// Copyright (c) 2012- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #include #include #include "math/math_util.h" #include "Common.h" #include "Common/ChunkFile.h" #include "Core/ConfigValues.h" #include "Core/MIPS/MIPS.h" #include "Core/MIPS/MIPSInt.h" #include "Core/MIPS/MIPSTables.h" #include "Core/MIPS/MIPSDebugInterface.h" #include "Core/MIPS/MIPSVFPUUtils.h" #include "Core/MIPS/IR/IRJit.h" #include "Core/Reporting.h" #include "Core/System.h" #include "Core/HLE/sceDisplay.h" #include "Core/MIPS/JitCommon/JitCommon.h" #include "Core/CoreTiming.h" MIPSState mipsr4k; MIPSState *currentMIPS = &mipsr4k; MIPSDebugInterface debugr4k(&mipsr4k); MIPSDebugInterface *currentDebugMIPS = &debugr4k; u8 voffset[128]; u8 fromvoffset[128]; #ifndef M_LOG2E #define M_E 2.71828182845904523536f #define M_LOG2E 1.44269504088896340736f #define M_LOG10E 0.434294481903251827651f #define M_LN2 0.693147180559945309417f #define M_LN10 2.30258509299404568402f #undef M_PI #define M_PI 3.14159265358979323846f #ifndef M_PI_2 #define M_PI_2 1.57079632679489661923f #endif #define M_PI_4 0.785398163397448309616f #define M_1_PI 0.318309886183790671538f #define M_2_PI 0.636619772367581343076f #define M_2_SQRTPI 1.12837916709551257390f #define M_SQRT2 1.41421356237309504880f #define M_SQRT1_2 0.707106781186547524401f #endif const float cst_constants[32] = { 0, std::numeric_limits::max(), // all these are verified on real PSP sqrtf(2.0f), sqrtf(0.5f), 2.0f/sqrtf((float)M_PI), 2.0f/(float)M_PI, 1.0f/(float)M_PI, (float)M_PI/4, (float)M_PI/2, (float)M_PI, (float)M_E, (float)M_LOG2E, (float)M_LOG10E, (float)M_LN2, (float)M_LN10, 2*(float)M_PI, (float)M_PI/6, log10f(2.0f), logf(10.0f)/logf(2.0f), sqrtf(3.0f)/2.0f, }; MIPSState::MIPSState() { MIPSComp::jit = 0; // Initialize vorder // This reordering of the VFPU registers in RAM means that instead of being like this: // 0x00 0x20 0x40 0x60 -> "columns", the most common direction // 0x01 0x21 0x41 0x61 // 0x02 0x22 0x42 0x62 // 0x03 0x23 0x43 0x63 // 0x04 0x24 0x44 0x64 // 0x06 0x26 0x45 0x65 // .... // the VPU registers are effectively organized like this: // 0x00 0x01 0x02 0x03 // 0x04 0x05 0x06 0x07 // 0x08 0x09 0x0a 0x0b // .... // This is because the original indices look like this: // 0XXMMMYY where M is the matrix number. // We will now map 0YYMMMXX to 0MMMXXYY. // Advantages: // * Columns can be flushed and reloaded faster "at once" // * 4x4 Matrices are contiguous in RAM, making them, too, fast-loadable in NEON // Disadvantages: // * Extra indirection, can be confusing and slower (interpreter only) // * Flushing and reloading row registers is now slower int i = 0; for (int m = 0; m < 8; m++) { for (int y = 0; y < 4; y++) { for (int x = 0; x < 4; x++) { voffset[m * 4 + x * 32 + y] = i++; } } } // And the inverse. for (int i = 0; i < 128; i++) { fromvoffset[voffset[i]] = i; } // Sanity check that things that should be ordered are ordered. static const u8 firstThirtyTwo[] = { 0x0, 0x20, 0x40, 0x60, 0x1, 0x21, 0x41, 0x61, 0x2, 0x22, 0x42, 0x62, 0x3, 0x23, 0x43, 0x63, 0x4, 0x24, 0x44, 0x64, 0x5, 0x25, 0x45, 0x65, 0x6, 0x26, 0x46, 0x66, 0x7, 0x27, 0x47, 0x67, }; for (int i = 0; i < (int)ARRAY_SIZE(firstThirtyTwo); i++) { if (voffset[firstThirtyTwo[i]] != i) { ERROR_LOG(CPU, "Wrong voffset order! %i: %i should have been %i", firstThirtyTwo[i], voffset[firstThirtyTwo[i]], i); } } } MIPSState::~MIPSState() { Shutdown(); } void MIPSState::Shutdown() { if (MIPSComp::jit) { delete MIPSComp::jit; MIPSComp::jit = 0; } } void MIPSState::Reset() { Shutdown(); Init(); } void MIPSState::Init() { memset(r, 0, sizeof(r)); memset(f, 0, sizeof(f)); memset(v, 0, sizeof(v)); memset(vfpuCtrl, 0, sizeof(vfpuCtrl)); vfpuCtrl[VFPU_CTRL_SPREFIX] = 0xe4; //passthru vfpuCtrl[VFPU_CTRL_TPREFIX] = 0xe4; //passthru vfpuCtrl[VFPU_CTRL_DPREFIX] = 0; vfpuCtrl[VFPU_CTRL_CC] = 0x3f; vfpuCtrl[VFPU_CTRL_INF4] = 0; vfpuCtrl[VFPU_CTRL_REV] = 0x7772ceab; vfpuCtrl[VFPU_CTRL_RCX0] = 0x3f800001; vfpuCtrl[VFPU_CTRL_RCX1] = 0x3f800002; vfpuCtrl[VFPU_CTRL_RCX2] = 0x3f800004; vfpuCtrl[VFPU_CTRL_RCX3] = 0x3f800008; vfpuCtrl[VFPU_CTRL_RCX4] = 0x3f800000; vfpuCtrl[VFPU_CTRL_RCX5] = 0x3f800000; vfpuCtrl[VFPU_CTRL_RCX6] = 0x3f800000; vfpuCtrl[VFPU_CTRL_RCX7] = 0x3f800000; pc = 0; hi = 0; lo = 0; fpcond = 0; fcr31 = 0; debugCount = 0; currentMIPS = this; inDelaySlot = false; llBit = 0; nextPC = 0; downcount = 0; // Initialize the VFPU random number generator with .. something? rng.Init(0x1337); if (PSP_CoreParameter().cpuCore == CPUCore::JIT) { MIPSComp::jit = MIPSComp::CreateNativeJit(this); } else if (PSP_CoreParameter().cpuCore == CPUCore::IR_JIT) { MIPSComp::jit = new MIPSComp::IRJit(this); } else { MIPSComp::jit = nullptr; } } bool MIPSState::HasDefaultPrefix() const { return vfpuCtrl[VFPU_CTRL_SPREFIX] == 0xe4 && vfpuCtrl[VFPU_CTRL_TPREFIX] == 0xe4 && vfpuCtrl[VFPU_CTRL_DPREFIX] == 0; } void MIPSState::UpdateCore(CPUCore desired) { if (PSP_CoreParameter().cpuCore == desired) { return; } PSP_CoreParameter().cpuCore = desired; switch (PSP_CoreParameter().cpuCore) { case CPUCore::JIT: INFO_LOG(CPU, "Switching to JIT"); if (MIPSComp::jit) { delete MIPSComp::jit; } MIPSComp::jit = MIPSComp::CreateNativeJit(this); break; case CPUCore::IR_JIT: INFO_LOG(CPU, "Switching to IRJIT"); if (MIPSComp::jit) { delete MIPSComp::jit; } MIPSComp::jit = new MIPSComp::IRJit(this); break; case CPUCore::INTERPRETER: INFO_LOG(CPU, "Switching to interpreter"); delete MIPSComp::jit; MIPSComp::jit = 0; break; } } void MIPSState::DoState(PointerWrap &p) { auto s = p.Section("MIPSState", 1, 3); if (!s) return; // Reset the jit if we're loading. if (p.mode == p.MODE_READ) Reset(); if (MIPSComp::jit) MIPSComp::jit->DoState(p); else MIPSComp::DoDummyJitState(p); p.DoArray(r, sizeof(r) / sizeof(r[0])); p.DoArray(f, sizeof(f) / sizeof(f[0])); if (s <= 2) { float vtemp[128]; p.DoArray(vtemp, sizeof(v) / sizeof(v[0])); for (int i = 0; i < 128; i++) { v[voffset[i]] = vtemp[i]; } } else { p.DoArray(v, sizeof(v) / sizeof(v[0])); } p.DoArray(vfpuCtrl, sizeof(vfpuCtrl) / sizeof(vfpuCtrl[0])); p.Do(pc); p.Do(nextPC); p.Do(downcount); // Reversed, but we can just leave it that way. p.Do(hi); p.Do(lo); p.Do(fpcond); if (s <= 1) { u32 fcr0_unused = 0; p.Do(fcr0_unused); } p.Do(fcr31); p.Do(rng.m_w); p.Do(rng.m_z); p.Do(inDelaySlot); p.Do(llBit); p.Do(debugCount); if (p.mode == p.MODE_READ && MIPSComp::jit) { // Now that we've loaded fcr31, update any jit state associated. MIPSComp::jit->UpdateFCR31(); } } void MIPSState::SingleStep() { int cycles = MIPS_SingleStep(); currentMIPS->downcount -= cycles; CoreTiming::Advance(); } // returns 1 if reached ticks limit int MIPSState::RunLoopUntil(u64 globalTicks) { switch (PSP_CoreParameter().cpuCore) { case CPUCore::JIT: case CPUCore::IR_JIT: MIPSComp::jit->RunLoopUntil(globalTicks); break; case CPUCore::INTERPRETER: return MIPSInterpret_RunUntil(globalTicks); } return 1; } void MIPSState::InvalidateICache(u32 address, int length) { // Only really applies to jit. if (MIPSComp::jit) MIPSComp::jit->InvalidateCacheAt(address, length); } void MIPSState::ClearJitCache() { if (MIPSComp::jit) MIPSComp::jit->ClearCache(); }