUSED; default: return SCE_KERNEL_ERROR_INVALID_ID; } } if (!__KernelIsDispatchEnabled()) { return SCE_KERNEL_ERROR_CAN_NOT_WAIT; } if (__IsInInterrupt()) { return SCE_KERNEL_ERROR_ILLEGAL_CONTEXT; } if (dl.waitTicks > CoreTiming::GetTicks()) { __GeWaitCurrentThread(GPU_SYNC_LIST, listid, "GeListSync"); } return PSP_GE_LIST_COMPLETED; } int GPUCommon::GetStack(int index, u32 stackPtr) { if (!currentList) { // Seems like it doesn't return an error code? return 0; } if (currentList->stackptr <= index) { return SCE_KERNEL_ERROR_INVALID_INDEX; } if (index >= 0) { auto stack = PSPPointer::Create(stackPtr); if (stack.IsValid()) { auto entry = currentList->stack[index]; // Not really sure what most of these values are. stack[0] = 0; stack[1] = entry.pc + 4; stack[2] = entry.offsetAddr; stack[7] = entry.baseAddr; } } return currentList->stackptr; } static void CopyMatrix24(u32_le *result, const float *mtx, u32 count, u32 cmdbits) { // Screams out for simple SIMD, but probably not called often enough to be worth it. for (u32 i = 0; i < count; ++i) { result[i] = toFloat24(mtx[i]) | cmdbits; } } bool GPUCommon::GetMatrix24(GEMatrixType type, u32_le *result, u32 cmdbits) { switch (type) { case GE_MTX_BONE0: case GE_MTX_BONE1: case GE_MTX_BONE2: case GE_MTX_BONE3: case GE_MTX_BONE4: case GE_MTX_BONE5: case GE_MTX_BONE6: case GE_MTX_BONE7: CopyMatrix24(result, gstate.boneMatrix + (type - GE_MTX_BONE0) * 12, 12, cmdbits); break; case GE_MTX_TEXGEN: CopyMatrix24(result, gstate.tgenMatrix, 12, cmdbits); break; case GE_MTX_WORLD: CopyMatrix24(result, gstate.worldMatrix, 12, cmdbits); break; case GE_MTX_VIEW: CopyMatrix24(result, gstate.viewMatrix, 12, cmdbits); break; case GE_MTX_PROJECTION: CopyMatrix24(result, gstate.projMatrix, 16, cmdbits); break; default: return false; } return true; } void GPUCommon::ResetMatrices() { // This means we restored a context, so update the visible matrix data. for (size_t i = 0; i < ARRAY_SIZE(gstate.boneMatrix); ++i) matrixVisible.bone[i] = toFloat24(gstate.boneMatrix[i]); for (size_t i = 0; i < ARRAY_SIZE(gstate.worldMatrix); ++i) matrixVisible.world[i] = toFloat24(gstate.worldMatrix[i]); for (size_t i = 0; i < ARRAY_SIZE(gstate.viewMatrix); ++i) matrixVisible.view[i] = toFloat24(gstate.viewMatrix[i]); for (size_t i = 0; i < ARRAY_SIZE(gstate.projMatrix); ++i) matrixVisible.proj[i] = toFloat24(gstate.projMatrix[i]); for (size_t i = 0; i < ARRAY_SIZE(gstate.tgenMatrix); ++i) matrixVisible.tgen[i] = toFloat24(gstate.tgenMatrix[i]); // Assume all the matrices changed, so dirty things related to them. gstate_c.Dirty(DIRTY_WORLDMATRIX | DIRTY_VIEWMATRIX | DIRTY_PROJMATRIX | DIRTY_TEXMATRIX | DIRTY_FRAGMENTSHADER_STATE | DIRTY_BONE_UNIFORMS); } u32 GPUCommon::EnqueueList(u32 listpc, u32 stall, int subIntrBase, PSPPointer args, bool head) { // TODO Check the stack values in missing arg and ajust the stack depth // Check alignment // TODO Check the context and stack alignement too if (((listpc | stall) & 3) != 0 || !Memory::IsValidAddress(listpc)) { ERROR_LOG_REPORT(G3D, "sceGeListEnqueue: invalid address %08x", listpc); return SCE_KERNEL_ERROR_INVALID_POINTER; } // If args->size is below 16, it's the old struct without stack info. if (args.IsValid() && args->size >= 16 && args->numStacks >= 256) { return hleLogError(G3D, SCE_KERNEL_ERROR_INVALID_SIZE, "invalid stack depth %d", args->numStacks); } int id = -1; u64 currentTicks = CoreTiming::GetTicks(); u32 stackAddr = args.IsValid() && args->size >= 16 ? (u32)args->stackAddr : 0; // Check compatibility if (sceKernelGetCompiledSdkVersion() > 0x01FFFFFF) { //numStacks = 0; //stack = NULL; for (int i = 0; i < DisplayListMaxCount; ++i) { if (dls[i].state != PSP_GE_DL_STATE_NONE && dls[i].state != PSP_GE_DL_STATE_COMPLETED) { // Logically, if the CPU has not interrupted yet, it hasn't seen the latest pc either. // Exit enqueues right after an END, which fails without ignoring pendingInterrupt lists. if (dls[i].pc == listpc && !dls[i].pendingInterrupt) { ERROR_LOG(G3D, "sceGeListEnqueue: can't enqueue, list address %08X already used", listpc); return 0x80000021; } else if (stackAddr != 0 && dls[i].stackAddr == stackAddr && !dls[i].pendingInterrupt) { ERROR_LOG(G3D, "sceGeListEnqueue: can't enqueue, stack address %08X already used", stackAddr); return 0x80000021; } } } } // TODO Check if list stack dls[i].stack already used then return 0x80000021 as above for (int i = 0; i < DisplayListMaxCount; ++i) { int possibleID = (i + nextListID) % DisplayListMaxCount; auto possibleList = dls[possibleID]; if (possibleList.pendingInterrupt) { continue; } if (possibleList.state == PSP_GE_DL_STATE_NONE) { id = possibleID; break; } if (possibleList.state == PSP_GE_DL_STATE_COMPLETED && possibleList.waitTicks < currentTicks) { id = possibleID; } } if (id < 0) { ERROR_LOG_REPORT(G3D, "No DL ID available to enqueue"); for (auto it = dlQueue.begin(); it != dlQueue.end(); ++it) { DisplayList &dl = dls[*it]; DEBUG_LOG(G3D, "DisplayList %d status %d pc %08x stall %08x", *it, dl.state, dl.pc, dl.stall); } return SCE_KERNEL_ERROR_OUT_OF_MEMORY; } nextListID = id + 1; DisplayList &dl = dls[id]; dl.id = id; dl.startpc = listpc & 0x0FFFFFFF; dl.pc = listpc & 0x0FFFFFFF; dl.stall = stall & 0x0FFFFFFF; dl.subIntrBase = std::max(subIntrBase, -1); dl.stackptr = 0; dl.signal = PSP_GE_SIGNAL_NONE; dl.interrupted = false; dl.waitTicks = (u64)-1; dl.interruptsEnabled = interruptsEnabled_; dl.started = false; dl.offsetAddr = 0; dl.bboxResult = false; dl.stackAddr = stackAddr; if (args.IsValid() && args->context.IsValid()) dl.context = args->context; else dl.context = 0; if (head) { if (currentList) { if (currentList->state != PSP_GE_DL_STATE_PAUSED) return SCE_KERNEL_ERROR_INVALID_VALUE; currentList->state = PSP_GE_DL_STATE_QUEUED; // Make sure we clear the signal so we don't try to pause it again. currentList->signal = PSP_GE_SIGNAL_NONE; } dl.state = PSP_GE_DL_STATE_PAUSED; currentList = &dl; dlQueue.push_front(id); } else if (currentList) { dl.state = PSP_GE_DL_STATE_QUEUED; dlQueue.push_back(id); } else { dl.state = PSP_GE_DL_STATE_RUNNING; currentList = &dl; dlQueue.push_front(id); drawCompleteTicks = (u64)-1; // TODO save context when starting the list if param is set ProcessDLQueue(); } return id; } u32 GPUCommon::DequeueList(int listid) { if (listid < 0 || listid >= DisplayListMaxCount || dls[listid].state == PSP_GE_DL_STATE_NONE) return SCE_KERNEL_ERROR_INVALID_ID; auto &dl = dls[listid]; if (dl.started) return SCE_KERNEL_ERROR_BUSY; dl.state = PSP_GE_DL_STATE_NONE; if (listid == dlQueue.front()) PopDLQueue(); else dlQueue.remove(listid); dl.waitTicks = 0; __GeTriggerWait(GPU_SYNC_LIST, listid); CheckDrawSync(); return 0; } u32 GPUCommon::UpdateStall(int listid, u32 newstall) { if (listid < 0 || listid >= DisplayListMaxCount || dls[listid].state == PSP_GE_DL_STATE_NONE) return SCE_KERNEL_ERROR_INVALID_ID; auto &dl = dls[listid]; if (dl.state == PSP_GE_DL_STATE_COMPLETED) return SCE_KERNEL_ERROR_ALREADY; dl.stall = newstall & 0x0FFFFFFF; ProcessDLQueue(); return 0; } u32 GPUCommon::Continue() { if (!currentList) return 0; if (currentList->state == PSP_GE_DL_STATE_PAUSED) { if (!isbreak) { // TODO: Supposedly this returns SCE_KERNEL_ERROR_BUSY in some case, previously it had // currentList->signal == PSP_GE_SIGNAL_HANDLER_PAUSE, but it doesn't reproduce. currentList->state = PSP_GE_DL_STATE_RUNNING; currentList->signal = PSP_GE_SIGNAL_NONE; // TODO Restore context of DL is necessary // TODO Restore BASE // We have a list now, so it's not complete. drawCompleteTicks = (u64)-1; } else { currentList->state = PSP_GE_DL_STATE_QUEUED; currentList->signal = PSP_GE_SIGNAL_NONE; } } else if (currentList->state == PSP_GE_DL_STATE_RUNNING) { if (sceKernelGetCompiledSdkVersion() >= 0x02000000) return 0x80000020; return -1; } else { if (sceKernelGetCompiledSdkVersion() >= 0x02000000) return 0x80000004; return -1; } ProcessDLQueue(); return 0; } u32 GPUCommon::Break(int mode) { if (mode < 0 || mode > 1) return SCE_KERNEL_ERROR_INVALID_MODE; if (!currentList) return SCE_KERNEL_ERROR_ALREADY; if (mode == 1) { // Clear the queue dlQueue.clear(); for (int i = 0; i < DisplayListMaxCount; ++i) { dls[i].state = PSP_GE_DL_STATE_NONE; dls[i].signal = PSP_GE_SIGNAL_NONE; } nextListID = 0; currentList = NULL; return 0; } if (currentList->state == PSP_GE_DL_STATE_NONE || currentList->state == PSP_GE_DL_STATE_COMPLETED) { if (sceKernelGetCompiledSdkVersion() >= 0x02000000) return 0x80000004; return -1; } if (currentList->state == PSP_GE_DL_STATE_PAUSED) { if (sceKernelGetCompiledSdkVersion() > 0x02000010) { if (currentList->signal == PSP_GE_SIGNAL_HANDLER_PAUSE) { ERROR_LOG_REPORT(G3D, "sceGeBreak: can't break signal-pausing list"); } else return SCE_KERNEL_ERROR_ALREADY; } return SCE_KERNEL_ERROR_BUSY; } if (currentList->state == PSP_GE_DL_STATE_QUEUED) { currentList->state = PSP_GE_DL_STATE_PAUSED; return currentList->id; } // TODO Save BASE // TODO Adjust pc to be just before SIGNAL/END // TODO: Is this right? if (currentList->signal == PSP_GE_SIGNAL_SYNC) currentList->pc += 8; currentList->interrupted = true; currentList->state = PSP_GE_DL_STATE_PAUSED; currentList->signal = PSP_GE_SIGNAL_HANDLER_SUSPEND; isbreak = true; return currentList->id; } void GPUCommon::NotifySteppingEnter() { if (coreCollectDebugStats) { timeSteppingStarted_ = time_now_d(); } } void GPUCommon::NotifySteppingExit() { if (coreCollectDebugStats) { if (timeSteppingStarted_ <= 0.0) { ERROR_LOG(G3D, "Mismatched stepping enter/exit."); } double total = time_now_d() - timeSteppingStarted_; _dbg_assert_msg_(total >= 0.0, "Time spent stepping became negative"); timeSpentStepping_ += total; timeSteppingStarted_ = 0.0; } } bool GPUCommon::InterpretList(DisplayList &list) { // Initialized to avoid a race condition with bShowDebugStats changing. double start = 0.0; if (coreCollectDebugStats) { start = time_now_d(); } if (list.state == PSP_GE_DL_STATE_PAUSED) return false; currentList = &list; if (!list.started && list.context.IsValid()) { gstate.Save(list.context); } list.started = true; gstate_c.offsetAddr = list.offsetAddr; if (!Memory::IsValidAddress(list.pc)) { ERROR_LOG_REPORT(G3D, "DL PC = %08x WTF!!!!", list.pc); return true; } cycleLastPC = list.pc; cyclesExecuted += 60; downcount = list.stall == 0 ? 0x0FFFFFFF : (list.stall - list.pc) / 4; list.state = PSP_GE_DL_STATE_RUNNING; list.interrupted = false; gpuState = list.pc == list.stall ? GPUSTATE_STALL : GPUSTATE_RUNNING; // To enable breakpoints, we don't do fast matrix loads while debugger active. debugRecording_ = GPUDebug::IsActive() || GPURecord::IsActive(); const bool useFastRunLoop = !dumpThisFrame_ && !debugRecording_; while (gpuState == GPUSTATE_RUNNING) { { if (list.pc == list.stall) { gpuState = GPUSTATE_STALL; downcount = 0; } } if (useFastRunLoop) { FastRunLoop(list); } else { SlowRunLoop(list); } { downcount = list.stall == 0 ? 0x0FFFFFFF : (list.stall - list.pc) / 4; if (gpuState == GPUSTATE_STALL && list.stall != list.pc) { // Unstalled. gpuState = GPUSTATE_RUNNING; } } } FinishDeferred(); if (debugRecording_) GPURecord::NotifyCPU(); // We haven't run the op at list.pc, so it shouldn't count. if (cycleLastPC != list.pc) { UpdatePC(list.pc - 4, list.pc); } list.offsetAddr = gstate_c.offsetAddr; if (coreCollectDebugStats) { double total = time_now_d() - start - timeSpentStepping_; _dbg_assert_msg_(total >= 0.0, "Time spent DL processing became negative"); hleSetSteppingTime(timeSpentStepping_); DisplayNotifySleep(timeSpentStepping_); timeSpentStepping_ = 0.0; gpuStats.msProcessingDisplayLists += total; } return gpuState == GPUSTATE_DONE || gpuState == GPUSTATE_ERROR; } void GPUCommon::BeginFrame() { immCount_ = 0; if (dumpNextFrame_) { NOTICE_LOG(G3D, "DUMPING THIS FRAME"); dumpThisFrame_ = true; dumpNextFrame_ = false; } else if (dumpThisFrame_) { dumpThisFrame_ = false; } GPUDebug::NotifyBeginFrame(); GPURecord::NotifyBeginFrame(); } void GPUCommon::SlowRunLoop(DisplayList &list) { const bool dumpThisFrame = dumpThisFrame_; while (downcount > 0) { bool process = GPUDebug::NotifyCommand(list.pc); if (process) { GPURecord::NotifyCommand(list.pc); u32 op = Memory::ReadUnchecked_U32(list.pc); u32 cmd = op >> 24; u32 diff = op ^ gstate.cmdmem[cmd]; PreExecuteOp(op, diff); if (dumpThisFrame) { char temp[256]; u32 prev; if (Memory::IsValidAddress(list.pc - 4)) { prev = Memory::ReadUnchecked_U32(list.pc - 4); } else { prev = 0; } GeDisassembleOp(list.pc, op, prev, temp, 256); NOTICE_LOG(G3D, "%08x: %s", op, temp); } gstate.cmdmem[cmd] = op; ExecuteOp(op, diff); } list.pc += 4; --downcount; } } // The newPC parameter is used for jumps, we don't count cycles between. void GPUCommon::UpdatePC(u32 currentPC, u32 newPC) { // Rough estimate, 2 CPU ticks (it's double the clock rate) per GPU instruction. u32 executed = (currentPC - cycleLastPC) / 4; cyclesExecuted += 2 * executed; cycleLastPC = newPC; // Exit the runloop and recalculate things. This happens a lot in some games. if (currentList) downcount = currentList->stall == 0 ? 0x0FFFFFFF : (currentList->stall - newPC) / 4; else downcount = 0; } void GPUCommon::ReapplyGfxState() { // The commands are embedded in the command memory so we can just reexecute the words. Convenient. // To be safe we pass 0xFFFFFFFF as the diff. // TODO: Consider whether any of this should really be done. We might be able to get all the way // by simplying dirtying the appropriate gstate_c dirty flags. for (int i = GE_CMD_VERTEXTYPE; i < GE_CMD_BONEMATRIXNUMBER; i++) { if (i != GE_CMD_ORIGIN && i != GE_CMD_OFFSETADDR) { ExecuteOp(gstate.cmdmem[i], 0xFFFFFFFF); } } // Can't write to bonematrixnumber here for (int i = GE_CMD_MORPHWEIGHT0; i <= GE_CMD_PATCHFACING; i++) { ExecuteOp(gstate.cmdmem[i], 0xFFFFFFFF); } // There are a few here in the middle that we shouldn't execute... // 0x42 to 0xEA for (int i = GE_CMD_VIEWPORTXSCALE; i < GE_CMD_TRANSFERSTART; i++) { switch (i) { case GE_CMD_LOADCLUT: case GE_CMD_TEXSYNC: case GE_CMD_TEXFLUSH: break; default: ExecuteOp(gstate.cmdmem[i], 0xFFFFFFFF); break; } } // Let's just skip the transfer size stuff, it's just values. } uint32_t GPUCommon::SetAddrTranslation(uint32_t value) { std::swap(edramTranslation_, value); return value; } uint32_t GPUCommon::GetAddrTranslation() { return edramTranslation_; } inline void GPUCommon::UpdateState(GPURunState state) { gpuState = state; if (state != GPUSTATE_RUNNING) downcount = 0; } int GPUCommon::GetNextListIndex() { auto iter = dlQueue.begin(); if (iter != dlQueue.end()) { return *iter; } else { return -1; } } void GPUCommon::ProcessDLQueue() { startingTicks = CoreTiming::GetTicks(); cyclesExecuted = 0; // Seems to be correct behaviour to process the list anyway? if (startingTicks < busyTicks) { DEBUG_LOG(G3D, "Can't execute a list yet, still busy for %lld ticks", busyTicks - startingTicks); //return; } for (int listIndex = GetNextListIndex(); listIndex != -1; listIndex = GetNextListIndex()) { DisplayList &l = dls[listIndex]; DEBUG_LOG(G3D, "Starting DL execution at %08x - stall = %08x", l.pc, l.stall); if (!InterpretList(l)) { return; } else { // Some other list could've taken the spot while we dilly-dallied around. if (l.state != PSP_GE_DL_STATE_QUEUED) { // At the end, we can remove it from the queue and continue. dlQueue.erase(std::remove(dlQueue.begin(), dlQueue.end(), listIndex), dlQueue.end()); } } } currentList = nullptr; if (coreCollectDebugStats) { gpuStats.otherGPUCycles += cyclesExecuted; } drawCompleteTicks = startingTicks + cyclesExecuted; busyTicks = std::max(busyTicks, drawCompleteTicks); __GeTriggerSync(GPU_SYNC_DRAW, 1, drawCompleteTicks); // Since the event is in CoreTiming, we're in sync. Just set 0 now. } void GPUCommon::Execute_OffsetAddr(u32 op, u32 diff) { gstate_c.offsetAddr = op << 8; } void GPUCommon::Execute_Vaddr(u32 op, u32 diff) { gstate_c.vertexAddr = gstate_c.getRelativeAddress(op & 0x00FFFFFF); } void GPUCommon::Execute_Iaddr(u32 op, u32 diff) { gstate_c.indexAddr = gstate_c.getRelativeAddress(op & 0x00FFFFFF); } void GPUCommon::Execute_Origin(u32 op, u32 diff) { if (currentList) gstate_c.offsetAddr = currentList->pc; } void GPUCommon::Execute_Jump(u32 op, u32 diff) { const u32 target = gstate_c.getRelativeAddress(op & 0x00FFFFFC); if (!Memory::IsValidAddress(target)) { ERROR_LOG(G3D, "JUMP to illegal address %08x - ignoring! data=%06x", target, op & 0x00FFFFFF); UpdateState(GPUSTATE_ERROR); return; } UpdatePC(currentList->pc, target - 4); currentList->pc = target - 4; // pc will be increased after we return, counteract that } void GPUCommon::Execute_JumpFast(u32 op, u32 diff) { const u32 target = gstate_c.getRelativeAddress(op & 0x00FFFFFC); UpdatePC(currentList->pc, target - 4); currentList->pc = target - 4; // pc will be increased after we return, counteract that } void GPUCommon::Execute_BJump(u32 op, u32 diff) { if (!currentList->bboxResult) { // bounding box jump. const u32 target = gstate_c.getRelativeAddress(op & 0x00FFFFFC); if (Memory::IsValidAddress(target)) { UpdatePC(currentList->pc, target - 4); currentList->pc = target - 4; // pc will be increased after we return, counteract that } else { ERROR_LOG(G3D, "BJUMP to illegal address %08x - ignoring! data=%06x", target, op & 0x00FFFFFF); UpdateState(GPUSTATE_ERROR); } } } void GPUCommon::Execute_Call(u32 op, u32 diff) { PROFILE_THIS_SCOPE("gpu_call"); const u32 target = gstate_c.getRelativeAddress(op & 0x00FFFFFC); if (!Memory::IsValidAddress(target)) { ERROR_LOG(G3D, "CALL to illegal address %08x - ignoring! data=%06x", target, op & 0x00FFFFFF); UpdateState(GPUSTATE_ERROR); return; } DoExecuteCall(target); } void GPUCommon::Execute_CallFast(u32 op, u32 diff) { PROFILE_THIS_SCOPE("gpu_call"); const u32 target = gstate_c.getRelativeAddress(op & 0x00FFFFFC); DoExecuteCall(target); } void GPUCommon::DoExecuteCall(u32 target) { // Saint Seiya needs correct support for relative calls. const u32 retval = currentList->pc + 4; // Bone matrix optimization - many games will CALL a bone matrix (!). // We don't optimize during recording - so the matrix data gets recorded. if (!debugRecording_ && Memory::IsValidRange(target, 13 * 4) && (Memory::ReadUnchecked_U32(target) >> 24) == GE_CMD_BONEMATRIXDATA) { // Check for the end if ((Memory::ReadUnchecked_U32(target + 11 * 4) >> 24) == GE_CMD_BONEMATRIXDATA && (Memory::ReadUnchecked_U32(target + 12 * 4) >> 24) == GE_CMD_RET && (gstate.boneMatrixNumber & 0x00FFFFFF) <= 96 - 12) { // Yep, pretty sure this is a bone matrix call. Double check stall first. if (target > currentList->stall || target + 12 * 4 < currentList->stall) { FastLoadBoneMatrix(target); return; } } } if (currentList->stackptr == ARRAY_SIZE(currentList->stack)) { ERROR_LOG(G3D, "CALL: Stack full!"); } else { auto &stackEntry = currentList->stack[currentList->stackptr++]; stackEntry.pc = retval; stackEntry.offsetAddr = gstate_c.offsetAddr; // The base address is NOT saved/restored for a regular call. UpdatePC(currentList->pc, target - 4); currentList->pc = target - 4; // pc will be increased after we return, counteract that } } void GPUCommon::Execute_Ret(u32 op, u32 diff) { if (currentList->stackptr == 0) { DEBUG_LOG(G3D, "RET: Stack empty!"); } else { auto &stackEntry = currentList->stack[--currentList->stackptr]; gstate_c.offsetAddr = stackEntry.offsetAddr; // We always clear the top (uncached/etc.) bits const u32 target = stackEntry.pc & 0x0FFFFFFF; UpdatePC(currentList->pc, target - 4); currentList->pc = target - 4; #ifdef _DEBUG if (!Memory::IsValidAddress(currentList->pc)) { ERROR_LOG_REPORT(G3D, "Invalid DL PC %08x on return", currentList->pc); UpdateState(GPUSTATE_ERROR); } #endif } } void GPUCommon::Execute_End(u32 op, u32 diff) { if (flushOnParams_) Flush(); const u32 prev = Memory::ReadUnchecked_U32(currentList->pc - 4); UpdatePC(currentList->pc, currentList->pc); // Count in a few extra cycles on END. cyclesExecuted += 60; switch (prev >> 24) { case GE_CMD_SIGNAL: { // TODO: see http://code.google.com/p/jpcsp/source/detail?r=2935# SignalBehavior behaviour = static_cast((prev >> 16) & 0xFF); const int signal = prev & 0xFFFF; const int enddata = op & 0xFFFF; bool trigger = true; currentList->subIntrToken = signal; switch (behaviour) { case PSP_GE_SIGNAL_HANDLER_SUSPEND: // Suspend the list, and call the signal handler. When it's done, resume. // Before sdkver 0x02000010, listsync should return paused. if (sceKernelGetCompiledSdkVersion() <= 0x02000010) currentList->state = PSP_GE_DL_STATE_PAUSED; currentList->signal = behaviour; DEBUG_LOG(G3D, "Signal with wait. signal/end: %04x %04x", signal, enddata); break; case PSP_GE_SIGNAL_HANDLER_CONTINUE: // Resume the list right away, then call the handler. currentList->signal = behaviour; DEBUG_LOG(G3D, "Signal without wait. signal/end: %04x %04x", signal, enddata); break; case PSP_GE_SIGNAL_HANDLER_PAUSE: // Pause the list instead of ending at the next FINISH. // Call the handler with the PAUSE signal value at that FINISH. // Technically, this ought to trigger an interrupt, but it won't do anything. // But right now, signal is always reset by interrupts, so that causes pause to not work. trigger = false; currentList->signal = behaviour; DEBUG_LOG(G3D, "Signal with Pause. signal/end: %04x %04x", signal, enddata); break; case PSP_GE_SIGNAL_SYNC: // Acts as a memory barrier, never calls any user code. // Technically, this ought to trigger an interrupt, but it won't do anything. // Triggering here can cause incorrect rescheduling, which breaks 3rd Birthday. // However, this is likely a bug in how GE signal interrupts are handled. trigger = false; currentList->signal = behaviour; DEBUG_LOG(G3D, "Signal with Sync. signal/end: %04x %04x", signal, enddata); break; case PSP_GE_SIGNAL_JUMP: case PSP_GE_SIGNAL_RJUMP: case PSP_GE_SIGNAL_OJUMP: { trigger = false; currentList->signal = behaviour; // pc will be increased after we return, counteract that. u32 target = (((signal << 16) | enddata) & 0xFFFFFFFC) - 4; const char *targetType = "absolute"; if (behaviour == PSP_GE_SIGNAL_RJUMP) { target += currentList->pc - 4; targetType = "relative"; } else if (behaviour == PSP_GE_SIGNAL_OJUMP) { target = gstate_c.getRelativeAddress(target); targetType = "origin"; } if (!Memory::IsValidAddress(target)) { ERROR_LOG_REPORT(G3D, "Signal with Jump (%s): bad address. signal/end: %04x %04x", targetType, signal, enddata); UpdateState(GPUSTATE_ERROR); } else { UpdatePC(currentList->pc, target); currentList->pc = target; DEBUG_LOG(G3D, "Signal with Jump (%s). signal/end: %04x %04x", targetType, signal, enddata); } } break; case PSP_GE_SIGNAL_CALL: case PSP_GE_SIGNAL_RCALL: case PSP_GE_SIGNAL_OCALL: { trigger = false; currentList->signal = behaviour; // pc will be increased after we return, counteract that. u32 target = (((signal << 16) | enddata) & 0xFFFFFFFC) - 4; const char *targetType = "absolute"; if (behaviour == PSP_GE_SIGNAL_RCALL) { target += currentList->pc - 4; targetType = "relative"; } else if (behaviour == PSP_GE_SIGNAL_OCALL) { target = gstate_c.getRelativeAddress(target); targetType = "origin"; } if (currentList->stackptr == ARRAY_SIZE(currentList->stack)) { ERROR_LOG_REPORT(G3D, "Signal with Call (%s): stack full. signal/end: %04x %04x", targetType, signal, enddata); } else if (!Memory::IsValidAddress(target)) { ERROR_LOG_REPORT(G3D, "Signal with Call (%s): bad address. signal/end: %04x %04x", targetType, signal, enddata); UpdateState(GPUSTATE_ERROR); } else { // TODO: This might save/restore other state... auto &stackEntry = currentList->stack[currentList->stackptr++]; stackEntry.pc = currentList->pc; stackEntry.offsetAddr = gstate_c.offsetAddr; stackEntry.baseAddr = gstate.base; UpdatePC(currentList->pc, target); currentList->pc = target; DEBUG_LOG(G3D, "Signal with Call (%s). signal/end: %04x %04x", targetType, signal, enddata); } } break; case PSP_GE_SIGNAL_RET: { trigger = false; currentList->signal = behaviour; if (currentList->stackptr == 0) { ERROR_LOG_REPORT(G3D, "Signal with Return: stack empty. signal/end: %04x %04x", signal, enddata); } else { // TODO: This might save/restore other state... auto &stackEntry = currentList->stack[--currentList->stackptr]; gstate_c.offsetAddr = stackEntry.offsetAddr; gstate.base = stackEntry.baseAddr; UpdatePC(currentList->pc, stackEntry.pc); currentList->pc = stackEntry.pc; DEBUG_LOG(G3D, "Signal with Return. signal/end: %04x %04x", signal, enddata); } } break; default: ERROR_LOG_REPORT(G3D, "UNKNOWN Signal UNIMPLEMENTED %i ! signal/end: %04x %04x", behaviour, signal, enddata); break; } // TODO: Technically, jump/call/ret should generate an interrupt, but before the pc change maybe? if (currentList->interruptsEnabled && trigger) { if (__GeTriggerInterrupt(currentList->id, currentList->pc, startingTicks + cyclesExecuted)) { currentList->pendingInterrupt = true; UpdateState(GPUSTATE_INTERRUPT); } } } break; case GE_CMD_FINISH: switch (currentList->signal) { case PSP_GE_SIGNAL_HANDLER_PAUSE: currentList->state = PSP_GE_DL_STATE_PAUSED; if (currentList->interruptsEnabled) { if (__GeTriggerInterrupt(currentList->id, currentList->pc, startingTicks + cyclesExecuted)) { currentList->pendingInterrupt = true; UpdateState(GPUSTATE_INTERRUPT); } } break; case PSP_GE_SIGNAL_SYNC: currentList->signal = PSP_GE_SIGNAL_NONE; // TODO: Technically this should still cause an interrupt. Probably for memory sync. break; default: FlushImm(); currentList->subIntrToken = prev & 0xFFFF; UpdateState(GPUSTATE_DONE); // Since we marked done, we have to restore the context now before the next list runs. if (currentList->started && currentList->context.IsValid()) { gstate.Restore(currentList->context); ReapplyGfxState(); // Don't restore the context again. currentList->started = false; } if (currentList->interruptsEnabled && __GeTriggerInterrupt(currentList->id, currentList->pc, startingTicks + cyclesExecuted)) { currentList->pendingInterrupt = true; } else { currentList->state = PSP_GE_DL_STATE_COMPLETED; currentList->waitTicks = startingTicks + cyclesExecuted; busyTicks = std::max(busyTicks, currentList->waitTicks); __GeTriggerSync(GPU_SYNC_LIST, currentList->id, currentList->waitTicks); } break; } break; default: DEBUG_LOG(G3D,"Ah, not finished: %06x", prev & 0xFFFFFF); break; } } void GPUCommon::Execute_BoundingBox(u32 op, u32 diff) { // Just resetting, nothing to check bounds for. const u32 count = op & 0xFFFF; if (count == 0) { currentList->bboxResult = false; return; } // Approximate based on timings of several counts on a PSP. cyclesExecuted += count * 22; const bool useInds = (gstate.vertType & GE_VTYPE_IDX_MASK) != 0; VertexDecoder *dec = drawEngineCommon_->GetVertexDecoder(gstate.vertType); int bytesRead = (useInds ? 1 : dec->VertexSize()) * count; if (Memory::IsValidRange(gstate_c.vertexAddr, bytesRead)) { const void *control_points = Memory::GetPointerUnchecked(gstate_c.vertexAddr); if (!control_points) { ERROR_LOG_REPORT_ONCE(boundingbox, G3D, "Invalid verts in bounding box check"); currentList->bboxResult = true; return; } const void *inds = nullptr; if (useInds) { int indexShift = ((gstate.vertType & GE_VTYPE_IDX_MASK) >> GE_VTYPE_IDX_SHIFT) - 1; inds = Memory::GetPointerUnchecked(gstate_c.indexAddr); if (!inds || !Memory::IsValidRange(gstate_c.indexAddr, count << indexShift)) { ERROR_LOG_REPORT_ONCE(boundingboxInds, G3D, "Invalid inds in bounding box check"); currentList->bboxResult = true; return; } } // Test if the bounding box is within the drawing region. // The PSP only seems to vary the result based on a single range of 0x100. if (count > 0x200) { // The second to last set of 0x100 is checked (even for odd counts.) size_t skipSize = (count - 0x200) * dec->VertexSize(); currentList->bboxResult = drawEngineCommon_->TestBoundingBox((const uint8_t *)control_points + skipSize, inds, 0x100, gstate.vertType); } else if (count > 0x100) { int checkSize = count - 0x100; currentList->bboxResult = drawEngineCommon_->TestBoundingBox(control_points, inds, checkSize, gstate.vertType); } else { currentList->bboxResult = drawEngineCommon_->TestBoundingBox(control_points, inds, count, gstate.vertType); } AdvanceVerts(gstate.vertType, count, bytesRead); } else { ERROR_LOG_REPORT_ONCE(boundingbox, G3D, "Bad bounding box data: %06x", count); // Data seems invalid. Let's assume the box test passed. currentList->bboxResult = true; } } void GPUCommon::Execute_MorphWeight(u32 op, u32 diff) { gstate_c.morphWeights[(op >> 24) - GE_CMD_MORPHWEIGHT0] = getFloat24(op); } void GPUCommon::Execute_ImmVertexAlphaPrim(u32 op, u32 diff) { // Safety check. if (immCount_ >= MAX_IMMBUFFER_SIZE) { // Only print once for each overrun. if (immCount_ == MAX_IMMBUFFER_SIZE) { ERROR_LOG_REPORT_ONCE(exceed_imm_buffer, G3D, "Exceeded immediate draw buffer size. gstate.imm_ap=%06x , prim=%d", gstate.imm_ap & 0xFFFFFF, (int)immPrim_); } if (immCount_ < 0x7fffffff) // Paranoia :) immCount_++; return; } int prim = (op >> 8) & 0x7; if (prim != GE_PRIM_KEEP_PREVIOUS) { // Flush before changing the prim type. Only continue can be used to continue a prim. FlushImm(); } TransformedVertex &v = immBuffer_[immCount_++]; // ThrillVille does a clear with this, additional parameters found via tests. // The current vtype affects how the coordinate is processed. if (gstate.isModeThrough()) { v.x = ((int)(gstate.imm_vscx & 0xFFFF) - 0x8000) / 16.0f; v.y = ((int)(gstate.imm_vscy & 0xFFFF) - 0x8000) / 16.0f; } else { int offsetX = gstate.getOffsetX16(); int offsetY = gstate.getOffsetY16(); v.x = ((int)(gstate.imm_vscx & 0xFFFF) - offsetX) / 16.0f; v.y = ((int)(gstate.imm_vscy & 0xFFFF) - offsetY) / 16.0f; } v.z = gstate.imm_vscz & 0xFFFF; v.pos_w = 1.0f; v.u = getFloat24(gstate.imm_vtcs); v.v = getFloat24(gstate.imm_vtct); v.uv_w = getFloat24(gstate.imm_vtcq); v.color0_32 = (gstate.imm_cv & 0xFFFFFF) | (gstate.imm_ap << 24); // TODO: When !gstate.isModeThrough(), direct fog coefficient (0 = entirely fog), ignore fog flag (also GE_IMM_FOG.) v.fog = (gstate.imm_fc & 0xFF) / 255.0f; // TODO: Apply if gstate.isUsingSecondaryColor() && !gstate.isModeThrough(), ignore lighting flag. v.color1_32 = gstate.imm_scv & 0xFFFFFF; if (prim != GE_PRIM_KEEP_PREVIOUS) { immPrim_ = (GEPrimitiveType)prim; // Flags seem to only be respected from the first prim. immFlags_ = op & 0x00FFF800; immFirstSent_ = false; } else if (prim == GE_PRIM_KEEP_PREVIOUS && immPrim_ != GE_PRIM_INVALID) { static constexpr int flushPrimCount[] = { 1, 2, 0, 3, 0, 0, 2, 0 }; // Instead of finding a proper point to flush, we just emit prims when we can. if (immCount_ == flushPrimCount[immPrim_ & 7]) FlushImm(); } else { ERROR_LOG_REPORT_ONCE(imm_draw_prim, G3D, "Immediate draw: Unexpected primitive %d at count %d", prim, immCount_); } } void GPUCommon::FlushImm() { if (immCount_ == 0 || immPrim_ == GE_PRIM_INVALID) return; SetDrawType(DRAW_PRIM, immPrim_); VirtualFramebuffer *vfb = nullptr; if (framebufferManager_) vfb = framebufferManager_->SetRenderFrameBuffer(gstate_c.IsDirty(DIRTY_FRAMEBUF), gstate_c.skipDrawReason); if (gstate_c.skipDrawReason & (SKIPDRAW_SKIPFRAME | SKIPDRAW_NON_DISPLAYED_FB)) { // No idea how many cycles to skip, heh. immCount_ = 0; return; } UpdateUVScaleOffset(); if (vfb) { CheckDepthUsage(vfb); } bool antialias = (immFlags_ & GE_IMM_ANTIALIAS) != 0; bool prevAntialias = gstate.isAntiAliasEnabled(); bool shading = (immFlags_ & GE_IMM_SHADING) != 0; bool prevShading = gstate.getShadeMode() == GE_SHADE_GOURAUD; bool cullEnable = (immFlags_ & GE_IMM_CULLENABLE) != 0; bool prevCullEnable = gstate.isCullEnabled(); int cullMode = (immFlags_ & GE_IMM_CULLFACE) != 0 ? 1 : 0; bool texturing = (immFlags_ & GE_IMM_TEXTURE) != 0; bool prevTexturing = gstate.isTextureMapEnabled(); bool fog = (immFlags_ & GE_IMM_FOG) != 0; bool prevFog = gstate.isFogEnabled(); bool dither = (immFlags_ & GE_IMM_DITHER) != 0; bool prevDither = gstate.isDitherEnabled(); if ((immFlags_ & GE_IMM_CLIPMASK) != 0) { WARN_LOG_REPORT_ONCE(geimmclipvalue, G3D, "Imm vertex used clip value, flags=%06x", immFlags_); } bool changed = texturing != prevTexturing || cullEnable != prevCullEnable || dither != prevDither; changed = changed || prevShading != shading || prevFog != fog; if (changed) { DispatchFlush(); gstate.antiAliasEnable = (GE_CMD_ANTIALIASENABLE << 24) | (int)antialias; gstate.shademodel = (GE_CMD_SHADEMODE << 24) | (int)shading; gstate.cullfaceEnable = (GE_CMD_CULLFACEENABLE << 24) | (int)cullEnable; gstate.textureMapEnable = (GE_CMD_TEXTUREMAPENABLE << 24) | (int)texturing; gstate.fogEnable = (GE_CMD_FOGENABLE << 24) | (int)fog; gstate.ditherEnable = (GE_CMD_DITHERENABLE << 24) | (int)dither; gstate_c.Dirty(DIRTY_VERTEXSHADER_STATE | DIRTY_FRAGMENTSHADER_STATE | DIRTY_RASTER_STATE | DIRTY_VIEWPORTSCISSOR_STATE | DIRTY_UVSCALEOFFSET | DIRTY_CULLRANGE); } drawEngineCommon_->DispatchSubmitImm(immPrim_, immBuffer_, immCount_, cullMode, immFirstSent_); immCount_ = 0; immFirstSent_ = true; if (changed) { DispatchFlush(); gstate.antiAliasEnable = (GE_CMD_ANTIALIASENABLE << 24) | (int)prevAntialias; gstate.shademodel = (GE_CMD_SHADEMODE << 24) | (int)prevShading; gstate.cullfaceEnable = (GE_CMD_CULLFACEENABLE << 24) | (int)prevCullEnable; gstate.textureMapEnable = (GE_CMD_TEXTUREMAPENABLE << 24) | (int)prevTexturing; gstate.fogEnable = (GE_CMD_FOGENABLE << 24) | (int)prevFog; gstate.ditherEnable = (GE_CMD_DITHERENABLE << 24) | (int)prevDither; gstate_c.Dirty(DIRTY_VERTEXSHADER_STATE | DIRTY_FRAGMENTSHADER_STATE | DIRTY_RASTER_STATE | DIRTY_VIEWPORTSCISSOR_STATE | DIRTY_UVSCALEOFFSET | DIRTY_CULLRANGE); } } void GPUCommon::Execute_Unknown(u32 op, u32 diff) { if ((op & 0xFFFFFF) != 0) WARN_LOG_REPORT_ONCE(unknowncmd, G3D, "Unknown GE command : %08x ", op); } void GPUCommon::FastLoadBoneMatrix(u32 target) { const u32 num = gstate.boneMatrixNumber & 0x7F; _dbg_assert_msg_(num + 12 <= 96, "FastLoadBoneMatrix would corrupt memory"); const u32 mtxNum = num / 12; u32 uniformsToDirty = DIRTY_BONEMATRIX0 << mtxNum; if (num != 12 * mtxNum) { uniformsToDirty |= DIRTY_BONEMATRIX0 << ((mtxNum + 1) & 7); } if (!g_Config.bSoftwareSkinning) { if (flushOnParams_) Flush(); gstate_c.Dirty(uniformsToDirty); } else { gstate_c.deferredVertTypeDirty |= uniformsToDirty; } gstate.FastLoadBoneMatrix(target); cyclesExecuted += 2 * 14; // one to reset the counter, 12 to load the matrix, and a return. if (coreCollectDebugStats) { gpuStats.otherGPUCycles += 2 * 14; } } struct DisplayList_v1 { int id; u32 startpc; u32 pc; u32 stall; DisplayListState state; SignalBehavior signal; int subIntrBase; u16 subIntrToken; DisplayListStackEntry stack[32]; int stackptr; bool interrupted; u64 waitTicks; bool interruptsEnabled; bool pendingInterrupt; bool started; size_t contextPtr; u32 offsetAddr; bool bboxResult; }; struct DisplayList_v2 { int id; u32 startpc; u32 pc; u32 stall; DisplayListState state; SignalBehavior signal; int subIntrBase; u16 subIntrToken; DisplayListStackEntry stack[32]; int stackptr; bool interrupted; u64 waitTicks; bool interruptsEnabled; bool pendingInterrupt; bool started; PSPPointer context; u32 offsetAddr; bool bboxResult; }; void GPUCommon::DoState(PointerWrap &p) { auto s = p.Section("GPUCommon", 1, 6); if (!s) return; Do(p, dlQueue); if (s >= 4) { DoArray(p, dls, ARRAY_SIZE(dls)); } else if (s >= 3) { // This may have been saved with or without padding, depending on platform. // We need to upconvert it to our consistently-padded struct. static const size_t DisplayList_v3_size = 452; static const size_t DisplayList_v4_size = 456; static_assert(DisplayList_v4_size == sizeof(DisplayList), "Make sure to change here when updating DisplayList"); p.DoVoid(&dls[0], DisplayList_v3_size); dls[0].padding = 0; const u8 *savedPtr = *p.GetPPtr(); const u32 *savedPtr32 = (const u32 *)savedPtr; // Here's the trick: the first member (id) is always the same as the index. // The second member (startpc) is always an address, or 0, never 1. So we can see the padding. const bool hasPadding = savedPtr32[1] == 1; if (hasPadding) { u32 padding; Do(p, padding); } for (size_t i = 1; i < ARRAY_SIZE(dls); ++i) { p.DoVoid(&dls[i], DisplayList_v3_size); dls[i].padding = 0; if (hasPadding) { u32 padding; Do(p, padding); } } } else if (s >= 2) { for (size_t i = 0; i < ARRAY_SIZE(dls); ++i) { DisplayList_v2 oldDL; Do(p, oldDL); // Copy over everything except the last, new member (stackAddr.) memcpy(&dls[i], &oldDL, sizeof(DisplayList_v2)); dls[i].stackAddr = 0; } } else { // Can only be in read mode here. for (size_t i = 0; i < ARRAY_SIZE(dls); ++i) { DisplayList_v1 oldDL; Do(p, oldDL); // On 32-bit, they're the same, on 64-bit oldDL is bigger. memcpy(&dls[i], &oldDL, sizeof(DisplayList_v1)); // Fix the other fields. Let's hope context wasn't important, it was a pointer. dls[i].context = 0; dls[i].offsetAddr = oldDL.offsetAddr; dls[i].bboxResult = oldDL.bboxResult; dls[i].stackAddr = 0; } } int currentID = 0; if (currentList != nullptr) { currentID = (int)(currentList - &dls[0]); } Do(p, currentID); if (currentID == 0) { currentList = nullptr; } else { currentList = &dls[currentID]; } Do(p, interruptRunning); Do(p, gpuState); Do(p, isbreak); Do(p, drawCompleteTicks); Do(p, busyTicks); if (s >= 5) { Do(p, matrixVisible.all); } if (s >= 6) { Do(p, edramTranslation_); } } void GPUCommon::InterruptStart(int listid) { interruptRunning = true; } void GPUCommon::InterruptEnd(int listid) { interruptRunning = false; isbreak = false; DisplayList &dl = dls[listid]; dl.pendingInterrupt = false; // TODO: Unless the signal handler could change it? if (dl.state == PSP_GE_DL_STATE_COMPLETED || dl.state == PSP_GE_DL_STATE_NONE) { if (dl.started && dl.context.IsValid()) { gstate.Restore(dl.context); ReapplyGfxState(); } dl.waitTicks = 0; __GeTriggerWait(GPU_SYNC_LIST, listid); // Make sure the list isn't still queued since it's now completed. if (!dlQueue.empty()) { if (listid == dlQueue.front()) PopDLQueue(); else dlQueue.remove(listid); } } ProcessDLQueue(); } // TODO: Maybe cleaner to keep this in GE and trigger the clear directly? void GPUCommon::SyncEnd(GPUSyncType waitType, int listid, bool wokeThreads) { if (waitType == GPU_SYNC_DRAW && wokeThreads) { for (int i = 0; i < DisplayListMaxCount; ++i) { if (dls[i].state == PSP_GE_DL_STATE_COMPLETED) { dls[i].state = PSP_GE_DL_STATE_NONE; } } } } bool GPUCommon::GetCurrentDisplayList(DisplayList &list) { if (!currentList) { return false; } list = *currentList; return true; } std::vector GPUCommon::ActiveDisplayLists() { std::vector result; for (auto it = dlQueue.begin(), end = dlQueue.end(); it != end; ++it) { result.push_back(dls[*it]); } return result; } void GPUCommon::ResetListPC(int listID, u32 pc) { if (listID < 0 || listID >= DisplayListMaxCount) { _dbg_assert_msg_(false, "listID out of range: %d", listID); return; } Reporting::NotifyDebugger(); dls[listID].pc = pc; downcount = 0; } void GPUCommon::ResetListStall(int listID, u32 stall) { if (listID < 0 || listID >= DisplayListMaxCount) { _dbg_assert_msg_(false, "listID out of range: %d", listID); return; } Reporting::NotifyDebugger(); dls[listID].stall = stall; downcount = 0; } void GPUCommon::ResetListState(int listID, DisplayListState state) { if (listID < 0 || listID >= DisplayListMaxCount) { _dbg_assert_msg_(false, "listID out of range: %d", listID); return; } Reporting::NotifyDebugger(); dls[listID].state = state; downcount = 0; } GPUDebugOp GPUCommon::DissassembleOp(u32 pc, u32 op) { char buffer[1024]; u32 prev = Memory::IsValidAddress(pc - 4) ? Memory::ReadUnchecked_U32(pc - 4) : 0; GeDisassembleOp(pc, op, prev, buffer, sizeof(buffer)); GPUDebugOp info; info.pc = pc; info.cmd = op >> 24; info.op = op; info.desc = buffer; return info; } std::vector GPUCommon::DissassembleOpRange(u32 startpc, u32 endpc) { char buffer[1024]; std::vector result; GPUDebugOp info; // Don't trigger a pause. u32 prev = Memory::IsValidAddress(startpc - 4) ? Memory::Read_U32(startpc - 4) : 0; for (u32 pc = startpc; pc < endpc; pc += 4) { u32 op = Memory::IsValidAddress(pc) ? Memory::Read_U32(pc) : 0; GeDisassembleOp(pc, op, prev, buffer, sizeof(buffer)); prev = op; info.pc = pc; info.cmd = op >> 24; info.op = op; info.desc = buffer; result.push_back(info); } return result; } u32 GPUCommon::GetRelativeAddress(u32 data) { return gstate_c.getRelativeAddress(data); } u32 GPUCommon::GetVertexAddress() { return gstate_c.vertexAddr; } u32 GPUCommon::GetIndexAddress() { return gstate_c.indexAddr; } GPUgstate GPUCommon::GetGState() { return gstate; } void GPUCommon::SetCmdValue(u32 op) { u32 cmd = op >> 24; u32 diff = op ^ gstate.cmdmem[cmd]; Reporting::NotifyDebugger(); PreExecuteOp(op, diff); gstate.cmdmem[cmd] = op; ExecuteOp(op, diff); downcount = 0; } void GPUCommon::DoBlockTransfer(u32 skipDrawReason) { u32 srcBasePtr = gstate.getTransferSrcAddress(); u32 srcStride = gstate.getTransferSrcStride(); u32 dstBasePtr = gstate.getTransferDstAddress(); u32 dstStride = gstate.getTransferDstStride(); int srcX = gstate.getTransferSrcX(); int srcY = gstate.getTransferSrcY(); int dstX = gstate.getTransferDstX(); int dstY = gstate.getTransferDstY(); int width = gstate.getTransferWidth(); int height = gstate.getTransferHeight(); int bpp = gstate.getTransferBpp(); DEBUG_LOG(G3D, "Block transfer: %08x/%x -> %08x/%x, %ix%ix%i (%i,%i)->(%i,%i)", srcBasePtr, srcStride, dstBasePtr, dstStride, width, height, bpp, srcX, srcY, dstX, dstY); // For VRAM, we wrap around when outside valid memory (mirrors still work.) if ((srcBasePtr & 0x04800000) == 0x04800000) srcBasePtr &= ~0x00800000; if ((dstBasePtr & 0x04800000) == 0x04800000) dstBasePtr &= ~0x00800000; // Use height less one to account for width, which can be greater or less than stride. const uint32_t src = srcBasePtr + (srcY * srcStride + srcX) * bpp; const uint32_t srcSize = (height - 1) * (srcStride + width) * bpp; const uint32_t dst = dstBasePtr + (dstY * dstStride + dstX) * bpp; const uint32_t dstSize = (height - 1) * (dstStride + width) * bpp; bool srcDstOverlap = src + srcSize > dst && dst + dstSize > src; bool srcValid = Memory::IsValidRange(src, srcSize); bool dstValid = Memory::IsValidRange(dst, dstSize); bool srcWraps = Memory::IsVRAMAddress(srcBasePtr) && !srcValid; bool dstWraps = Memory::IsVRAMAddress(dstBasePtr) && !dstValid; char tag[128]; size_t tagSize; // Tell the framebuffer manager to take action if possible. If it does the entire thing, let's just return. if (!framebufferManager_ || !framebufferManager_->NotifyBlockTransferBefore(dstBasePtr, dstStride, dstX, dstY, srcBasePtr, srcStride, srcX, srcY, width, height, bpp, skipDrawReason)) { // Do the copy! (Hm, if we detect a drawn video frame (see below) then we could maybe skip this?) // Can use GetPointerUnchecked because we checked the addresses above. We could also avoid them // entirely by walking a couple of pointers... // Simple case: just a straight copy, no overlap or wrapping. if (srcStride == dstStride && (u32)width == srcStride && !srcDstOverlap && srcValid && dstValid) { u32 srcLineStartAddr = srcBasePtr + (srcY * srcStride + srcX) * bpp; u32 dstLineStartAddr = dstBasePtr + (dstY * dstStride + dstX) * bpp; u32 bytesToCopy = width * height * bpp; const u8 *srcp = Memory::GetPointer(srcLineStartAddr); u8 *dstp = Memory::GetPointerWrite(dstLineStartAddr); memcpy(dstp, srcp, bytesToCopy); if (MemBlockInfoDetailed(bytesToCopy)) { tagSize = FormatMemWriteTagAt(tag, sizeof(tag), "GPUBlockTransfer/", src, bytesToCopy); NotifyMemInfo(MemBlockFlags::READ, src, bytesToCopy, tag, tagSize); NotifyMemInfo(MemBlockFlags::WRITE, dst, bytesToCopy, tag, tagSize); } } else if ((srcDstOverlap || srcWraps || dstWraps) && (srcValid || srcWraps) && (dstValid || dstWraps)) { // This path means we have either src/dst overlap, OR one or both of src and dst wrap. // This should be uncommon so it's the slowest path. u32 bytesToCopy = width * bpp; bool notifyDetail = MemBlockInfoDetailed(srcWraps || dstWraps ? 64 : bytesToCopy); bool notifyAll = !notifyDetail && MemBlockInfoDetailed(srcSize, dstSize); if (notifyDetail || notifyAll) { tagSize = FormatMemWriteTagAt(tag, sizeof(tag), "GPUBlockTransfer/", src, srcSize); } auto notifyingMemmove = [&](u32 d, u32 s, u32 sz) { const u8 *srcp = Memory::GetPointer(s); u8 *dstp = Memory::GetPointerWrite(d); memmove(dstp, srcp, sz); if (notifyDetail) { NotifyMemInfo(MemBlockFlags::READ, s, sz, tag, tagSize); NotifyMemInfo(MemBlockFlags::WRITE, d, sz, tag, tagSize); } }; for (int y = 0; y < height; y++) { u32 srcLineStartAddr = srcBasePtr + ((y + srcY) * srcStride + srcX) * bpp; u32 dstLineStartAddr = dstBasePtr + ((y + dstY) * dstStride + dstX) * bpp; // If we already passed a wrap, we can use the quicker path. if ((srcLineStartAddr & 0x04800000) == 0x04800000) srcLineStartAddr &= ~0x00800000; if ((dstLineStartAddr & 0x04800000) == 0x04800000) dstLineStartAddr &= ~0x00800000; // These flags mean there's a wrap inside this line. bool srcLineWrap = !Memory::IsValidRange(srcLineStartAddr, bytesToCopy); bool dstLineWrap = !Memory::IsValidRange(dstLineStartAddr, bytesToCopy); if (!srcLineWrap && !dstLineWrap) { const u8 *srcp = Memory::GetPointer(srcLineStartAddr); u8 *dstp = Memory::GetPointerWrite(dstLineStartAddr); for (u32 i = 0; i < bytesToCopy; i += 64) { u32 chunk = i + 64 > bytesToCopy ? bytesToCopy - i : 64; memmove(dstp + i, srcp + i, chunk); } // If we're tracking detail, it's useful to have the gaps illustrated properly. if (notifyDetail) { NotifyMemInfo(MemBlockFlags::READ, srcLineStartAddr, bytesToCopy, tag, tagSize); NotifyMemInfo(MemBlockFlags::WRITE, dstLineStartAddr, bytesToCopy, tag, tagSize); } } else { // We can wrap at any point, so along with overlap this gets a bit complicated. // We're just going to do this the slow and easy way. u32 srcLinePos = srcLineStartAddr; u32 dstLinePos = dstLineStartAddr; for (u32 i = 0; i < bytesToCopy; i += 64) { u32 chunk = i + 64 > bytesToCopy ? bytesToCopy - i : 64; u32 srcValid = Memory::ValidSize(srcLinePos, chunk); u32 dstValid = Memory::ValidSize(dstLinePos, chunk); // First chunk, for which both are valid. u32 bothSize = std::min(srcValid, dstValid); if (bothSize != 0) notifyingMemmove(dstLinePos, srcLinePos, bothSize); // Now, whichever side has more valid (or the rest, if only one side must wrap.) u32 exclusiveSize = std::max(srcValid, dstValid) - bothSize; if (exclusiveSize != 0 && srcValid >= dstValid) { notifyingMemmove(PSP_GetVidMemBase(), srcLineStartAddr + bothSize, exclusiveSize); } else if (exclusiveSize != 0 && srcValid < dstValid) { notifyingMemmove(dstLineStartAddr + bothSize, PSP_GetVidMemBase(), exclusiveSize); } // Finally, if both src and dst wrapped, that portion. u32 wrappedSize = chunk - bothSize - exclusiveSize; if (wrappedSize != 0 && srcValid >= dstValid) { notifyingMemmove(PSP_GetVidMemBase() + exclusiveSize, PSP_GetVidMemBase(), wrappedSize); } else if (wrappedSize != 0 && srcValid < dstValid) { notifyingMemmove(PSP_GetVidMemBase(), PSP_GetVidMemBase() + exclusiveSize, wrappedSize); } srcLinePos += chunk; dstLinePos += chunk; if ((srcLinePos & 0x04800000) == 0x04800000) srcLinePos &= ~0x00800000; if ((dstLinePos & 0x04800000) == 0x04800000) dstLinePos &= ~0x00800000; } } } if (notifyAll) { if (srcWraps) { u32 validSize = Memory::ValidSize(src, srcSize); NotifyMemInfo(MemBlockFlags::READ, src, validSize, tag, tagSize); NotifyMemInfo(MemBlockFlags::READ, PSP_GetVidMemBase(), srcSize - validSize, tag, tagSize); } else { NotifyMemInfo(MemBlockFlags::READ, src, srcSize, tag, tagSize); } if (dstWraps) { u32 validSize = Memory::ValidSize(dst, dstSize); NotifyMemInfo(MemBlockFlags::WRITE, dst, validSize, tag, tagSize); NotifyMemInfo(MemBlockFlags::WRITE, PSP_GetVidMemBase(), dstSize - validSize, tag, tagSize); } else { NotifyMemInfo(MemBlockFlags::WRITE, dst, dstSize, tag, tagSize); } } } else if (srcValid && dstValid) { u32 bytesToCopy = width * bpp; bool notifyDetail = MemBlockInfoDetailed(bytesToCopy); bool notifyAll = !notifyDetail && MemBlockInfoDetailed(srcSize, dstSize); if (notifyDetail || notifyAll) { tagSize = FormatMemWriteTagAt(tag, sizeof(tag), "GPUBlockTransfer/", src, srcSize); } for (int y = 0; y < height; y++) { u32 srcLineStartAddr = srcBasePtr + ((y + srcY) * srcStride + srcX) * bpp; u32 dstLineStartAddr = dstBasePtr + ((y + dstY) * dstStride + dstX) * bpp; const u8 *srcp = Memory::GetPointer(srcLineStartAddr); u8 *dstp = Memory::GetPointerWrite(dstLineStartAddr); memcpy(dstp, srcp, bytesToCopy); // If we're tracking detail, it's useful to have the gaps illustrated properly. if (notifyDetail) { NotifyMemInfo(MemBlockFlags::READ, srcLineStartAddr, bytesToCopy, tag, tagSize); NotifyMemInfo(MemBlockFlags::WRITE, dstLineStartAddr, bytesToCopy, tag, tagSize); } } if (notifyAll) { NotifyMemInfo(MemBlockFlags::READ, src, srcSize, tag, tagSize); NotifyMemInfo(MemBlockFlags::WRITE, dst, dstSize, tag, tagSize); } } else { // This seems to cause the GE to require a break/reset on a PSP. // TODO: Handle that and figure out which bytes are still copied? ERROR_LOG_REPORT_ONCE(invalidtransfer, G3D, "Block transfer invalid: %08x/%x -> %08x/%x, %ix%ix%i (%i,%i)->(%i,%i)", srcBasePtr, srcStride, dstBasePtr, dstStride, width, height, bpp, srcX, srcY, dstX, dstY); } if (framebufferManager_) { // Fixes Gran Turismo's funky text issue, since it overwrites the current texture. textureCache_->Invalidate(dstBasePtr + (dstY * dstStride + dstX) * bpp, height * dstStride * bpp, GPU_INVALIDATE_HINT); framebufferManager_->NotifyBlockTransferAfter(dstBasePtr, dstStride, dstX, dstY, srcBasePtr, srcStride, srcX, srcY, width, height, bpp, skipDrawReason); } } // TODO: Correct timing appears to be 1.9, but erring a bit low since some of our other timing is inaccurate. cyclesExecuted += ((height * width * bpp) * 16) / 10; } bool GPUCommon::PerformMemoryCopy(u32 dest, u32 src, int size, GPUCopyFlag flags) { // Track stray copies of a framebuffer in RAM. MotoGP does this. if (framebufferManager_->MayIntersectFramebuffer(src) || framebufferManager_->MayIntersectFramebuffer(dest)) { if (!framebufferManager_->NotifyFramebufferCopy(src, dest, size, flags, gstate_c.skipDrawReason)) { // We use matching values in PerformReadbackToMemory/PerformWriteColorFromMemory. // Since they're identical we don't need to copy. if (dest != src) { if (MemBlockInfoDetailed(size)) { char tag[128]; size_t tagSize = FormatMemWriteTagAt(tag, sizeof(tag), "GPUMemcpy/", src, size); Memory::Memcpy(dest, src, size, tag, tagSize); } else { Memory::Memcpy(dest, src, size, "GPUMemcpy"); } } } InvalidateCache(dest, size, GPU_INVALIDATE_HINT); return true; } if (MemBlockInfoDetailed(size)) { char tag[128]; size_t tagSize = FormatMemWriteTagAt(tag, sizeof(tag), "GPUMemcpy/", src, size); NotifyMemInfo(MemBlockFlags::READ, src, size, tag, tagSize); NotifyMemInfo(MemBlockFlags::WRITE, dest, size, tag, tagSize); } InvalidateCache(dest, size, GPU_INVALIDATE_HINT); if (!(flags & GPUCopyFlag::DEBUG_NOTIFIED)) GPURecord::NotifyMemcpy(dest, src, size); return false; } bool GPUCommon::PerformMemorySet(u32 dest, u8 v, int size) { // This may indicate a memset, usually to 0, of a framebuffer. if (framebufferManager_->MayIntersectFramebuffer(dest)) { Memory::Memset(dest, v, size, "GPUMemset"); if (!framebufferManager_->NotifyFramebufferCopy(dest, dest, size, GPUCopyFlag::MEMSET, gstate_c.skipDrawReason)) { InvalidateCache(dest, size, GPU_INVALIDATE_HINT); } return true; } NotifyMemInfo(MemBlockFlags::WRITE, dest, size, "GPUMemset"); // Or perhaps a texture, let's invalidate. InvalidateCache(dest, size, GPU_INVALIDATE_HINT); GPURecord::NotifyMemset(dest, v, size); return false; } bool GPUCommon::PerformReadbackToMemory(u32 dest, int size) { if (Memory::IsVRAMAddress(dest)) { return PerformMemoryCopy(dest, dest, size, GPUCopyFlag::FORCE_DST_MATCH_MEM); } return false; } bool GPUCommon::PerformWriteColorFromMemory(u32 dest, int size) { if (Memory::IsVRAMAddress(dest)) { GPURecord::NotifyUpload(dest, size); return PerformMemoryCopy(dest, dest, size, GPUCopyFlag::FORCE_SRC_MATCH_MEM | GPUCopyFlag::DEBUG_NOTIFIED); } return false; } void GPUCommon::PerformWriteFormattedFromMemory(u32 addr, int size, int frameWidth, GEBufferFormat format) { if (Memory::IsVRAMAddress(addr)) { framebufferManager_->PerformWriteFormattedFromMemory(addr, size, frameWidth, format); } textureCache_->NotifyWriteFormattedFromMemory(addr, size, frameWidth, format); InvalidateCache(addr, size, GPU_INVALIDATE_SAFE); } bool GPUCommon::PerformWriteStencilFromMemory(u32 dest, int size, WriteStencil flags) { if (framebufferManager_->MayIntersectFramebuffer(dest)) { framebufferManager_->PerformWriteStencilFromMemory(dest, size, flags); return true; } return false; } bool GPUCommon::GetCurrentSimpleVertices(int count, std::vector &vertices, std::vector &indices) { UpdateUVScaleOffset(); return drawEngineCommon_->GetCurrentSimpleVertices(count, vertices, indices); } bool GPUCommon::DescribeCodePtr(const u8 *ptr, std::string &name) { if (drawEngineCommon_->IsCodePtrVertexDecoder(ptr)) { name = "VertexDecoderJit"; return true; } return false; } void GPUCommon::UpdateUVScaleOffset() { #ifdef _M_SSE __m128i values = _mm_slli_epi32(_mm_load_si128((const __m128i *) & gstate.texscaleu), 8); _mm_storeu_si128((__m128i *)&gstate_c.uv, values); #elif PPSSPP_ARCH(ARM_NEON) const uint32x4_t values = vshlq_n_u32(vld1q_u32((const u32 *)&gstate.texscaleu), 8); vst1q_u32((u32 *)&gstate_c.uv, values); #else gstate_c.uv.uScale = getFloat24(gstate.texscaleu); gstate_c.uv.vScale = getFloat24(gstate.texscalev); gstate_c.uv.uOff = getFloat24(gstate.texoffsetu); gstate_c.uv.vOff = getFloat24(gstate.texoffsetv); #endif }