// Copyright (C) 2003 Dolphin Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official SVN repository and contact information can be found at // http://code.google.com/p/dolphin-emu/ #pragma once // Extremely simple serialization framework. // Currently mis-named, a native ChunkFile is something different (a RIFF file) // (mis)-features: // + Super fast // + Very simple // + Same code is used for serialization and deserializaition (in most cases) // + Sections can be versioned for backwards/forwards compatibility // - Serialization code for anything complex has to be manually written. #include #ifdef IOS #include namespace std { using std::tr1::unordered_map; using std::tr1::unordered_multimap; } #else #include #endif #include #include #include #if defined(IOS) || defined(MACGNUSTD) #include #else #include #endif #include "Common.h" #include "FileUtil.h" #include "../ext/snappy/snappy-c.h" #if defined(IOS) || defined(MACGNUSTD) namespace std { using tr1::is_pointer; } #endif template struct LinkedListItem : public T { LinkedListItem *next; }; class PointerWrap; class PointerWrapSection { public: PointerWrapSection(PointerWrap &p, int ver, const char *title) : p_(p), ver_(ver), title_(title) { } ~PointerWrapSection(); bool operator == (const int &v) const { return ver_ == v; } bool operator != (const int &v) const { return ver_ != v; } bool operator <= (const int &v) const { return ver_ <= v; } bool operator >= (const int &v) const { return ver_ >= v; } bool operator < (const int &v) const { return ver_ < v; } bool operator > (const int &v) const { return ver_ > v; } operator bool() const { return ver_ > 0; } private: PointerWrap &p_; int ver_; const char *title_; }; // Wrapper class class PointerWrap { // This makes it a compile error if you forget to define DoState() on non-POD. // Which also can be a problem, for example struct tm is non-POD on linux, for whatever reason... #ifdef _MSC_VER template::value, bool isPointer = std::is_pointer::value> #else template::value> #endif struct DoHelper { static void DoArray(PointerWrap *p, T *x, int count) { for (int i = 0; i < count; ++i) p->Do(x[i]); } static void Do(PointerWrap *p, T &x) { p->DoClass(x); } }; template struct DoHelper { static void DoArray(PointerWrap *p, T *x, int count) { p->DoVoid((void *)x, sizeof(T) * count); } static void Do(PointerWrap *p, T &x) { p->DoVoid((void *)&x, sizeof(x)); } }; public: enum Mode { MODE_READ = 1, // load MODE_WRITE, // save MODE_MEASURE, // calculate size MODE_VERIFY, // compare }; enum Error { ERROR_NONE = 0, ERROR_WARNING = 1, ERROR_FAILURE = 2, }; u8 **ptr; Mode mode; Error error; public: PointerWrap(u8 **ptr_, Mode mode_) : ptr(ptr_), mode(mode_), error(ERROR_NONE) {} PointerWrap(unsigned char **ptr_, int mode_) : ptr((u8**)ptr_), mode((Mode)mode_), error(ERROR_NONE) {} PointerWrapSection Section(const char *title, int ver); // The returned object can be compared against the version that was loaded. // This can be used to support versions as old as minVer. // Version = 0 means the section was not found. PointerWrapSection Section(const char *title, int minVer, int ver); void SetMode(Mode mode_) {mode = mode_;} Mode GetMode() const {return mode;} u8 **GetPPtr() {return ptr;} void SetError(Error error_); // Same as DoVoid, except doesn't advance pointer if it doesn't match on read. bool ExpectVoid(void *data, int size); void DoVoid(void *data, int size); template void Do(std::map &x) { if (mode == MODE_READ) { for (auto it = x.begin(), end = x.end(); it != end; ++it) { if (it->second != NULL) delete it->second; } } T *dv = NULL; DoMap(x, dv); } template void Do(std::map &x) { T dv = T(); DoMap(x, dv); } template void Do(std::unordered_map &x) { if (mode == MODE_READ) { for (auto it = x.begin(), end = x.end(); it != end; ++it) { if (it->second != NULL) delete it->second; } } T *dv = NULL; DoMap(x, dv); } template void Do(std::unordered_map &x) { T dv = T(); DoMap(x, dv); } template void DoMap(M &x, typename M::mapped_type &default_val) { unsigned int number = (unsigned int)x.size(); Do(number); switch (mode) { case MODE_READ: { x.clear(); while (number > 0) { typename M::key_type first = typename M::key_type(); Do(first); typename M::mapped_type second = default_val; Do(second); x[first] = second; --number; } } break; case MODE_WRITE: case MODE_MEASURE: case MODE_VERIFY: { typename M::iterator itr = x.begin(); while (number > 0) { typename M::key_type first = itr->first; Do(first); Do(itr->second); --number; ++itr; } } break; } } template void Do(std::multimap &x) { if (mode == MODE_READ) { for (auto it = x.begin(), end = x.end(); it != end; ++it) { if (it->second != NULL) delete it->second; } } T *dv = NULL; DoMultimap(x, dv); } template void Do(std::multimap &x) { T dv = T(); DoMultimap(x, dv); } template void Do(std::unordered_multimap &x) { if (mode == MODE_READ) { for (auto it = x.begin(), end = x.end(); it != end; ++it) { if (it->second != NULL) delete it->second; } } T *dv = NULL; DoMultimap(x, dv); } template void Do(std::unordered_multimap &x) { T dv = T(); DoMultimap(x, dv); } template void DoMultimap(M &x, typename M::mapped_type &default_val) { unsigned int number = (unsigned int)x.size(); Do(number); switch (mode) { case MODE_READ: { x.clear(); while (number > 0) { typename M::key_type first = typename M::key_type(); Do(first); typename M::mapped_type second = default_val; Do(second); x.insert(std::make_pair(first, second)); --number; } } break; case MODE_WRITE: case MODE_MEASURE: case MODE_VERIFY: { typename M::iterator itr = x.begin(); while (number > 0) { Do(itr->first); Do(itr->second); --number; ++itr; } } break; } } // Store vectors. template void Do(std::vector &x) { T *dv = NULL; DoVector(x, dv); } template void Do(std::vector &x) { T dv = T(); DoVector(x, dv); } template void Do(std::vector &x, T &default_val) { DoVector(x, default_val); } template void DoVector(std::vector &x, T &default_val) { u32 vec_size = (u32)x.size(); Do(vec_size); x.resize(vec_size, default_val); if (vec_size > 0) DoArray(&x[0], vec_size); } // Store deques. template void Do(std::deque &x) { T *dv = NULL; DoDeque(x, dv); } template void Do(std::deque &x) { T dv = T(); DoDeque(x, dv); } template void DoDeque(std::deque &x, T &default_val) { u32 deq_size = (u32)x.size(); Do(deq_size); x.resize(deq_size, default_val); u32 i; for(i = 0; i < deq_size; i++) Do(x[i]); } // Store STL lists. template void Do(std::list &x) { T *dv = NULL; Do(x, dv); } template void Do(std::list &x) { T dv = T(); DoList(x, dv); } template void Do(std::list &x, T &default_val) { DoList(x, default_val); } template void DoList(std::list &x, T &default_val) { u32 list_size = (u32)x.size(); Do(list_size); x.resize(list_size, default_val); typename std::list::iterator itr, end; for (itr = x.begin(), end = x.end(); itr != end; ++itr) Do(*itr); } // Store STL sets. template void Do(std::set &x) { if (mode == MODE_READ) { for (auto it = x.begin(), end = x.end(); it != end; ++it) { if (*it != NULL) delete *it; } } DoSet(x); } template void Do(std::set &x) { DoSet(x); } template void DoSet(std::set &x) { unsigned int number = (unsigned int)x.size(); Do(number); switch (mode) { case MODE_READ: { x.clear(); while (number-- > 0) { T it = T(); Do(it); x.insert(it); } } break; case MODE_WRITE: case MODE_MEASURE: case MODE_VERIFY: { typename std::set::iterator itr = x.begin(); while (number-- > 0) Do(*itr++); } break; default: ERROR_LOG(COMMON, "Savestate error: invalid mode %d.", mode); } } // Store strings. void Do(std::string &x); void Do(std::wstring &x); void Do(tm &t); template void Do(swap_struct_t &x) { T v = x.swap(); Do(v); x = v; } template void DoClass(T &x) { x.DoState(*this); } template void DoClass(T *&x) { if (mode == MODE_READ) { if (x != NULL) delete x; x = new T(); } x->DoState(*this); } template void DoArray(T *x, int count) { DoHelper::DoArray(this, x, count); } template void Do(T &x) { DoHelper::Do(this, x); } template void DoPointer(T* &x, T*const base) { // pointers can be more than 2^31 apart, but you're using this function wrong if you need that much range s32 offset = x - base; Do(offset); if (mode == MODE_READ) x = base + offset; } template* (*TNew)(), void (*TFree)(LinkedListItem*), void (*TDo)(PointerWrap&, T*)> void DoLinkedList(LinkedListItem*& list_start, LinkedListItem** list_end=0) { LinkedListItem* list_cur = list_start; LinkedListItem* prev = 0; while (true) { u8 shouldExist = (list_cur ? 1 : 0); Do(shouldExist); if (shouldExist == 1) { LinkedListItem* cur = list_cur ? list_cur : TNew(); TDo(*this, (T*)cur); if (!list_cur) { if (mode == MODE_READ) { cur->next = 0; list_cur = cur; if (prev) prev->next = cur; else list_start = cur; } else { TFree(cur); continue; } } } else { if (mode == MODE_READ) { if (prev) prev->next = 0; if (list_end) *list_end = prev; if (list_cur) { if (list_start == list_cur) list_start = 0; do { LinkedListItem* next = list_cur->next; TFree(list_cur); list_cur = next; } while (list_cur); } } break; } prev = list_cur; list_cur = list_cur->next; } } void DoMarker(const char *prevName, u32 arbitraryNumber = 0x42); }; class CChunkFileReader { public: enum Error { ERROR_NONE, ERROR_BAD_FILE, ERROR_BROKEN_STATE, }; // May fail badly if ptr doesn't point to valid data. template static Error LoadPtr(u8 *ptr, T &_class) { PointerWrap p(&ptr, PointerWrap::MODE_READ); _class.DoState(p); if (p.error != p.ERROR_FAILURE) { return ERROR_NONE; } else { return ERROR_BROKEN_STATE; } } template static size_t MeasurePtr(T &_class) { u8 *ptr = 0; PointerWrap p(&ptr, PointerWrap::MODE_MEASURE); _class.DoState(p); return (size_t)ptr; } // Expects ptr to have at least MeasurePtr bytes at ptr. template static Error SavePtr(u8 *ptr, T &_class) { PointerWrap p(&ptr, PointerWrap::MODE_WRITE); _class.DoState(p); if (p.error != p.ERROR_FAILURE) { return ERROR_NONE; } else { return ERROR_BROKEN_STATE; } } // Load file template template static Error Load(const std::string& _rFilename, int _Revision, const char *_VersionString, T& _class, std::string* _failureReason) { *_failureReason = "LoadStateWrongVersion"; u8 *ptr; size_t sz; Error error = LoadFile(_rFilename, _Revision, _VersionString, ptr, sz, _failureReason); if (error == ERROR_NONE) { u8 *buf = ptr; error = LoadPtr(ptr, _class); delete[] buf; } INFO_LOG(COMMON, "ChunkReader: Done loading %s" , _rFilename.c_str()); if (error == ERROR_NONE) { _failureReason->clear(); } return error; } // Save file template template static Error Save(const std::string& _rFilename, int _Revision, const char *_VersionString, T& _class) { // Get data size_t const sz = MeasurePtr(_class); u8 *buffer = new u8[sz]; Error error = SavePtr(buffer, _class); if (error == ERROR_NONE) error = SaveFile(_rFilename, _Revision, _VersionString, buffer, sz); return error; } template static Error Verify(T& _class) { u8 *ptr = 0; // Step 1: Measure the space required. PointerWrap p(&ptr, PointerWrap::MODE_MEASURE); _class.DoState(p); size_t const sz = (size_t)ptr; std::vector buffer(sz); // Step 2: Dump the state. ptr = &buffer[0]; p.SetMode(PointerWrap::MODE_WRITE); _class.DoState(p); // Step 3: Verify the state. ptr = &buffer[0]; p.SetMode(PointerWrap::MODE_VERIFY); _class.DoState(p); return ERROR_NONE; } private: static CChunkFileReader::Error LoadFile(const std::string& _rFilename, int _Revision, const char *_VersionString, u8 *&buffer, size_t &sz, std::string *_failureReason); static CChunkFileReader::Error SaveFile(const std::string& _rFilename, int _Revision, const char *_VersionString, u8 *buffer, size_t sz); struct SChunkHeader { int Revision; int Compress; u32 ExpectedSize; u32 UncompressedSize; char GitVersion[32]; }; };