// Copyright (c) 2013- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #include "../GPUState.h" #include "Lighting.h" namespace Lighting { void Process(VertexData& vertex) { Vec3 mec = Vec3(gstate.getMaterialEmissiveR(), gstate.getMaterialEmissiveG(), gstate.getMaterialEmissiveB()); Vec3 mac = (gstate.materialupdate&1) ? vertex.color0.rgb() : Vec3(gstate.getMaterialAmbientR(), gstate.getMaterialAmbientG(), gstate.getMaterialAmbientB()); Vec3 final_color = mec + mac * Vec3(gstate.getAmbientR(), gstate.getAmbientG(), gstate.getAmbientB()) / 255; Vec3 specular_color(0, 0, 0); for (unsigned int light = 0; light < 4; ++light) { // Always calculate texture coords from lighting results if environment mapping is active // TODO: specular lighting should affect this, too! // TODO: Not sure if this really should be done even if lighting is disabled altogether if (gstate.getUVGenMode() == GE_TEXMAP_ENVIRONMENT_MAP) { Vec3 L = Vec3(getFloat24(gstate.lpos[3*light]&0xFFFFFF), getFloat24(gstate.lpos[3*light+1]&0xFFFFFF),getFloat24(gstate.lpos[3*light+2]&0xFFFFFF)); float diffuse_factor = Dot(L,vertex.worldnormal) / L.Length() / vertex.worldnormal.Length(); if (gstate.getUVLS0() == (int)light) vertex.texturecoords.s() = (diffuse_factor + 1.f) / 2.f; if (gstate.getUVLS1() == (int)light) vertex.texturecoords.t() = (diffuse_factor + 1.f) / 2.f; } } if (!gstate.isLightingEnabled()) return; for (unsigned int light = 0; light < 4; ++light) { if (!gstate.isLightChanEnabled(light)) continue; // L = vector from vertex to light source // TODO: Should transfer the light positions to world/view space for these calculations Vec3 L = Vec3(getFloat24(gstate.lpos[3*light]&0xFFFFFF), getFloat24(gstate.lpos[3*light+1]&0xFFFFFF),getFloat24(gstate.lpos[3*light+2]&0xFFFFFF)); L -= vertex.worldpos; float d = L.Length(); float lka = getFloat24(gstate.latt[3*light]&0xFFFFFF); float lkb = getFloat24(gstate.latt[3*light+1]&0xFFFFFF); float lkc = getFloat24(gstate.latt[3*light+2]&0xFFFFFF); float att = 1.f; if (!gstate.isDirectionalLight(light)) { att = 1.f / (lka + lkb * d + lkc * d * d); if (att > 1.f) att = 1.f; if (att < 0.f) att = 0.f; } float spot = 1.f; if (gstate.isSpotLight(light)) { Vec3 dir = Vec3(getFloat24(gstate.ldir[3*light]&0xFFFFFF), getFloat24(gstate.ldir[3*light+1]&0xFFFFFF),getFloat24(gstate.ldir[3*light+2]&0xFFFFFF)); float _spot = Dot(-L,dir) / d / dir.Length(); float cutoff = getFloat24(gstate.lcutoff[light]&0xFFFFFF); if (_spot > cutoff) { spot = _spot; float conv = getFloat24(gstate.lconv[light]&0xFFFFFF); spot = pow(_spot, conv); } else { spot = 0.f; } } // ambient lighting Vec3 lac = Vec3(gstate.getLightAmbientColorR(light), gstate.getLightAmbientColorG(light), gstate.getLightAmbientColorB(light)); final_color.r() += (int)(att * spot * lac.r() * mac.r() / 255); final_color.g() += (int)(att * spot * lac.g() * mac.g() / 255); final_color.b() += (int)(att * spot * lac.b() * mac.b() / 255); // diffuse lighting Vec3 ldc = Vec3(gstate.getDiffuseColorR(light), gstate.getDiffuseColorG(light), gstate.getDiffuseColorB(light)); Vec3 mdc = (gstate.materialupdate&2) ? vertex.color0.rgb() : Vec3(gstate.getMaterialDiffuseR(), gstate.getMaterialDiffuseG(), gstate.getMaterialDiffuseB()); float diffuse_factor = Dot(L,vertex.worldnormal) / d / vertex.worldnormal.Length(); if (gstate.isUsingPoweredDiffuseLight(light)) { float k = getFloat24(gstate.materialspecularcoef&0xFFFFFF); diffuse_factor = pow(diffuse_factor, k); } if (diffuse_factor > 0.f) { final_color.r() += (int)(att * spot * ldc.r() * mdc.r() * diffuse_factor / 255); final_color.g() += (int)(att * spot * ldc.g() * mdc.g() * diffuse_factor / 255); final_color.b() += (int)(att * spot * ldc.b() * mdc.b() * diffuse_factor / 255); } if (gstate.isUsingSpecularLight(light)) { Vec3 E(0.f, 0.f, 1.f); Mat3x3 view_matrix(gstate.viewMatrix); Vec3 worldE = view_matrix.Inverse() * (E - Vec3(gstate.viewMatrix[9], gstate.viewMatrix[10], gstate.viewMatrix[11])); Vec3 H = worldE / worldE.Length() + L / L.Length(); Vec3 lsc = Vec3(gstate.getSpecularColorR(light), gstate.getSpecularColorG(light), gstate.getSpecularColorB(light)); Vec3 msc = (gstate.materialupdate&4) ? vertex.color0.rgb() : Vec3(gstate.getMaterialSpecularR(), gstate.getMaterialSpecularG(), gstate.getMaterialSpecularB()); float specular_factor = Dot(H,vertex.worldnormal) / H.Length() / vertex.worldnormal.Length(); float k = getFloat24(gstate.materialspecularcoef&0xFFFFFF); specular_factor = pow(specular_factor, k); if (specular_factor > 0.f) { specular_color.r() += (int)(att * spot * lsc.r() * msc.r() * specular_factor / 255); specular_color.g() += (int)(att * spot * lsc.g() * msc.g() * specular_factor / 255); specular_color.b() += (int)(att * spot * lsc.b() * msc.b() * specular_factor / 255); } } } vertex.color0.r() = final_color.r(); vertex.color0.g() = final_color.g(); vertex.color0.b() = final_color.b(); if (gstate.isUsingSecondaryColor()) { vertex.color1 = specular_color.Clamp(0, 255); } else { vertex.color0.r() += specular_color.r(); vertex.color0.g() += specular_color.g(); vertex.color0.b() += specular_color.b(); vertex.color1 = Vec3(0, 0, 0); } int maa = (gstate.materialupdate&1) ? vertex.color0.a() : gstate.getMaterialAmbientA(); vertex.color0.a() = gstate.getAmbientA() * maa / 255; vertex.color0 = vertex.color0.Clamp(0, 255); } } // namespace