// Copyright (c) 2012- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #include #include #include #include "Common/Serialize/Serializer.h" #include "Common/Serialize/SerializeFuncs.h" #include "Common/Serialize/SerializeMap.h" #include "Core/MemMapHelpers.h" #include "Core/HLE/HLE.h" #include "Core/MIPS/MIPS.h" #include "Core/CoreTiming.h" #include "Core/Reporting.h" #include "Core/HLE/sceKernel.h" #include "Core/HLE/sceKernelMutex.h" #include "Core/HLE/sceKernelThread.h" #include "Core/HLE/KernelWaitHelpers.h" #define PSP_MUTEX_ATTR_FIFO 0 #define PSP_MUTEX_ATTR_PRIORITY 0x100 #define PSP_MUTEX_ATTR_ALLOW_RECURSIVE 0x200 #define PSP_MUTEX_ATTR_KNOWN (PSP_MUTEX_ATTR_PRIORITY | PSP_MUTEX_ATTR_ALLOW_RECURSIVE) // Not sure about the names of these #define PSP_MUTEX_ERROR_NO_SUCH_MUTEX 0x800201C3 #define PSP_MUTEX_ERROR_TRYLOCK_FAILED 0x800201C4 #define PSP_MUTEX_ERROR_NOT_LOCKED 0x800201C5 #define PSP_MUTEX_ERROR_LOCK_OVERFLOW 0x800201C6 #define PSP_MUTEX_ERROR_UNLOCK_UNDERFLOW 0x800201C7 #define PSP_MUTEX_ERROR_ALREADY_LOCKED 0x800201C8 #define PSP_LWMUTEX_ERROR_NO_SUCH_LWMUTEX 0x800201CA // Note: used only for _600. #define PSP_LWMUTEX_ERROR_TRYLOCK_FAILED 0x800201CB #define PSP_LWMUTEX_ERROR_NOT_LOCKED 0x800201CC #define PSP_LWMUTEX_ERROR_LOCK_OVERFLOW 0x800201CD #define PSP_LWMUTEX_ERROR_UNLOCK_UNDERFLOW 0x800201CE #define PSP_LWMUTEX_ERROR_ALREADY_LOCKED 0x800201CF struct NativeMutex { SceSize_le size; char name[KERNELOBJECT_MAX_NAME_LENGTH + 1]; SceUInt_le attr; s32_le initialCount; s32_le lockLevel; SceUID_le lockThread; // Not kept up to date. s32_le numWaitThreads; }; struct PSPMutex : public KernelObject { const char *GetName() override { return nm.name; } const char *GetTypeName() override { return GetStaticTypeName(); } static const char *GetStaticTypeName() { return "Mutex"; } static u32 GetMissingErrorCode() { return PSP_MUTEX_ERROR_NO_SUCH_MUTEX; } static int GetStaticIDType() { return SCE_KERNEL_TMID_Mutex; } int GetIDType() const override { return SCE_KERNEL_TMID_Mutex; } void DoState(PointerWrap &p) override { auto s = p.Section("Mutex", 1); if (!s) return; Do(p, nm); SceUID dv = 0; Do(p, waitingThreads, dv); Do(p, pausedWaits); } NativeMutex nm; std::vector waitingThreads; // Key is the callback id it was for, or if no callback, the thread id. std::map pausedWaits; }; struct NativeLwMutexWorkarea { s32_le lockLevel; SceUID_le lockThread; u32_le attr; s32_le numWaitThreads; SceUID_le uid; s32_le pad[3]; void init() { memset(this, 0, sizeof(NativeLwMutexWorkarea)); } void clear() { lockLevel = 0; lockThread = -1; uid = -1; } }; struct NativeLwMutex { SceSize_le size; char name[KERNELOBJECT_MAX_NAME_LENGTH + 1]; SceUInt_le attr; SceUID_le uid; PSPPointer workarea; s32_le initialCount; // Not kept up to date. s32_le currentCount; // Not kept up to date. SceUID_le lockThread; // Not kept up to date. s32_le numWaitThreads; }; struct LwMutex : public KernelObject { const char *GetName() override { return nm.name; } const char *GetTypeName() override { return GetStaticTypeName(); } static const char *GetStaticTypeName() { return "LwMutex"; } static u32 GetMissingErrorCode() { return PSP_LWMUTEX_ERROR_NO_SUCH_LWMUTEX; } static int GetStaticIDType() { return SCE_KERNEL_TMID_LwMutex; } int GetIDType() const override { return SCE_KERNEL_TMID_LwMutex; } void DoState(PointerWrap &p) override { auto s = p.Section("LwMutex", 1); if (!s) return; Do(p, nm); SceUID dv = 0; Do(p, waitingThreads, dv); Do(p, pausedWaits); } NativeLwMutex nm; std::vector waitingThreads; // Key is the callback id it was for, or if no callback, the thread id. std::map pausedWaits; }; static int mutexWaitTimer = -1; static int lwMutexWaitTimer = -1; // Thread -> Mutex locks for thread end. typedef std::unordered_multimap MutexMap; static MutexMap mutexHeldLocks; void __KernelMutexBeginCallback(SceUID threadID, SceUID prevCallbackId); void __KernelMutexEndCallback(SceUID threadID, SceUID prevCallbackId); void __KernelLwMutexBeginCallback(SceUID threadID, SceUID prevCallbackId); void __KernelLwMutexEndCallback(SceUID threadID, SceUID prevCallbackId); void __KernelMutexInit() { mutexWaitTimer = CoreTiming::RegisterEvent("MutexTimeout", __KernelMutexTimeout); lwMutexWaitTimer = CoreTiming::RegisterEvent("LwMutexTimeout", __KernelLwMutexTimeout); __KernelListenThreadEnd(&__KernelMutexThreadEnd); __KernelRegisterWaitTypeFuncs(WAITTYPE_MUTEX, __KernelMutexBeginCallback, __KernelMutexEndCallback); __KernelRegisterWaitTypeFuncs(WAITTYPE_LWMUTEX, __KernelLwMutexBeginCallback, __KernelLwMutexEndCallback); } void __KernelMutexDoState(PointerWrap &p) { auto s = p.Section("sceKernelMutex", 1); if (!s) return; Do(p, mutexWaitTimer); CoreTiming::RestoreRegisterEvent(mutexWaitTimer, "MutexTimeout", __KernelMutexTimeout); Do(p, lwMutexWaitTimer); CoreTiming::RestoreRegisterEvent(lwMutexWaitTimer, "LwMutexTimeout", __KernelLwMutexTimeout); Do(p, mutexHeldLocks); } KernelObject *__KernelMutexObject() { return new PSPMutex; } KernelObject *__KernelLwMutexObject() { return new LwMutex; } void __KernelMutexShutdown() { mutexHeldLocks.clear(); } static void __KernelMutexAcquireLock(PSPMutex *mutex, int count, SceUID thread) { #if defined(_DEBUG) auto locked = mutexHeldLocks.equal_range(thread); for (MutexMap::iterator iter = locked.first; iter != locked.second; ++iter) _dbg_assert_msg_((*iter).second != mutex->GetUID(), "Thread %d / mutex %d wasn't removed from mutexHeldLocks properly.", thread, mutex->GetUID()); #endif mutexHeldLocks.insert(std::make_pair(thread, mutex->GetUID())); mutex->nm.lockLevel = count; mutex->nm.lockThread = thread; } static void __KernelMutexAcquireLock(PSPMutex *mutex, int count) { __KernelMutexAcquireLock(mutex, count, __KernelGetCurThread()); } static void __KernelMutexEraseLock(PSPMutex *mutex) { if (mutex->nm.lockThread != -1) { SceUID id = mutex->GetUID(); std::pair locked = mutexHeldLocks.equal_range(mutex->nm.lockThread); for (MutexMap::iterator iter = locked.first; iter != locked.second; ++iter) { if ((*iter).second == id) { mutexHeldLocks.erase(iter); break; } } } mutex->nm.lockThread = -1; } static std::vector::iterator __KernelMutexFindPriority(std::vector &waiting) { _dbg_assert_msg_(!waiting.empty(), "__KernelMutexFindPriority: Trying to find best of no threads."); std::vector::iterator iter, end, best = waiting.end(); u32 best_prio = 0xFFFFFFFF; for (iter = waiting.begin(), end = waiting.end(); iter != end; ++iter) { u32 iter_prio = __KernelGetThreadPrio(*iter); if (iter_prio < best_prio) { best = iter; best_prio = iter_prio; } } _dbg_assert_msg_(best != waiting.end(), "__KernelMutexFindPriority: Returning invalid best thread."); return best; } static bool __KernelUnlockMutexForThread(PSPMutex *mutex, SceUID threadID, u32 &error, int result) { if (!HLEKernel::VerifyWait(threadID, WAITTYPE_MUTEX, mutex->GetUID())) return false; // If result is an error code, we're just letting it go. if (result == 0) { int wVal = (int)__KernelGetWaitValue(threadID, error); __KernelMutexAcquireLock(mutex, wVal, threadID); } u32 timeoutPtr = __KernelGetWaitTimeoutPtr(threadID, error); if (timeoutPtr != 0 && mutexWaitTimer != -1) { // Remove any event for this thread. s64 cyclesLeft = CoreTiming::UnscheduleEvent(mutexWaitTimer, threadID); Memory::Write_U32((u32) cyclesToUs(cyclesLeft), timeoutPtr); } __KernelResumeThreadFromWait(threadID, result); return true; } static bool __KernelUnlockMutexForThreadCheck(PSPMutex *mutex, SceUID threadID, u32 &error, int result, bool &wokeThreads) { if (mutex->nm.lockThread == -1 && __KernelUnlockMutexForThread(mutex, threadID, error, 0)) return true; return false; } void __KernelMutexBeginCallback(SceUID threadID, SceUID prevCallbackId) { auto result = HLEKernel::WaitBeginCallback(threadID, prevCallbackId, mutexWaitTimer); if (result == HLEKernel::WAIT_CB_SUCCESS) DEBUG_LOG(SCEKERNEL, "sceKernelLockMutexCB: Suspending lock wait for callback"); else WARN_LOG_REPORT(SCEKERNEL, "sceKernelLockMutexCB: beginning callback with bad wait id?"); } void __KernelMutexEndCallback(SceUID threadID, SceUID prevCallbackId) { auto result = HLEKernel::WaitEndCallback(threadID, prevCallbackId, mutexWaitTimer, __KernelUnlockMutexForThreadCheck); if (result == HLEKernel::WAIT_CB_RESUMED_WAIT) DEBUG_LOG(SCEKERNEL, "sceKernelLockMutexCB: Resuming lock wait for callback"); } int sceKernelCreateMutex(const char *name, u32 attr, int initialCount, u32 optionsPtr) { if (!name) { WARN_LOG_REPORT(SCEKERNEL, "%08x=sceKernelCreateMutex(): invalid name", SCE_KERNEL_ERROR_ERROR); return SCE_KERNEL_ERROR_ERROR; } if (attr & ~0xBFF) { WARN_LOG_REPORT(SCEKERNEL, "%08x=sceKernelCreateMutex(): invalid attr parameter: %08x", SCE_KERNEL_ERROR_ILLEGAL_ATTR, attr); return SCE_KERNEL_ERROR_ILLEGAL_ATTR; } if (initialCount < 0) return SCE_KERNEL_ERROR_ILLEGAL_COUNT; if ((attr & PSP_MUTEX_ATTR_ALLOW_RECURSIVE) == 0 && initialCount > 1) return SCE_KERNEL_ERROR_ILLEGAL_COUNT; PSPMutex *mutex = new PSPMutex(); SceUID id = kernelObjects.Create(mutex); mutex->nm.size = sizeof(mutex->nm); strncpy(mutex->nm.name, name, KERNELOBJECT_MAX_NAME_LENGTH); mutex->nm.name[KERNELOBJECT_MAX_NAME_LENGTH] = 0; mutex->nm.attr = attr; mutex->nm.initialCount = initialCount; if (initialCount == 0) { mutex->nm.lockLevel = 0; mutex->nm.lockThread = -1; } else __KernelMutexAcquireLock(mutex, initialCount); DEBUG_LOG(SCEKERNEL, "%i=sceKernelCreateMutex(%s, %08x, %d, %08x)", id, name, attr, initialCount, optionsPtr); if (optionsPtr != 0) { u32 size = Memory::Read_U32(optionsPtr); if (size > 4) WARN_LOG_REPORT(SCEKERNEL, "sceKernelCreateMutex(%s) unsupported options parameter, size = %d", name, size); } if ((attr & ~PSP_MUTEX_ATTR_KNOWN) != 0) WARN_LOG_REPORT(SCEKERNEL, "sceKernelCreateMutex(%s) unsupported attr parameter: %08x", name, attr); return id; } int sceKernelDeleteMutex(SceUID id) { u32 error; PSPMutex *mutex = kernelObjects.Get(id, error); if (mutex) { DEBUG_LOG(SCEKERNEL, "sceKernelDeleteMutex(%i)", id); bool wokeThreads = false; std::vector::iterator iter, end; for (iter = mutex->waitingThreads.begin(), end = mutex->waitingThreads.end(); iter != end; ++iter) wokeThreads |= __KernelUnlockMutexForThread(mutex, *iter, error, SCE_KERNEL_ERROR_WAIT_DELETE); if (mutex->nm.lockThread != -1) __KernelMutexEraseLock(mutex); mutex->waitingThreads.clear(); if (wokeThreads) hleReSchedule("mutex deleted"); return kernelObjects.Destroy(id); } else { DEBUG_LOG(SCEKERNEL, "sceKernelDeleteMutex(%i): invalid mutex", id); return error; } } static bool __KernelLockMutexCheck(PSPMutex *mutex, int count, u32 &error) { if (error) return false; const bool mutexIsRecursive = (mutex->nm.attr & PSP_MUTEX_ATTR_ALLOW_RECURSIVE) != 0; if (count <= 0) error = SCE_KERNEL_ERROR_ILLEGAL_COUNT; else if (count > 1 && !mutexIsRecursive) error = SCE_KERNEL_ERROR_ILLEGAL_COUNT; // Two positive ints will always overflow to negative. else if (count + mutex->nm.lockLevel < 0) error = PSP_MUTEX_ERROR_LOCK_OVERFLOW; // Only a recursive mutex can re-lock. else if (mutex->nm.lockThread == __KernelGetCurThread()) { if (mutexIsRecursive) return true; error = PSP_MUTEX_ERROR_ALREADY_LOCKED; } // Otherwise it would lock or wait. else if (mutex->nm.lockLevel == 0) return true; return false; } static bool __KernelLockMutex(PSPMutex *mutex, int count, u32 &error) { if (!__KernelLockMutexCheck(mutex, count, error)) return false; if (mutex->nm.lockLevel == 0) { __KernelMutexAcquireLock(mutex, count); // Nobody had it locked - no need to block return true; } if (mutex->nm.lockThread == __KernelGetCurThread()) { // __KernelLockMutexCheck() would've returned an error, so this must be recursive. mutex->nm.lockLevel += count; return true; } return false; } static bool __KernelUnlockMutex(PSPMutex *mutex, u32 &error) { __KernelMutexEraseLock(mutex); bool wokeThreads = false; std::vector::iterator iter; while (!wokeThreads && !mutex->waitingThreads.empty()) { if ((mutex->nm.attr & PSP_MUTEX_ATTR_PRIORITY) != 0) iter = __KernelMutexFindPriority(mutex->waitingThreads); else iter = mutex->waitingThreads.begin(); wokeThreads |= __KernelUnlockMutexForThread(mutex, *iter, error, 0); mutex->waitingThreads.erase(iter); } if (!wokeThreads) mutex->nm.lockThread = -1; return wokeThreads; } void __KernelMutexTimeout(u64 userdata, int cyclesLate) { SceUID threadID = (SceUID)userdata; HLEKernel::WaitExecTimeout(threadID); } void __KernelMutexThreadEnd(SceUID threadID) { u32 error; // If it was waiting on the mutex, it should finish now. SceUID waitingMutexID = __KernelGetWaitID(threadID, WAITTYPE_MUTEX, error); if (waitingMutexID) { PSPMutex *mutex = kernelObjects.Get(waitingMutexID, error); if (mutex) HLEKernel::RemoveWaitingThread(mutex->waitingThreads, threadID); } // Unlock all mutexes the thread had locked. std::pair locked = mutexHeldLocks.equal_range(threadID); for (MutexMap::iterator iter = locked.first; iter != locked.second; ) { // Need to increment early so erase() doesn't invalidate. SceUID mutexID = (*iter++).second; PSPMutex *mutex = kernelObjects.Get(mutexID, error); if (mutex) { mutex->nm.lockLevel = 0; __KernelUnlockMutex(mutex, error); } } } static void __KernelWaitMutex(PSPMutex *mutex, u32 timeoutPtr) { if (timeoutPtr == 0 || mutexWaitTimer == -1) return; int micro = (int) Memory::Read_U32(timeoutPtr); // This happens to be how the hardware seems to time things. if (micro <= 3) micro = 25; else if (micro <= 249) micro = 250; // This should call __KernelMutexTimeout() later, unless we cancel it. CoreTiming::ScheduleEvent(usToCycles(micro), mutexWaitTimer, __KernelGetCurThread()); } int sceKernelCancelMutex(SceUID uid, int count, u32 numWaitThreadsPtr) { u32 error; PSPMutex *mutex = kernelObjects.Get(uid, error); if (mutex) { bool lockable = count <= 0 || __KernelLockMutexCheck(mutex, count, error); if (!lockable) { // May still be okay. As long as the count/etc. are valid. if (error != 0 && error != PSP_MUTEX_ERROR_LOCK_OVERFLOW && error != PSP_MUTEX_ERROR_ALREADY_LOCKED) { DEBUG_LOG(SCEKERNEL, "sceKernelCancelMutex(%i, %d, %08x): invalid count", uid, count, numWaitThreadsPtr); return error; } } DEBUG_LOG(SCEKERNEL, "sceKernelCancelMutex(%i, %d, %08x)", uid, count, numWaitThreadsPtr); // Remove threads no longer waiting on this first (so the numWaitThreads value is correct.) HLEKernel::CleanupWaitingThreads(WAITTYPE_MUTEX, uid, mutex->waitingThreads); if (Memory::IsValidAddress(numWaitThreadsPtr)) Memory::Write_U32((u32)mutex->waitingThreads.size(), numWaitThreadsPtr); bool wokeThreads = false; for (auto iter = mutex->waitingThreads.begin(), end = mutex->waitingThreads.end(); iter != end; ++iter) wokeThreads |= __KernelUnlockMutexForThread(mutex, *iter, error, SCE_KERNEL_ERROR_WAIT_CANCEL); if (mutex->nm.lockThread != -1) __KernelMutexEraseLock(mutex); mutex->waitingThreads.clear(); if (count <= 0) { mutex->nm.lockLevel = 0; mutex->nm.lockThread = -1; } else __KernelMutexAcquireLock(mutex, count); if (wokeThreads) hleReSchedule("mutex canceled"); return 0; } else { DEBUG_LOG(SCEKERNEL, "sceKernelCancelMutex(%i, %d, %08x)", uid, count, numWaitThreadsPtr); return error; } } // int sceKernelLockMutex(SceUID id, int count, int *timeout) int sceKernelLockMutex(SceUID id, int count, u32 timeoutPtr) { DEBUG_LOG(SCEKERNEL, "sceKernelLockMutex(%i, %i, %08x)", id, count, timeoutPtr); u32 error; PSPMutex *mutex = kernelObjects.Get(id, error); if (__KernelLockMutex(mutex, count, error)) return 0; else if (error) return error; else { SceUID threadID = __KernelGetCurThread(); // May be in a tight loop timing out (where we don't remove from waitingThreads yet), don't want to add duplicates. if (std::find(mutex->waitingThreads.begin(), mutex->waitingThreads.end(), threadID) == mutex->waitingThreads.end()) mutex->waitingThreads.push_back(threadID); __KernelWaitMutex(mutex, timeoutPtr); __KernelWaitCurThread(WAITTYPE_MUTEX, id, count, timeoutPtr, false, "mutex waited"); // Return value will be overwritten by wait. return 0; } } // int sceKernelLockMutexCB(SceUID id, int count, int *timeout) int sceKernelLockMutexCB(SceUID id, int count, u32 timeoutPtr) { DEBUG_LOG(SCEKERNEL, "sceKernelLockMutexCB(%i, %i, %08x)", id, count, timeoutPtr); u32 error; PSPMutex *mutex = kernelObjects.Get(id, error); if (!__KernelLockMutexCheck(mutex, count, error)) { if (error) return error; SceUID threadID = __KernelGetCurThread(); // May be in a tight loop timing out (where we don't remove from waitingThreads yet), don't want to add duplicates. if (std::find(mutex->waitingThreads.begin(), mutex->waitingThreads.end(), threadID) == mutex->waitingThreads.end()) mutex->waitingThreads.push_back(threadID); __KernelWaitMutex(mutex, timeoutPtr); __KernelWaitCurThread(WAITTYPE_MUTEX, id, count, timeoutPtr, true, "mutex waited"); // Return value will be overwritten by wait. return 0; } else { if (__KernelCurHasReadyCallbacks()) { // Might actually end up having to wait, so set the timeout. __KernelWaitMutex(mutex, timeoutPtr); __KernelWaitCallbacksCurThread(WAITTYPE_MUTEX, id, count, timeoutPtr); // Return value will be written to callback's v0, but... that's probably fine? } else __KernelLockMutex(mutex, count, error); return 0; } } // int sceKernelTryLockMutex(SceUID id, int count) int sceKernelTryLockMutex(SceUID id, int count) { DEBUG_LOG(SCEKERNEL, "sceKernelTryLockMutex(%i, %i)", id, count); u32 error; PSPMutex *mutex = kernelObjects.Get(id, error); if (__KernelLockMutex(mutex, count, error)) return 0; else if (error) return error; else return PSP_MUTEX_ERROR_TRYLOCK_FAILED; } // int sceKernelUnlockMutex(SceUID id, int count) int sceKernelUnlockMutex(SceUID id, int count) { DEBUG_LOG(SCEKERNEL, "sceKernelUnlockMutex(%i, %i)", id, count); u32 error; PSPMutex *mutex = kernelObjects.Get(id, error); if (error) return error; if (count <= 0) return SCE_KERNEL_ERROR_ILLEGAL_COUNT; if ((mutex->nm.attr & PSP_MUTEX_ATTR_ALLOW_RECURSIVE) == 0 && count > 1) return SCE_KERNEL_ERROR_ILLEGAL_COUNT; if (mutex->nm.lockLevel == 0 || mutex->nm.lockThread != __KernelGetCurThread()) return PSP_MUTEX_ERROR_NOT_LOCKED; if (mutex->nm.lockLevel < count) return PSP_MUTEX_ERROR_UNLOCK_UNDERFLOW; mutex->nm.lockLevel -= count; if (mutex->nm.lockLevel == 0) { if (__KernelUnlockMutex(mutex, error)) hleReSchedule("mutex unlocked"); } return 0; } int sceKernelReferMutexStatus(SceUID id, u32 infoAddr) { u32 error; PSPMutex *m = kernelObjects.Get(id, error); if (!m) { ERROR_LOG(SCEKERNEL, "sceKernelReferMutexStatus(%i, %08x): invalid mutex id", id, infoAddr); return error; } DEBUG_LOG(SCEKERNEL, "sceKernelReferMutexStatus(%08x, %08x)", id, infoAddr); // Should we crash the thread somehow? if (!Memory::IsValidAddress(infoAddr)) return -1; // Don't write if the size is 0. Anything else is A-OK, though, apparently. if (Memory::Read_U32(infoAddr) != 0) { HLEKernel::CleanupWaitingThreads(WAITTYPE_MUTEX, id, m->waitingThreads); m->nm.numWaitThreads = (int) m->waitingThreads.size(); Memory::WriteStruct(infoAddr, &m->nm); } return 0; } int sceKernelCreateLwMutex(u32 workareaPtr, const char *name, u32 attr, int initialCount, u32 optionsPtr) { if (!name) { WARN_LOG_REPORT(SCEKERNEL, "%08x=sceKernelCreateLwMutex(): invalid name", SCE_KERNEL_ERROR_ERROR); return SCE_KERNEL_ERROR_ERROR; } if (attr >= 0x400) { WARN_LOG_REPORT(SCEKERNEL, "%08x=sceKernelCreateLwMutex(): invalid attr parameter: %08x", SCE_KERNEL_ERROR_ILLEGAL_ATTR, attr); return SCE_KERNEL_ERROR_ILLEGAL_ATTR; } if (initialCount < 0) return SCE_KERNEL_ERROR_ILLEGAL_COUNT; if ((attr & PSP_MUTEX_ATTR_ALLOW_RECURSIVE) == 0 && initialCount > 1) return SCE_KERNEL_ERROR_ILLEGAL_COUNT; LwMutex *mutex = new LwMutex(); SceUID id = kernelObjects.Create(mutex); mutex->nm.size = sizeof(mutex->nm); strncpy(mutex->nm.name, name, KERNELOBJECT_MAX_NAME_LENGTH); mutex->nm.name[KERNELOBJECT_MAX_NAME_LENGTH] = 0; mutex->nm.attr = attr; mutex->nm.uid = id; mutex->nm.workarea = workareaPtr; mutex->nm.initialCount = initialCount; auto workarea = PSPPointer::Create(workareaPtr); workarea->init(); workarea->lockLevel = initialCount; if (initialCount == 0) workarea->lockThread = 0; else workarea->lockThread = __KernelGetCurThread(); workarea->attr = attr; workarea->uid = id; DEBUG_LOG(SCEKERNEL, "sceKernelCreateLwMutex(%08x, %s, %08x, %d, %08x)", workareaPtr, name, attr, initialCount, optionsPtr); if (optionsPtr != 0) { u32 size = Memory::Read_U32(optionsPtr); if (size > 4) WARN_LOG_REPORT(SCEKERNEL, "sceKernelCreateLwMutex(%s) unsupported options parameter, size = %d", name, size); } if ((attr & ~PSP_MUTEX_ATTR_KNOWN) != 0) WARN_LOG_REPORT(SCEKERNEL, "sceKernelCreateLwMutex(%s) unsupported attr parameter: %08x", name, attr); return 0; } template bool __KernelUnlockLwMutexForThread(LwMutex *mutex, T workarea, SceUID threadID, u32 &error, int result) { if (!HLEKernel::VerifyWait(threadID, WAITTYPE_LWMUTEX, mutex->GetUID())) return false; // If result is an error code, we're just letting it go. if (result == 0) { workarea->lockLevel = (int) __KernelGetWaitValue(threadID, error); workarea->lockThread = threadID; } u32 timeoutPtr = __KernelGetWaitTimeoutPtr(threadID, error); if (timeoutPtr != 0 && lwMutexWaitTimer != -1) { // Remove any event for this thread. s64 cyclesLeft = CoreTiming::UnscheduleEvent(lwMutexWaitTimer, threadID); Memory::Write_U32((u32) cyclesToUs(cyclesLeft), timeoutPtr); } __KernelResumeThreadFromWait(threadID, result); return true; } int sceKernelDeleteLwMutex(u32 workareaPtr) { DEBUG_LOG(SCEKERNEL, "sceKernelDeleteLwMutex(%08x)", workareaPtr); if (!workareaPtr || !Memory::IsValidAddress(workareaPtr)) return SCE_KERNEL_ERROR_ILLEGAL_ADDR; auto workarea = PSPPointer::Create(workareaPtr); u32 error; LwMutex *mutex = kernelObjects.Get(workarea->uid, error); if (mutex) { bool wokeThreads = false; std::vector::iterator iter, end; for (iter = mutex->waitingThreads.begin(), end = mutex->waitingThreads.end(); iter != end; ++iter) wokeThreads |= __KernelUnlockLwMutexForThread(mutex, workarea, *iter, error, SCE_KERNEL_ERROR_WAIT_DELETE); mutex->waitingThreads.clear(); workarea->clear(); if (wokeThreads) hleReSchedule("lwmutex deleted"); return kernelObjects.Destroy(mutex->GetUID()); } else return error; } static bool __KernelLockLwMutex(NativeLwMutexWorkarea *workarea, int count, u32 &error) { if (!error) { if (count <= 0) error = SCE_KERNEL_ERROR_ILLEGAL_COUNT; else if (count > 1 && !(workarea->attr & PSP_MUTEX_ATTR_ALLOW_RECURSIVE)) error = SCE_KERNEL_ERROR_ILLEGAL_COUNT; // Two positive ints will always overflow to negative. else if (count + workarea->lockLevel < 0) error = PSP_LWMUTEX_ERROR_LOCK_OVERFLOW; else if (workarea->uid == -1) error = PSP_LWMUTEX_ERROR_NO_SUCH_LWMUTEX; } if (error) return false; if (workarea->lockLevel == 0) { if (workarea->lockThread != 0) { // Validate that it actually exists so we can return an error if not. kernelObjects.Get(workarea->uid, error); if (error) return false; } workarea->lockLevel = count; workarea->lockThread = __KernelGetCurThread(); return true; } if (workarea->lockThread == __KernelGetCurThread()) { // Recursive mutex, let's just increase the lock count and keep going if (workarea->attr & PSP_MUTEX_ATTR_ALLOW_RECURSIVE) { workarea->lockLevel += count; return true; } else { error = PSP_LWMUTEX_ERROR_ALREADY_LOCKED; return false; } } return false; } template bool __KernelUnlockLwMutex(T workarea, u32 &error) { LwMutex *mutex = kernelObjects.Get(workarea->uid, error); if (error) { workarea->lockThread = 0; return false; } bool wokeThreads = false; std::vector::iterator iter; while (!wokeThreads && !mutex->waitingThreads.empty()) { if ((mutex->nm.attr & PSP_MUTEX_ATTR_PRIORITY) != 0) iter = __KernelMutexFindPriority(mutex->waitingThreads); else iter = mutex->waitingThreads.begin(); wokeThreads |= __KernelUnlockLwMutexForThread(mutex, workarea, *iter, error, 0); mutex->waitingThreads.erase(iter); } if (!wokeThreads) workarea->lockThread = 0; return wokeThreads; } void __KernelLwMutexTimeout(u64 userdata, int cyclesLate) { SceUID threadID = (SceUID)userdata; HLEKernel::WaitExecTimeout(threadID); } static void __KernelWaitLwMutex(LwMutex *mutex, u32 timeoutPtr) { if (timeoutPtr == 0 || lwMutexWaitTimer == -1) return; int micro = (int) Memory::Read_U32(timeoutPtr); // This happens to be how the hardware seems to time things. if (micro <= 3) micro = 25; else if (micro <= 249) micro = 250; // This should call __KernelLwMutexTimeout() later, unless we cancel it. CoreTiming::ScheduleEvent(usToCycles(micro), lwMutexWaitTimer, __KernelGetCurThread()); } static bool __KernelUnlockLwMutexForThreadCheck(LwMutex *mutex, SceUID threadID, u32 &error, int result, bool &wokeThreads) { if (mutex->nm.lockThread == -1 && __KernelUnlockLwMutexForThread(mutex, mutex->nm.workarea, threadID, error, 0)) return true; return false; } void __KernelLwMutexBeginCallback(SceUID threadID, SceUID prevCallbackId) { auto result = HLEKernel::WaitBeginCallback(threadID, prevCallbackId, lwMutexWaitTimer); if (result == HLEKernel::WAIT_CB_SUCCESS) DEBUG_LOG(SCEKERNEL, "sceKernelLockLwMutexCB: Suspending lock wait for callback"); else WARN_LOG_REPORT(SCEKERNEL, "sceKernelLockLwMutexCB: beginning callback with bad wait id?"); } void __KernelLwMutexEndCallback(SceUID threadID, SceUID prevCallbackId) { auto result = HLEKernel::WaitEndCallback(threadID, prevCallbackId, lwMutexWaitTimer, __KernelUnlockLwMutexForThreadCheck); if (result == HLEKernel::WAIT_CB_RESUMED_WAIT) DEBUG_LOG(SCEKERNEL, "sceKernelLockLwMutexCB: Resuming lock wait for callback"); } int sceKernelTryLockLwMutex(u32 workareaPtr, int count) { DEBUG_LOG(SCEKERNEL, "sceKernelTryLockLwMutex(%08x, %i)", workareaPtr, count); if (!Memory::IsValidAddress(workareaPtr)) { ERROR_LOG(SCEKERNEL, "Bad workarea pointer for LwMutex"); return SCE_KERNEL_ERROR_ACCESS_ERROR; } auto workarea = PSPPointer::Create(workareaPtr); u32 error = 0; if (__KernelLockLwMutex(workarea, count, error)) return 0; // Unlike sceKernelTryLockLwMutex_600, this always returns the same error. else if (error) return PSP_MUTEX_ERROR_TRYLOCK_FAILED; else return PSP_MUTEX_ERROR_TRYLOCK_FAILED; } int sceKernelTryLockLwMutex_600(u32 workareaPtr, int count) { DEBUG_LOG(SCEKERNEL, "sceKernelTryLockLwMutex_600(%08x, %i)", workareaPtr, count); if (!Memory::IsValidAddress(workareaPtr)) { ERROR_LOG(SCEKERNEL, "Bad workarea pointer for LwMutex"); return SCE_KERNEL_ERROR_ACCESS_ERROR; } auto workarea = PSPPointer::Create(workareaPtr); u32 error = 0; if (__KernelLockLwMutex(workarea, count, error)) return 0; else if (error) return error; else return PSP_LWMUTEX_ERROR_TRYLOCK_FAILED; } int sceKernelLockLwMutex(u32 workareaPtr, int count, u32 timeoutPtr) { VERBOSE_LOG(SCEKERNEL, "sceKernelLockLwMutex(%08x, %i, %08x)", workareaPtr, count, timeoutPtr); if (!Memory::IsValidAddress(workareaPtr)) { ERROR_LOG(SCEKERNEL, "Bad workarea pointer for LwMutex"); return SCE_KERNEL_ERROR_ACCESS_ERROR; } auto workarea = PSPPointer::Create(workareaPtr); u32 error = 0; if (__KernelLockLwMutex(workarea, count, error)) return 0; else if (error) return error; else { LwMutex *mutex = kernelObjects.Get(workarea->uid, error); if (mutex) { SceUID threadID = __KernelGetCurThread(); // May be in a tight loop timing out (where we don't remove from waitingThreads yet), don't want to add duplicates. if (std::find(mutex->waitingThreads.begin(), mutex->waitingThreads.end(), threadID) == mutex->waitingThreads.end()) mutex->waitingThreads.push_back(threadID); __KernelWaitLwMutex(mutex, timeoutPtr); __KernelWaitCurThread(WAITTYPE_LWMUTEX, workarea->uid, count, timeoutPtr, false, "lwmutex waited"); // Return value will be overwritten by wait. return 0; } else return error; } } int sceKernelLockLwMutexCB(u32 workareaPtr, int count, u32 timeoutPtr) { VERBOSE_LOG(SCEKERNEL, "sceKernelLockLwMutexCB(%08x, %i, %08x)", workareaPtr, count, timeoutPtr); if (!Memory::IsValidAddress(workareaPtr)) { ERROR_LOG(SCEKERNEL, "Bad workarea pointer for LwMutex"); return SCE_KERNEL_ERROR_ACCESS_ERROR; } auto workarea = PSPPointer::Create(workareaPtr); u32 error = 0; if (__KernelLockLwMutex(workarea, count, error)) return 0; else if (error) return error; else { LwMutex *mutex = kernelObjects.Get(workarea->uid, error); if (mutex) { SceUID threadID = __KernelGetCurThread(); // May be in a tight loop timing out (where we don't remove from waitingThreads yet), don't want to add duplicates. if (std::find(mutex->waitingThreads.begin(), mutex->waitingThreads.end(), threadID) == mutex->waitingThreads.end()) mutex->waitingThreads.push_back(threadID); __KernelWaitLwMutex(mutex, timeoutPtr); __KernelWaitCurThread(WAITTYPE_LWMUTEX, workarea->uid, count, timeoutPtr, true, "lwmutex cb waited"); // Return value will be overwritten by wait. return 0; } else return error; } } int sceKernelUnlockLwMutex(u32 workareaPtr, int count) { VERBOSE_LOG(SCEKERNEL, "sceKernelUnlockLwMutex(%08x, %i)", workareaPtr, count); if (!Memory::IsValidAddress(workareaPtr)) { ERROR_LOG(SCEKERNEL, "Bad workarea pointer for LwMutex"); return SCE_KERNEL_ERROR_ACCESS_ERROR; } auto workarea = PSPPointer::Create(workareaPtr); if (workarea->uid == -1) return PSP_LWMUTEX_ERROR_NO_SUCH_LWMUTEX; else if (count <= 0) return SCE_KERNEL_ERROR_ILLEGAL_COUNT; else if ((workarea->attr & PSP_MUTEX_ATTR_ALLOW_RECURSIVE) == 0 && count > 1) return SCE_KERNEL_ERROR_ILLEGAL_COUNT; else if (workarea->lockLevel == 0 || workarea->lockThread != __KernelGetCurThread()) return PSP_LWMUTEX_ERROR_NOT_LOCKED; else if (workarea->lockLevel < count) return PSP_LWMUTEX_ERROR_UNLOCK_UNDERFLOW; workarea->lockLevel -= count; if (workarea->lockLevel == 0) { u32 error; if (__KernelUnlockLwMutex(workarea, error)) hleReSchedule("lwmutex unlocked"); } return 0; } static int __KernelReferLwMutexStatus(SceUID uid, u32 infoPtr) { u32 error; LwMutex *m = kernelObjects.Get(uid, error); if (!m) return error; // Should we crash the thread somehow? if (!Memory::IsValidAddress(infoPtr)) return -1; if (Memory::Read_U32(infoPtr) != 0) { auto workarea = m->nm.workarea; HLEKernel::CleanupWaitingThreads(WAITTYPE_LWMUTEX, uid, m->waitingThreads); // Refresh and write m->nm.currentCount = workarea->lockLevel; m->nm.lockThread = workarea->lockThread == 0 ? -1 : workarea->lockThread; m->nm.numWaitThreads = (int) m->waitingThreads.size(); Memory::WriteStruct(infoPtr, &m->nm); } return 0; } int sceKernelReferLwMutexStatusByID(SceUID uid, u32 infoPtr) { int error = __KernelReferLwMutexStatus(uid, infoPtr); if (error >= 0) { DEBUG_LOG(SCEKERNEL, "sceKernelReferLwMutexStatusByID(%08x, %08x)", uid, infoPtr); return error; } else { ERROR_LOG(SCEKERNEL, "%08x=sceKernelReferLwMutexStatusByID(%08x, %08x)", error, uid, infoPtr); return error; } } int sceKernelReferLwMutexStatus(u32 workareaPtr, u32 infoPtr) { if (!Memory::IsValidAddress(workareaPtr)) { ERROR_LOG(SCEKERNEL, "Bad workarea pointer for LwMutex"); return SCE_KERNEL_ERROR_ACCESS_ERROR; } auto workarea = PSPPointer::Create(workareaPtr); int error = __KernelReferLwMutexStatus(workarea->uid, infoPtr); if (error >= 0) { DEBUG_LOG(SCEKERNEL, "sceKernelReferLwMutexStatus(%08x, %08x)", workareaPtr, infoPtr); return error; } else { ERROR_LOG(SCEKERNEL, "%08x=sceKernelReferLwMutexStatus(%08x, %08x)", error, workareaPtr, infoPtr); return error; } }