// Copyright (C) 2003 Dolphin Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official SVN repository and contact information can be found at // http://code.google.com/p/dolphin-emu/ #include "ppsspp_config.h" #include #include "x64Emitter.h" #include "ABI.h" #include "CPUDetect.h" #include "MemoryUtil.h" #define PRIx64 "llx" namespace Gen { struct NormalOpDef { u8 toRm8, toRm32, fromRm8, fromRm32, imm8, imm32, simm8, eaximm8, eaximm32, ext; }; // 0xCC is code for invalid combination of immediates static const NormalOpDef normalops[11] = { {0x00, 0x01, 0x02, 0x03, 0x80, 0x81, 0x83, 0x04, 0x05, 0}, //ADD {0x10, 0x11, 0x12, 0x13, 0x80, 0x81, 0x83, 0x14, 0x15, 2}, //ADC {0x28, 0x29, 0x2A, 0x2B, 0x80, 0x81, 0x83, 0x2C, 0x2D, 5}, //SUB {0x18, 0x19, 0x1A, 0x1B, 0x80, 0x81, 0x83, 0x1C, 0x1D, 3}, //SBB {0x20, 0x21, 0x22, 0x23, 0x80, 0x81, 0x83, 0x24, 0x25, 4}, //AND {0x08, 0x09, 0x0A, 0x0B, 0x80, 0x81, 0x83, 0x0C, 0x0D, 1}, //OR {0x30, 0x31, 0x32, 0x33, 0x80, 0x81, 0x83, 0x34, 0x35, 6}, //XOR {0x88, 0x89, 0x8A, 0x8B, 0xC6, 0xC7, 0xCC, 0xCC, 0xCC, 0}, //MOV {0x84, 0x85, 0x84, 0x85, 0xF6, 0xF7, 0xCC, 0xA8, 0xA9, 0}, //TEST (to == from) {0x38, 0x39, 0x3A, 0x3B, 0x80, 0x81, 0x83, 0x3C, 0x3D, 7}, //CMP {0x86, 0x87, 0x86, 0x87, 0xCC, 0xCC, 0xCC, 0xCC, 0xCC, 7}, //XCHG }; enum NormalSSEOps { sseCMP = 0xC2, sseADD = 0x58, //ADD sseSUB = 0x5C, //SUB sseAND = 0x54, //AND sseANDN = 0x55, //ANDN sseOR = 0x56, sseXOR = 0x57, sseMUL = 0x59, //MUL sseDIV = 0x5E, //DIV sseMIN = 0x5D, //MIN sseMAX = 0x5F, //MAX sseCOMIS = 0x2F, //COMIS sseUCOMIS = 0x2E, //UCOMIS sseSQRT = 0x51, //SQRT sseRCP = 0x53, //RCP sseRSQRT = 0x52, //RSQRT (NO DOUBLE PRECISION!!!) sseMOVAPfromRM = 0x28, //MOVAP from RM sseMOVAPtoRM = 0x29, //MOVAP to RM sseMOVUPfromRM = 0x10, //MOVUP from RM sseMOVUPtoRM = 0x11, //MOVUP to RM sseMOVLPfromRM= 0x12, sseMOVLPtoRM = 0x13, sseMOVHPfromRM= 0x16, sseMOVHPtoRM = 0x17, sseMOVHLPS = 0x12, sseMOVLHPS = 0x16, sseMOVDQfromRM = 0x6F, sseMOVDQtoRM = 0x7F, sseMASKMOVDQU = 0xF7, sseLDDQU = 0xF0, sseSHUF = 0xC6, sseMOVNTDQ = 0xE7, sseMOVNTP = 0x2B, sseHADD = 0x7C, }; void XEmitter::SetCodePointer(u8 *ptr, u8 *writePtr) { code = ptr; } const u8 *XEmitter::GetCodePointer() const { return code; } u8 *XEmitter::GetWritableCodePtr() { return code; } void XEmitter::ReserveCodeSpace(int bytes) { for (int i = 0; i < bytes; i++) *code++ = 0xCC; } const u8 *XEmitter::AlignCode4() { int c = int((u64)code & 3); if (c) ReserveCodeSpace(4-c); return code; } const u8 *XEmitter::AlignCode16() { int c = int((u64)code & 15); if (c) ReserveCodeSpace(16-c); return code; } const u8 *XEmitter::AlignCodePage() { // Memory protection pages matter. int page_size = GetMemoryProtectPageSize(); int c = int((u64)code & (page_size - 1)); if (c) ReserveCodeSpace(page_size - c); return code; } // This operation modifies flags; check to see the flags are locked. // If the flags are locked, we should immediately and loudly fail before // causing a subtle JIT bug. void XEmitter::CheckFlags() { _assert_msg_(!flags_locked, "Attempt to modify flags while flags locked!"); } void XEmitter::WriteModRM(int mod, int reg, int rm) { Write8((u8)((mod << 6) | ((reg & 7) << 3) | (rm & 7))); } void XEmitter::WriteSIB(int scale, int index, int base) { Write8((u8)((scale << 6) | ((index & 7) << 3) | (base & 7))); } void OpArg::WriteRex(XEmitter *emit, int opBits, int bits, int customOp) const { if (customOp == -1) customOp = operandReg; #if PPSSPP_ARCH(AMD64) u8 op = 0x40; // REX.W (whether operation is a 64-bit operation) if (opBits == 64) op |= 8; // REX.R (whether ModR/M reg field refers to R8-R15. if (customOp & 8) op |= 4; // REX.X (whether ModR/M SIB index field refers to R8-R15) if (indexReg & 8) op |= 2; // REX.B (whether ModR/M rm or SIB base or opcode reg field refers to R8-R15) if (offsetOrBaseReg & 8) op |= 1; // Write REX if wr have REX bits to write, or if the operation accesses // SIL, DIL, BPL, or SPL. if (op != 0x40 || (scale == SCALE_NONE && bits == 8 && (offsetOrBaseReg & 0x10c) == 4) || (opBits == 8 && (customOp & 0x10c) == 4)) { emit->Write8(op); // Check the operation doesn't access AH, BH, CH, or DH. _dbg_assert_((offsetOrBaseReg & 0x100) == 0); _dbg_assert_((customOp & 0x100) == 0); } #else _dbg_assert_(opBits != 64); _dbg_assert_((customOp & 8) == 0 || customOp == -1); _dbg_assert_((indexReg & 8) == 0); _dbg_assert_((offsetOrBaseReg & 8) == 0); _dbg_assert_(opBits != 8 || (customOp & 0x10c) != 4 || customOp == -1); _dbg_assert_(scale == SCALE_ATREG || bits != 8 || (offsetOrBaseReg & 0x10c) != 4); #endif } void OpArg::WriteVex(XEmitter* emit, X64Reg regOp1, X64Reg regOp2, int L, int pp, int mmmmm, int W) const { int R = !(regOp1 & 8); int X = !(indexReg & 8); int B = !(offsetOrBaseReg & 8); int vvvv = (regOp2 == X64Reg::INVALID_REG) ? 0xf : (regOp2 ^ 0xf); // do we need any VEX fields that only appear in the three-byte form? if (X == 1 && B == 1 && W == 0 && mmmmm == 1) { u8 RvvvvLpp = (R << 7) | (vvvv << 3) | (L << 2) | pp; emit->Write8(0xC5); emit->Write8(RvvvvLpp); } else { u8 RXBmmmmm = (R << 7) | (X << 6) | (B << 5) | mmmmm; u8 WvvvvLpp = (W << 7) | (vvvv << 3) | (L << 2) | pp; emit->Write8(0xC4); emit->Write8(RXBmmmmm); emit->Write8(WvvvvLpp); } } void OpArg::WriteRest(XEmitter *emit, int extraBytes, X64Reg _operandReg, bool warn_64bit_offset) const { if (_operandReg == INVALID_REG) _operandReg = (X64Reg)this->operandReg; int mod = 0; int ireg = indexReg; bool SIB = false; int _offsetOrBaseReg = this->offsetOrBaseReg; if (scale == SCALE_RIP) //Also, on 32-bit, just an immediate address { // Oh, RIP addressing. _offsetOrBaseReg = 5; emit->WriteModRM(0, _operandReg, _offsetOrBaseReg); //TODO : add some checks #if PPSSPP_ARCH(AMD64) u64 ripAddr = (u64)emit->GetCodePointer() + 4 + extraBytes; s64 distance = (s64)offset - (s64)ripAddr; _assert_msg_( (distance < 0x80000000LL && distance >= -0x80000000LL) || !warn_64bit_offset, "WriteRest: op out of range (0x%" PRIx64 " uses 0x%" PRIx64 ")", ripAddr, offset); s32 offs = (s32)distance; emit->Write32((u32)offs); #else emit->Write32((u32)offset); #endif return; } if (scale == 0) { // Oh, no memory, Just a reg. mod = 3; //11 } else if (scale >= 1) { //Ah good, no scaling. if (scale == SCALE_ATREG && !((_offsetOrBaseReg & 7) == 4 || (_offsetOrBaseReg & 7) == 5)) { //Okay, we're good. No SIB necessary. int ioff = (int)offset; if (ioff == 0) { mod = 0; } else if (ioff < -128 || ioff > 127) { mod = 2; //32-bit displacement } else { mod = 1; //8-bit displacement } } else if (scale >= SCALE_NOBASE_2 && scale <= SCALE_NOBASE_8) { SIB = true; mod = 0; _offsetOrBaseReg = 5; } else //if (scale != SCALE_ATREG) { if ((_offsetOrBaseReg & 7) == 4) //this would occupy the SIB encoding :( { //So we have to fake it with SIB encoding :( SIB = true; } if (scale >= SCALE_1 && scale < SCALE_ATREG) { SIB = true; } if (scale == SCALE_ATREG && ((_offsetOrBaseReg & 7) == 4)) { SIB = true; ireg = _offsetOrBaseReg; } //Okay, we're fine. Just disp encoding. //We need displacement. Which size? int ioff = (int)(s64)offset; if (ioff < -128 || ioff > 127) { mod = 2; //32-bit displacement } else { mod = 1; //8-bit displacement } } } // Okay. Time to do the actual writing // ModRM byte: int oreg = _offsetOrBaseReg; if (SIB) oreg = 4; // TODO(ector): WTF is this if about? I don't remember writing it :-) //if (RIP) // oreg = 5; emit->WriteModRM(mod, _operandReg&7, oreg&7); if (SIB) { //SIB byte int ss; switch (scale) { case SCALE_NONE: _offsetOrBaseReg = 4; ss = 0; break; //RSP case SCALE_1: ss = 0; break; case SCALE_2: ss = 1; break; case SCALE_4: ss = 2; break; case SCALE_8: ss = 3; break; case SCALE_NOBASE_2: ss = 1; break; case SCALE_NOBASE_4: ss = 2; break; case SCALE_NOBASE_8: ss = 3; break; case SCALE_ATREG: ss = 0; break; default: _assert_msg_(false, "Invalid scale for SIB byte"); ss = 0; break; } emit->Write8((u8)((ss << 6) | ((ireg&7)<<3) | (_offsetOrBaseReg&7))); } if (mod == 1) //8-bit disp { emit->Write8((u8)(s8)(s32)offset); } else if (mod == 2 || (scale >= SCALE_NOBASE_2 && scale <= SCALE_NOBASE_8)) //32-bit disp { emit->Write32((u32)offset); } } // W = operand extended width (1 if 64-bit) // R = register# upper bit // X = scale amnt upper bit // B = base register# upper bit void XEmitter::Rex(int w, int r, int x, int b) { w = w ? 1 : 0; r = r ? 1 : 0; x = x ? 1 : 0; b = b ? 1 : 0; u8 rx = (u8)(0x40 | (w << 3) | (r << 2) | (x << 1) | (b)); if (rx != 0x40) Write8(rx); } void XEmitter::JMP(const u8 *addr, bool force5Bytes) { u64 fn = (u64)addr; if (!force5Bytes) { s64 distance = (s64)(fn - ((u64)code + 2)); _assert_msg_(distance >= -0x80 && distance < 0x80, "Jump target too far away, needs force5Bytes = true"); //8 bits will do Write8(0xEB); Write8((u8)(s8)distance); } else { s64 distance = (s64)(fn - ((u64)code + 5)); _assert_msg_(distance >= -0x80000000LL && distance < 0x80000000LL, "Jump target too far away, needs indirect register"); Write8(0xE9); Write32((u32)(s32)distance); } } void XEmitter::JMPptr(const OpArg &arg2) { OpArg arg = arg2; if (arg.IsImm()) _assert_msg_(false, "JMPptr - Imm argument"); arg.operandReg = 4; arg.WriteRex(this, 0, 0); Write8(0xFF); arg.WriteRest(this); } //Can be used to trap other processors, before overwriting their code // not used in dolphin void XEmitter::JMPself() { Write8(0xEB); Write8(0xFE); } void XEmitter::CALLptr(OpArg arg) { if (arg.IsImm()) _assert_msg_(false, "CALLptr - Imm argument"); arg.operandReg = 2; arg.WriteRex(this, 0, 0); Write8(0xFF); arg.WriteRest(this); } void XEmitter::CALL(const void *fnptr) { u64 distance = u64(fnptr) - (u64(code) + 5); _assert_msg_(distance < 0x0000000080000000ULL || distance >= 0xFFFFFFFF80000000ULL, "CALL out of range (%p calls %p)", code, fnptr); Write8(0xE8); Write32(u32(distance)); } bool XEmitter::CanCALLDirect(const void *fnptr) { u64 distance = u64(fnptr) - (u64(code) + 5); return distance < 0x0000000080000000ULL || distance >= 0xFFFFFFFF80000000ULL; } FixupBranch XEmitter::J(bool force5bytes) { FixupBranch branch; branch.type = force5bytes ? 1 : 0; branch.ptr = code + (force5bytes ? 5 : 2); if (!force5bytes) { //8 bits will do Write8(0xEB); Write8(0); } else { Write8(0xE9); Write32(0); } return branch; } FixupBranch XEmitter::J_CC(CCFlags conditionCode, bool force5bytes) { FixupBranch branch; branch.type = force5bytes ? 1 : 0; branch.ptr = code + (force5bytes ? 6 : 2); if (!force5bytes) { //8 bits will do Write8(0x70 + conditionCode); Write8(0); } else { Write8(0x0F); Write8(0x80 + conditionCode); Write32(0); } return branch; } void XEmitter::J_CC(CCFlags conditionCode, const u8* addr, bool force5bytes) { u64 fn = (u64)addr; s64 distance = (s64)(fn - ((u64)code + 2)); if (distance < -0x80 || distance >= 0x80 || force5bytes) { distance = (s64)(fn - ((u64)code + 6)); _assert_msg_(distance >= -0x80000000LL && distance < 0x80000000LL, "Jump target too far away, needs indirect register"); Write8(0x0F); Write8(0x80 + conditionCode); Write32((u32)(s32)distance); } else { Write8(0x70 + conditionCode); Write8((u8)(s8)distance); } } void XEmitter::SetJumpTarget(const FixupBranch &branch) { if (branch.type == 0) { s64 distance = (s64)(code - branch.ptr); _assert_msg_(distance >= -0x80 && distance < 0x80, "Jump target too far away, needs force5Bytes = true"); branch.ptr[-1] = (u8)(s8)distance; } else if (branch.type == 1) { s64 distance = (s64)(code - branch.ptr); _assert_msg_(distance >= -0x80000000LL && distance < 0x80000000LL, "Jump target too far away, needs indirect register"); const s32 distance32 = static_cast(distance); std::memcpy(branch.ptr - sizeof(s32), &distance32, sizeof(s32)); } } // INC/DEC considered harmful on newer CPUs due to partial flag set. // Use ADD, SUB instead. /* void XEmitter::INC(int bits, OpArg arg) { if (arg.IsImm()) _assert_msg_(false, "INC - Imm argument"); arg.operandReg = 0; if (bits == 16) {Write8(0x66);} arg.WriteRex(this, bits, bits); Write8(bits == 8 ? 0xFE : 0xFF); arg.WriteRest(this); } void XEmitter::DEC(int bits, OpArg arg) { if (arg.IsImm()) _assert_msg_(false, "DEC - Imm argument"); arg.operandReg = 1; if (bits == 16) {Write8(0x66);} arg.WriteRex(this, bits, bits); Write8(bits == 8 ? 0xFE : 0xFF); arg.WriteRest(this); } */ //Single byte opcodes //There is no PUSHAD/POPAD in 64-bit mode. void XEmitter::INT3() {Write8(0xCC);} void XEmitter::RET() {Write8(0xC3);} void XEmitter::RET_FAST() {Write8(0xF3); Write8(0xC3);} //two-byte return (rep ret) - recommended by AMD optimization manual for the case of jumping to a ret // The first sign of decadence: optimized NOPs. void XEmitter::NOP(size_t size) { _dbg_assert_((int)size > 0); while (true) { switch (size) { case 0: return; case 1: Write8(0x90); return; case 2: Write8(0x66); Write8(0x90); return; case 3: Write8(0x0F); Write8(0x1F); Write8(0x00); return; case 4: Write8(0x0F); Write8(0x1F); Write8(0x40); Write8(0x00); return; case 5: Write8(0x0F); Write8(0x1F); Write8(0x44); Write8(0x00); Write8(0x00); return; case 6: Write8(0x66); Write8(0x0F); Write8(0x1F); Write8(0x44); Write8(0x00); Write8(0x00); return; case 7: Write8(0x0F); Write8(0x1F); Write8(0x80); Write8(0x00); Write8(0x00); Write8(0x00); Write8(0x00); return; case 8: Write8(0x0F); Write8(0x1F); Write8(0x84); Write8(0x00); Write8(0x00); Write8(0x00); Write8(0x00); Write8(0x00); return; case 9: Write8(0x66); Write8(0x0F); Write8(0x1F); Write8(0x84); Write8(0x00); Write8(0x00); Write8(0x00); Write8(0x00); Write8(0x00); return; case 10: Write8(0x66); Write8(0x66); Write8(0x0F); Write8(0x1F); Write8(0x84); Write8(0x00); Write8(0x00); Write8(0x00); Write8(0x00); Write8(0x00); return; default: // Even though x86 instructions are allowed to be up to 15 bytes long, // AMD advises against using NOPs longer than 11 bytes because they // carry a performance penalty on CPUs older than AMD family 16h. Write8(0x66); Write8(0x66); Write8(0x66); Write8(0x0F); Write8(0x1F); Write8(0x84); Write8(0x00); Write8(0x00); Write8(0x00); Write8(0x00); Write8(0x00); size -= 11; continue; } } } void XEmitter::PAUSE() {Write8(0xF3); NOP();} //use in tight spinloops for energy saving on some cpu void XEmitter::CLC() {CheckFlags(); Write8(0xF8);} //clear carry void XEmitter::CMC() {CheckFlags(); Write8(0xF5);} //flip carry void XEmitter::STC() {CheckFlags(); Write8(0xF9);} //set carry //TODO: xchg ah, al ??? void XEmitter::XCHG_AHAL() { Write8(0x86); Write8(0xe0); // alt. 86 c4 } //These two can not be executed on early Intel 64-bit CPU:s, only on AMD! void XEmitter::LAHF() {Write8(0x9F);} void XEmitter::SAHF() {CheckFlags(); Write8(0x9E);} void XEmitter::PUSHF() {Write8(0x9C);} void XEmitter::POPF() {CheckFlags(); Write8(0x9D);} void XEmitter::LFENCE() {Write8(0x0F); Write8(0xAE); Write8(0xE8);} void XEmitter::MFENCE() {Write8(0x0F); Write8(0xAE); Write8(0xF0);} void XEmitter::SFENCE() {Write8(0x0F); Write8(0xAE); Write8(0xF8);} void XEmitter::WriteSimple1Byte(int bits, u8 byte, X64Reg reg) { if (bits == 16) Write8(0x66); Rex(bits == 64, 0, 0, (int)reg >> 3); Write8(byte + ((int)reg & 7)); } void XEmitter::WriteSimple2Byte(int bits, u8 byte1, u8 byte2, X64Reg reg) { if (bits == 16) Write8(0x66); Rex(bits==64, 0, 0, (int)reg >> 3); Write8(byte1); Write8(byte2 + ((int)reg & 7)); } void XEmitter::CWD(int bits) { if (bits == 16) Write8(0x66); Rex(bits == 64, 0, 0, 0); Write8(0x99); } void XEmitter::CBW(int bits) { if (bits == 8) Write8(0x66); Rex(bits == 32, 0, 0, 0); Write8(0x98); } //Simple opcodes //push/pop do not need wide to be 64-bit void XEmitter::PUSH(X64Reg reg) {WriteSimple1Byte(32, 0x50, reg);} void XEmitter::POP(X64Reg reg) {WriteSimple1Byte(32, 0x58, reg);} void XEmitter::PUSH(int bits, const OpArg ®) { if (reg.IsSimpleReg()) PUSH(reg.GetSimpleReg()); else if (reg.IsImm()) { switch (reg.GetImmBits()) { case 8: Write8(0x6A); Write8((u8)(s8)reg.offset); break; case 16: Write8(0x66); Write8(0x68); Write16((u16)(s16)(s32)reg.offset); break; case 32: Write8(0x68); Write32((u32)reg.offset); break; default: _assert_msg_(false, "PUSH - Bad imm bits"); break; } } else { if (bits == 16) Write8(0x66); reg.WriteRex(this, bits, bits); Write8(0xFF); reg.WriteRest(this, 0, (X64Reg)6); } } void XEmitter::POP(int /*bits*/, const OpArg ®) { if (reg.IsSimpleReg()) POP(reg.GetSimpleReg()); else _assert_msg_(false, "POP - Unsupported encoding"); } void XEmitter::BSWAP(int bits, X64Reg reg) { if (bits >= 32) { WriteSimple2Byte(bits, 0x0F, 0xC8, reg); } else if (bits == 16) { ROL(16, R(reg), Imm8(8)); } else if (bits == 8) { // Do nothing - can't bswap a single byte... } else { _assert_msg_(false, "BSWAP - Wrong number of bits"); } } // Undefined opcode - reserved // If we ever need a way to always cause a non-breakpoint hard exception... void XEmitter::UD2() { Write8(0x0F); Write8(0x0B); } void XEmitter::PREFETCH(PrefetchLevel level, OpArg arg) { _assert_msg_(!arg.IsImm(), "PREFETCH - Imm argument"); arg.operandReg = (u8)level; arg.WriteRex(this, 0, 0); Write8(0x0F); Write8(0x18); arg.WriteRest(this); } void XEmitter::SETcc(CCFlags flag, OpArg dest) { _assert_msg_(!dest.IsImm(), "SETcc - Imm argument"); dest.operandReg = 0; dest.WriteRex(this, 0, 8); Write8(0x0F); Write8(0x90 + (u8)flag); dest.WriteRest(this); } void XEmitter::CMOVcc(int bits, X64Reg dest, OpArg src, CCFlags flag) { _assert_msg_(!src.IsImm(), "CMOVcc - Imm argument"); _assert_msg_(bits != 8, "CMOVcc - 8 bits unsupported"); if (bits == 16) Write8(0x66); src.operandReg = dest; src.WriteRex(this, bits, bits); Write8(0x0F); Write8(0x40 + (u8)flag); src.WriteRest(this); } void XEmitter::WriteMulDivType(int bits, OpArg src, int ext) { _assert_msg_(!src.IsImm(), "WriteMulDivType - Imm argument"); CheckFlags(); src.operandReg = ext; if (bits == 16) Write8(0x66); src.WriteRex(this, bits, bits, 0); if (bits == 8) { Write8(0xF6); } else { Write8(0xF7); } src.WriteRest(this); } void XEmitter::MUL(int bits, OpArg src) {WriteMulDivType(bits, src, 4);} void XEmitter::DIV(int bits, OpArg src) {WriteMulDivType(bits, src, 6);} void XEmitter::IMUL(int bits, OpArg src) {WriteMulDivType(bits, src, 5);} void XEmitter::IDIV(int bits, OpArg src) {WriteMulDivType(bits, src, 7);} void XEmitter::NEG(int bits, OpArg src) {WriteMulDivType(bits, src, 3);} void XEmitter::NOT(int bits, OpArg src) {WriteMulDivType(bits, src, 2);} void XEmitter::WriteBitSearchType(int bits, X64Reg dest, OpArg src, u8 byte2, bool rep) { _assert_msg_(!src.IsImm(), "WriteBitSearchType - Imm argument"); CheckFlags(); src.operandReg = (u8)dest; if (bits == 16) Write8(0x66); if (rep) Write8(0xF3); src.WriteRex(this, bits, bits); Write8(0x0F); Write8(byte2); src.WriteRest(this); } void XEmitter::MOVNTI(int bits, OpArg dest, X64Reg src) { if (bits <= 16) _assert_msg_(false, "MOVNTI - bits<=16"); WriteBitSearchType(bits, src, dest, 0xC3); } void XEmitter::BSF(int bits, X64Reg dest, OpArg src) {WriteBitSearchType(bits,dest,src,0xBC);} //bottom bit to top bit void XEmitter::BSR(int bits, X64Reg dest, OpArg src) {WriteBitSearchType(bits,dest,src,0xBD);} //top bit to bottom bit void XEmitter::TZCNT(int bits, X64Reg dest, OpArg src) { CheckFlags(); _assert_msg_(cpu_info.bBMI1, "Trying to use BMI1 on a system that doesn't support it."); WriteBitSearchType(bits, dest, src, 0xBC, true); } void XEmitter::LZCNT(int bits, X64Reg dest, OpArg src) { CheckFlags(); _assert_msg_(cpu_info.bLZCNT, "Trying to use LZCNT on a system that doesn't support it."); WriteBitSearchType(bits, dest, src, 0xBD, true); } void XEmitter::MOVSX(int dbits, int sbits, X64Reg dest, OpArg src) { _assert_msg_(!src.IsImm(), "MOVSX - Imm argument"); if (dbits == sbits) { MOV(dbits, R(dest), src); return; } src.operandReg = (u8)dest; if (dbits == 16) Write8(0x66); src.WriteRex(this, dbits, sbits); if (sbits == 8) { Write8(0x0F); Write8(0xBE); } else if (sbits == 16) { Write8(0x0F); Write8(0xBF); } else if (sbits == 32 && dbits == 64) { Write8(0x63); } else { Crash(); } src.WriteRest(this); } void XEmitter::MOVZX(int dbits, int sbits, X64Reg dest, OpArg src) { _assert_msg_(!src.IsImm(), "MOVZX - Imm argument"); if (dbits == sbits) { MOV(dbits, R(dest), src); return; } src.operandReg = (u8)dest; if (dbits == 16) Write8(0x66); //the 32bit result is automatically zero extended to 64bit src.WriteRex(this, dbits == 64 ? 32 : dbits, sbits); if (sbits == 8) { Write8(0x0F); Write8(0xB6); } else if (sbits == 16) { Write8(0x0F); Write8(0xB7); } else if (sbits == 32 && dbits == 64) { Write8(0x8B); } else { _assert_msg_(false, "MOVZX - Invalid size"); } src.WriteRest(this); } void XEmitter::MOVBE(int bits, const OpArg& dest, const OpArg& src) { _assert_msg_(cpu_info.bMOVBE, "Generating MOVBE on a system that does not support it."); if (bits == 8) { MOV(bits, dest, src); return; } if (bits == 16) Write8(0x66); if (dest.IsSimpleReg()) { _assert_msg_(!src.IsSimpleReg() && !src.IsImm(), "MOVBE: Loading from !mem"); src.WriteRex(this, bits, bits, dest.GetSimpleReg()); Write8(0x0F); Write8(0x38); Write8(0xF0); src.WriteRest(this, 0, dest.GetSimpleReg()); } else if (src.IsSimpleReg()) { _assert_msg_(!dest.IsSimpleReg() && !dest.IsImm(), "MOVBE: Storing to !mem"); dest.WriteRex(this, bits, bits, src.GetSimpleReg()); Write8(0x0F); Write8(0x38); Write8(0xF1); dest.WriteRest(this, 0, src.GetSimpleReg()); } else { _assert_msg_(false, "MOVBE: Not loading or storing to mem"); } } void XEmitter::LEA(int bits, X64Reg dest, OpArg src) { _assert_msg_(!src.IsImm(), "LEA - Imm argument"); src.operandReg = (u8)dest; if (bits == 16) Write8(0x66); //TODO: performance warning src.WriteRex(this, bits, bits); Write8(0x8D); src.WriteRest(this, 0, INVALID_REG, bits == 64); } //shift can be either imm8 or cl void XEmitter::WriteShift(int bits, OpArg dest, OpArg &shift, int ext) { CheckFlags(); bool writeImm = false; if (dest.IsImm()) { _assert_msg_(false, "WriteShift - can't shift imms"); } if ((shift.IsSimpleReg() && shift.GetSimpleReg() != ECX) || (shift.IsImm() && shift.GetImmBits() != 8)) { _assert_msg_(false, "WriteShift - illegal argument"); } dest.operandReg = ext; if (bits == 16) Write8(0x66); dest.WriteRex(this, bits, bits, 0); if (shift.GetImmBits() == 8) { //ok an imm u8 imm = (u8)shift.offset; if (imm == 1) { Write8(bits == 8 ? 0xD0 : 0xD1); } else { writeImm = true; Write8(bits == 8 ? 0xC0 : 0xC1); } } else { Write8(bits == 8 ? 0xD2 : 0xD3); } dest.WriteRest(this, writeImm ? 1 : 0); if (writeImm) Write8((u8)shift.offset); } // large rotates and shift are slower on intel than amd // intel likes to rotate by 1, and the op is smaller too void XEmitter::ROL(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 0);} void XEmitter::ROR(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 1);} void XEmitter::RCL(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 2);} void XEmitter::RCR(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 3);} void XEmitter::SHL(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 4);} void XEmitter::SHR(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 5);} void XEmitter::SAR(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 7);} // index can be either imm8 or register, don't use memory destination because it's slow void XEmitter::WriteBitTest(int bits, OpArg &dest, OpArg &index, int ext) { CheckFlags(); if (dest.IsImm()) { _assert_msg_(false, "WriteBitTest - can't test imms"); } if ((index.IsImm() && index.GetImmBits() != 8)) { _assert_msg_(false, "WriteBitTest - illegal argument"); } if (bits == 16) Write8(0x66); if (index.IsImm()) { dest.WriteRex(this, bits, bits); Write8(0x0F); Write8(0xBA); dest.WriteRest(this, 1, (X64Reg)ext); Write8((u8)index.offset); } else { X64Reg operand = index.GetSimpleReg(); dest.WriteRex(this, bits, bits, operand); Write8(0x0F); Write8(0x83 + 8*ext); dest.WriteRest(this, 1, operand); } } void XEmitter::BT(int bits, OpArg dest, OpArg index) {WriteBitTest(bits, dest, index, 4);} void XEmitter::BTS(int bits, OpArg dest, OpArg index) {WriteBitTest(bits, dest, index, 5);} void XEmitter::BTR(int bits, OpArg dest, OpArg index) {WriteBitTest(bits, dest, index, 6);} void XEmitter::BTC(int bits, OpArg dest, OpArg index) {WriteBitTest(bits, dest, index, 7);} //shift can be either imm8 or cl void XEmitter::SHRD(int bits, OpArg dest, OpArg src, OpArg shift) { CheckFlags(); if (dest.IsImm()) { _assert_msg_(false, "SHRD - can't use imms as destination"); } if (!src.IsSimpleReg()) { _assert_msg_(false, "SHRD - must use simple register as source"); } if ((shift.IsSimpleReg() && shift.GetSimpleReg() != ECX) || (shift.IsImm() && shift.GetImmBits() != 8)) { _assert_msg_(false, "SHRD - illegal shift"); } if (bits == 16) Write8(0x66); X64Reg operand = src.GetSimpleReg(); dest.WriteRex(this, bits, bits, operand); if (shift.GetImmBits() == 8) { Write8(0x0F); Write8(0xAC); dest.WriteRest(this, 1, operand); Write8((u8)shift.offset); } else { Write8(0x0F); Write8(0xAD); dest.WriteRest(this, 0, operand); } } void XEmitter::SHLD(int bits, OpArg dest, OpArg src, OpArg shift) { CheckFlags(); if (dest.IsImm()) { _assert_msg_(false, "SHLD - can't use imms as destination"); } if (!src.IsSimpleReg()) { _assert_msg_(false, "SHLD - must use simple register as source"); } if ((shift.IsSimpleReg() && shift.GetSimpleReg() != ECX) || (shift.IsImm() && shift.GetImmBits() != 8)) { _assert_msg_(false, "SHLD - illegal shift"); } if (bits == 16) Write8(0x66); X64Reg operand = src.GetSimpleReg(); dest.WriteRex(this, bits, bits, operand); if (shift.GetImmBits() == 8) { Write8(0x0F); Write8(0xA4); dest.WriteRest(this, 1, operand); Write8((u8)shift.offset); } else { Write8(0x0F); Write8(0xA5); dest.WriteRest(this, 0, operand); } } void OpArg::WriteSingleByteOp(XEmitter *emit, u8 op, X64Reg _operandReg, int bits) { if (bits == 16) emit->Write8(0x66); this->operandReg = (u8)_operandReg; WriteRex(emit, bits, bits); emit->Write8(op); WriteRest(emit); } //operand can either be immediate or register void OpArg::WriteNormalOp(XEmitter *emit, bool toRM, NormalOp op, const OpArg &operand, int bits) const { X64Reg _operandReg; if (IsImm()) { _assert_msg_(false, "WriteNormalOp - Imm argument, wrong order"); } if (bits == 16) emit->Write8(0x66); int immToWrite = 0; if (operand.IsImm()) { WriteRex(emit, bits, bits); if (!toRM) { _assert_msg_(false, "WriteNormalOp - Writing to Imm (!toRM)"); } if (operand.scale == SCALE_IMM8 && bits == 8) { // op al, imm8 if (!scale && offsetOrBaseReg == AL && normalops[op].eaximm8 != 0xCC) { emit->Write8(normalops[op].eaximm8); emit->Write8((u8)operand.offset); return; } // mov reg, imm8 if (!scale && op == nrmMOV) { emit->Write8(0xB0 + (offsetOrBaseReg & 7)); emit->Write8((u8)operand.offset); return; } // op r/m8, imm8 emit->Write8(normalops[op].imm8); immToWrite = 8; } else if ((operand.scale == SCALE_IMM16 && bits == 16) || (operand.scale == SCALE_IMM32 && bits == 32) || (operand.scale == SCALE_IMM32 && bits == 64)) { // Try to save immediate size if we can, but first check to see // if the instruction supports simm8. // op r/m, imm8 if (normalops[op].simm8 != 0xCC && ((operand.scale == SCALE_IMM16 && (s16)operand.offset == (s8)operand.offset) || (operand.scale == SCALE_IMM32 && (s32)operand.offset == (s8)operand.offset))) { emit->Write8(normalops[op].simm8); immToWrite = 8; } else { // mov reg, imm if (!scale && op == nrmMOV && bits != 64) { emit->Write8(0xB8 + (offsetOrBaseReg & 7)); if (bits == 16) emit->Write16((u16)operand.offset); else emit->Write32((u32)operand.offset); return; } // op eax, imm if (!scale && offsetOrBaseReg == EAX && normalops[op].eaximm32 != 0xCC) { emit->Write8(normalops[op].eaximm32); if (bits == 16) emit->Write16((u16)operand.offset); else emit->Write32((u32)operand.offset); return; } // op r/m, imm emit->Write8(normalops[op].imm32); immToWrite = bits == 16 ? 16 : 32; } } else if ((operand.scale == SCALE_IMM8 && bits == 16) || (operand.scale == SCALE_IMM8 && bits == 32) || (operand.scale == SCALE_IMM8 && bits == 64)) { // op r/m, imm8 emit->Write8(normalops[op].simm8); immToWrite = 8; } else if (operand.scale == SCALE_IMM64 && bits == 64) { if (scale) { _assert_msg_(false, "WriteNormalOp - MOV with 64-bit imm requres register destination"); } // mov reg64, imm64 else if (op == nrmMOV) { emit->Write8(0xB8 + (offsetOrBaseReg & 7)); emit->Write64((u64)operand.offset); return; } _assert_msg_(false, "WriteNormalOp - Only MOV can take 64-bit imm"); } else { _assert_msg_(false, "WriteNormalOp - Unhandled case"); } _operandReg = (X64Reg)normalops[op].ext; //pass extension in REG of ModRM } else { _operandReg = (X64Reg)operand.offsetOrBaseReg; WriteRex(emit, bits, bits, _operandReg); // op r/m, reg if (toRM) { emit->Write8(bits == 8 ? normalops[op].toRm8 : normalops[op].toRm32); } // op reg, r/m else { emit->Write8(bits == 8 ? normalops[op].fromRm8 : normalops[op].fromRm32); } } WriteRest(emit, immToWrite >> 3, _operandReg); switch (immToWrite) { case 0: break; case 8: emit->Write8((u8)operand.offset); break; case 16: emit->Write16((u16)operand.offset); break; case 32: emit->Write32((u32)operand.offset); break; default: _assert_msg_(false, "WriteNormalOp - Unhandled case"); } } void XEmitter::WriteNormalOp(XEmitter *emit, int bits, NormalOp op, const OpArg &a1, const OpArg &a2) { if (a1.IsImm()) { //Booh! Can't write to an imm _assert_msg_(false, "WriteNormalOp - a1 cannot be imm"); return; } if (a2.IsImm()) { a1.WriteNormalOp(emit, true, op, a2, bits); } else { if (a1.IsSimpleReg()) { a2.WriteNormalOp(emit, false, op, a1, bits); } else { _assert_msg_(a2.IsSimpleReg() || a2.IsImm(), "WriteNormalOp - a1 and a2 cannot both be memory"); a1.WriteNormalOp(emit, true, op, a2, bits); } } } void XEmitter::ADD (int bits, const OpArg &a1, const OpArg &a2) {CheckFlags(); WriteNormalOp(this, bits, nrmADD, a1, a2);} void XEmitter::ADC (int bits, const OpArg &a1, const OpArg &a2) {CheckFlags(); WriteNormalOp(this, bits, nrmADC, a1, a2);} void XEmitter::SUB (int bits, const OpArg &a1, const OpArg &a2) {CheckFlags(); WriteNormalOp(this, bits, nrmSUB, a1, a2);} void XEmitter::SBB (int bits, const OpArg &a1, const OpArg &a2) {CheckFlags(); WriteNormalOp(this, bits, nrmSBB, a1, a2);} void XEmitter::AND (int bits, const OpArg &a1, const OpArg &a2) {CheckFlags(); WriteNormalOp(this, bits, nrmAND, a1, a2);} void XEmitter::OR (int bits, const OpArg &a1, const OpArg &a2) {CheckFlags(); WriteNormalOp(this, bits, nrmOR , a1, a2);} void XEmitter::XOR (int bits, const OpArg &a1, const OpArg &a2) {CheckFlags(); WriteNormalOp(this, bits, nrmXOR, a1, a2);} void XEmitter::MOV (int bits, const OpArg &a1, const OpArg &a2) { if (a1.IsSimpleReg() && a2.IsSimpleReg() && a1.GetSimpleReg() == a2.GetSimpleReg()) ERROR_LOG(JIT, "Redundant MOV @ %p - bug in JIT?", code); WriteNormalOp(this, bits, nrmMOV, a1, a2); } void XEmitter::TEST(int bits, const OpArg &a1, const OpArg &a2) {CheckFlags(); WriteNormalOp(this, bits, nrmTEST, a1, a2);} void XEmitter::CMP (int bits, const OpArg &a1, const OpArg &a2) {CheckFlags(); WriteNormalOp(this, bits, nrmCMP, a1, a2);} void XEmitter::XCHG(int bits, const OpArg &a1, const OpArg &a2) {WriteNormalOp(this, bits, nrmXCHG, a1, a2);} void XEmitter::IMUL(int bits, X64Reg regOp, OpArg a1, OpArg a2) { CheckFlags(); if (bits == 8) { _assert_msg_(false, "IMUL - illegal bit size!"); return; } if (a1.IsImm()) { _assert_msg_(false, "IMUL - second arg cannot be imm!"); return; } if (!a2.IsImm()) { _assert_msg_(false, "IMUL - third arg must be imm!"); return; } if (bits == 16) Write8(0x66); a1.WriteRex(this, bits, bits, regOp); if (a2.GetImmBits() == 8 || (a2.GetImmBits() == 16 && (s8)a2.offset == (s16)a2.offset) || (a2.GetImmBits() == 32 && (s8)a2.offset == (s32)a2.offset)) { Write8(0x6B); a1.WriteRest(this, 1, regOp); Write8((u8)a2.offset); } else { Write8(0x69); if (a2.GetImmBits() == 16 && bits == 16) { a1.WriteRest(this, 2, regOp); Write16((u16)a2.offset); } else if (a2.GetImmBits() == 32 && (bits == 32 || bits == 64)) { a1.WriteRest(this, 4, regOp); Write32((u32)a2.offset); } else { _assert_msg_(false, "IMUL - unhandled case!"); } } } void XEmitter::IMUL(int bits, X64Reg regOp, OpArg a) { CheckFlags(); if (bits == 8) { _assert_msg_(false, "IMUL - illegal bit size!"); return; } if (a.IsImm()) { IMUL(bits, regOp, R(regOp), a) ; return; } if (bits == 16) Write8(0x66); a.WriteRex(this, bits, bits, regOp); Write8(0x0F); Write8(0xAF); a.WriteRest(this, 0, regOp); } void XEmitter::WriteSSEOp(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes) { if (opPrefix) Write8(opPrefix); arg.operandReg = regOp; arg.WriteRex(this, 0, 0); Write8(0x0F); if (op > 0xFF) Write8((op >> 8) & 0xFF); Write8(op & 0xFF); arg.WriteRest(this, extrabytes); } void XEmitter::WriteAVXOp(int bits, u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes, int W) { WriteAVXOp(bits, opPrefix, op, regOp, INVALID_REG, arg, extrabytes, W); } void XEmitter::WriteAVX12Op(int bits, u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes, int W) { WriteAVX12Op(bits, opPrefix, op, regOp, INVALID_REG, arg, extrabytes, W); } void XEmitter::WriteAVX2Op(int bits, u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes, int W) { WriteAVX2Op(bits, opPrefix, op, regOp, INVALID_REG, arg, extrabytes, W); } static int GetVEXmmmmm(u16 op) { // Currently, only 0x38 and 0x3A are used as secondary escape byte. if ((op >> 8) == 0x3A) return 3; else if ((op >> 8) == 0x38) return 2; else return 1; } static int GetVEXpp(u8 opPrefix) { if (opPrefix == 0x66) return 1; else if (opPrefix == 0xF3) return 2; else if (opPrefix == 0xF2) return 3; else return 0; } void XEmitter::WriteAVXOp(int bits, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes, int W) { _assert_msg_(cpu_info.bAVX, "Trying to use AVX on a system that doesn't support it."); int mmmmm = GetVEXmmmmm(op); int pp = GetVEXpp(opPrefix); // Note: W "size" is not the vector size here. arg.WriteVex(this, regOp1, regOp2, bits == 256 ? 1 : 0, pp, mmmmm, W); Write8(op & 0xFF); arg.WriteRest(this, extrabytes, regOp1); } void XEmitter::WriteAVX12Op(int bits, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes, int W) { _assert_msg_(bits != 256 || cpu_info.bAVX2, "Trying to use AVX2 on a system that doesn't support it."); WriteAVXOp(bits, opPrefix, op, regOp1, regOp2, arg, extrabytes, W); } void XEmitter::WriteAVX2Op(int bits, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes, int W) { _assert_msg_(cpu_info.bAVX2, "Trying to use AVX2 on a system that doesn't support it."); WriteAVXOp(bits, opPrefix, op, regOp1, regOp2, arg, extrabytes, W); } // Like the above, but more general; covers GPR-based VEX operations, like BMI1/2 void XEmitter::WriteVEXOp(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes) { _assert_msg_(size == 32 || size == 64, "VEX GPR instructions only support 32-bit and 64-bit modes!"); int mmmmm = GetVEXmmmmm(op); int pp = GetVEXpp(opPrefix); arg.WriteVex(this, regOp1, regOp2, 0, pp, mmmmm, size == 64); Write8(op & 0xFF); arg.WriteRest(this, extrabytes, regOp1); } void XEmitter::WriteBMI1Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes) { CheckFlags(); _assert_msg_(cpu_info.bBMI1, "Trying to use BMI1 on a system that doesn't support it."); _assert_msg_(!arg.IsImm(), "Imm arg unsupported for this BMI1 instruction"); WriteVEXOp(size, opPrefix, op, regOp1, regOp2, arg, extrabytes); } void XEmitter::WriteBMI2Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes) { CheckFlags(); _assert_msg_(cpu_info.bBMI2, "Trying to use BMI2 on a system that doesn't support it."); _assert_msg_(!arg.IsImm(), "Imm arg unsupported for this BMI2 instruction"); WriteVEXOp(size, opPrefix, op, regOp1, regOp2, arg, extrabytes); } void XEmitter::MOVD_xmm(X64Reg dest, const OpArg &arg) {WriteSSEOp(0x66, 0x6E, dest, arg, 0);} void XEmitter::MOVD_xmm(const OpArg &arg, X64Reg src) {WriteSSEOp(0x66, 0x7E, src, arg, 0);} void XEmitter::MOVQ_xmm(X64Reg dest, OpArg arg) { #if PPSSPP_ARCH(AMD64) // Alternate encoding // This does not display correctly in MSVC's debugger, it thinks it's a MOVD arg.operandReg = dest; Write8(0x66); arg.WriteRex(this, 64, 0); Write8(0x0f); Write8(0x6E); arg.WriteRest(this, 0); #else arg.operandReg = dest; Write8(0xF3); Write8(0x0f); Write8(0x7E); arg.WriteRest(this, 0); #endif } void XEmitter::MOVQ_xmm(OpArg arg, X64Reg src) { if (src > 7 || arg.IsSimpleReg()) { // Alternate encoding // This does not display correctly in MSVC's debugger, it thinks it's a MOVD arg.operandReg = src; Write8(0x66); arg.WriteRex(this, 64, 0); Write8(0x0f); Write8(0x7E); arg.WriteRest(this, 0); } else { arg.operandReg = src; Write8(0x66); arg.WriteRex(this, 0, 0); Write8(0x0f); Write8(0xD6); arg.WriteRest(this, 0); } } void XEmitter::WriteMXCSR(OpArg arg, int ext) { if (arg.IsImm() || arg.IsSimpleReg()) _assert_msg_(false, "MXCSR - invalid operand"); arg.operandReg = ext; arg.WriteRex(this, 0, 0); Write8(0x0F); Write8(0xAE); arg.WriteRest(this); } void XEmitter::STMXCSR(OpArg memloc) {WriteMXCSR(memloc, 3);} void XEmitter::LDMXCSR(OpArg memloc) {WriteMXCSR(memloc, 2);} void XEmitter::MOVNTDQ(OpArg arg, X64Reg regOp) {WriteSSEOp(0x66, sseMOVNTDQ, regOp, arg);} void XEmitter::MOVNTPS(OpArg arg, X64Reg regOp) {WriteSSEOp(0x00, sseMOVNTP, regOp, arg);} void XEmitter::MOVNTPD(OpArg arg, X64Reg regOp) {WriteSSEOp(0x66, sseMOVNTP, regOp, arg);} void XEmitter::ADDSS(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, sseADD, regOp, arg);} void XEmitter::ADDSD(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, sseADD, regOp, arg);} void XEmitter::SUBSS(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, sseSUB, regOp, arg);} void XEmitter::SUBSD(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, sseSUB, regOp, arg);} void XEmitter::CMPSS(X64Reg regOp, OpArg arg, u8 compare) {WriteSSEOp(0xF3, sseCMP, regOp, arg, 1); Write8(compare);} void XEmitter::CMPSD(X64Reg regOp, OpArg arg, u8 compare) {WriteSSEOp(0xF2, sseCMP, regOp, arg, 1); Write8(compare);} void XEmitter::MULSS(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, sseMUL, regOp, arg);} void XEmitter::MULSD(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, sseMUL, regOp, arg);} void XEmitter::DIVSS(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, sseDIV, regOp, arg);} void XEmitter::DIVSD(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, sseDIV, regOp, arg);} void XEmitter::MINSS(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, sseMIN, regOp, arg);} void XEmitter::MINSD(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, sseMIN, regOp, arg);} void XEmitter::MAXSS(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, sseMAX, regOp, arg);} void XEmitter::MAXSD(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, sseMAX, regOp, arg);} void XEmitter::SQRTSS(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, sseSQRT, regOp, arg);} void XEmitter::SQRTSD(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, sseSQRT, regOp, arg);} void XEmitter::RCPSS(X64Reg regOp, OpArg& arg) {WriteSSEOp(0xF3, sseRCP, regOp, arg);} void XEmitter::RSQRTSS(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, sseRSQRT, regOp, arg);} void XEmitter::ADDPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseADD, regOp, arg);} void XEmitter::ADDPD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseADD, regOp, arg);} void XEmitter::SUBPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseSUB, regOp, arg);} void XEmitter::SUBPD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseSUB, regOp, arg);} void XEmitter::CMPPS(X64Reg regOp, OpArg arg, u8 compare) {WriteSSEOp(0x00, sseCMP, regOp, arg, 1); Write8(compare);} void XEmitter::CMPPD(X64Reg regOp, OpArg arg, u8 compare) {WriteSSEOp(0x66, sseCMP, regOp, arg, 1); Write8(compare);} void XEmitter::ANDPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseAND, regOp, arg);} void XEmitter::ANDPD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseAND, regOp, arg);} void XEmitter::ANDNPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseANDN, regOp, arg);} void XEmitter::ANDNPD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseANDN, regOp, arg);} void XEmitter::ORPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseOR, regOp, arg);} void XEmitter::ORPD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseOR, regOp, arg);} void XEmitter::XORPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseXOR, regOp, arg);} void XEmitter::XORPD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseXOR, regOp, arg);} void XEmitter::MULPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseMUL, regOp, arg);} void XEmitter::MULPD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseMUL, regOp, arg);} void XEmitter::DIVPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseDIV, regOp, arg);} void XEmitter::DIVPD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseDIV, regOp, arg);} void XEmitter::MINPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseMIN, regOp, arg);} void XEmitter::MINPD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseMIN, regOp, arg);} void XEmitter::MAXPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseMAX, regOp, arg);} void XEmitter::MAXPD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseMAX, regOp, arg);} void XEmitter::SQRTPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseSQRT, regOp, arg);} void XEmitter::SQRTPD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseSQRT, regOp, arg);} void XEmitter::RCPPS(X64Reg regOp, OpArg& arg) {WriteSSEOp(0x00, sseRCP, regOp, arg);} void XEmitter::RSQRTPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseRSQRT, regOp, arg);} void XEmitter::SHUFPS(X64Reg regOp, OpArg arg, u8 shuffle) {WriteSSEOp(0x00, sseSHUF, regOp, arg,1); Write8(shuffle);} void XEmitter::SHUFPD(X64Reg regOp, OpArg arg, u8 shuffle) {WriteSSEOp(0x66, sseSHUF, regOp, arg,1); Write8(shuffle);} void XEmitter::HADDPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, sseHADD, regOp, arg);} void XEmitter::COMISS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseCOMIS, regOp, arg);} //weird that these should be packed void XEmitter::COMISD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseCOMIS, regOp, arg);} //ordered void XEmitter::UCOMISS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseUCOMIS, regOp, arg);} //unordered void XEmitter::UCOMISD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseUCOMIS, regOp, arg);} void XEmitter::MOVAPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseMOVAPfromRM, regOp, arg);} void XEmitter::MOVAPD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseMOVAPfromRM, regOp, arg);} void XEmitter::MOVAPS(OpArg arg, X64Reg regOp) {WriteSSEOp(0x00, sseMOVAPtoRM, regOp, arg);} void XEmitter::MOVAPD(OpArg arg, X64Reg regOp) {WriteSSEOp(0x66, sseMOVAPtoRM, regOp, arg);} void XEmitter::MOVUPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseMOVUPfromRM, regOp, arg);} void XEmitter::MOVUPD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseMOVUPfromRM, regOp, arg);} void XEmitter::MOVUPS(OpArg arg, X64Reg regOp) {WriteSSEOp(0x00, sseMOVUPtoRM, regOp, arg);} void XEmitter::MOVUPD(OpArg arg, X64Reg regOp) {WriteSSEOp(0x66, sseMOVUPtoRM, regOp, arg);} void XEmitter::MOVDQA(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseMOVDQfromRM, regOp, arg);} void XEmitter::MOVDQA(OpArg arg, X64Reg regOp) {WriteSSEOp(0x66, sseMOVDQtoRM, regOp, arg);} void XEmitter::MOVDQU(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, sseMOVDQfromRM, regOp, arg);} void XEmitter::MOVDQU(OpArg arg, X64Reg regOp) {WriteSSEOp(0xF3, sseMOVDQtoRM, regOp, arg);} void XEmitter::MOVSS(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, sseMOVUPfromRM, regOp, arg);} void XEmitter::MOVSD(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, sseMOVUPfromRM, regOp, arg);} void XEmitter::MOVSS(OpArg arg, X64Reg regOp) { // Make Valgrind happy. if (arg.IsSimpleReg()) MOVSS(arg.GetSimpleReg(), R(regOp)); else WriteSSEOp(0xF3, sseMOVUPtoRM, regOp, arg); } void XEmitter::MOVSD(OpArg arg, X64Reg regOp) { // Make Valgrind happy. if (arg.IsSimpleReg()) MOVSD(arg.GetSimpleReg(), R(regOp)); else WriteSSEOp(0xF2, sseMOVUPtoRM, regOp, arg); } void XEmitter::MOVLPS(X64Reg regOp, OpArg arg) { WriteSSEOp(0x00, sseMOVLPfromRM, regOp, arg); } void XEmitter::MOVLPD(X64Reg regOp, OpArg arg) { WriteSSEOp(0x66, sseMOVLPfromRM, regOp, arg); } void XEmitter::MOVLPS(OpArg arg, X64Reg regOp) { WriteSSEOp(0x00, sseMOVLPtoRM, regOp, arg); } void XEmitter::MOVLPD(OpArg arg, X64Reg regOp) { WriteSSEOp(0x66, sseMOVLPtoRM, regOp, arg); } void XEmitter::MOVHPS(X64Reg regOp, OpArg arg) { WriteSSEOp(0x00, sseMOVHPfromRM, regOp, arg); } void XEmitter::MOVHPD(X64Reg regOp, OpArg arg) { WriteSSEOp(0x66, sseMOVHPfromRM, regOp, arg); } void XEmitter::MOVHPS(OpArg arg, X64Reg regOp) { WriteSSEOp(0x00, sseMOVHPtoRM, regOp, arg); } void XEmitter::MOVHPD(OpArg arg, X64Reg regOp) { WriteSSEOp(0x66, sseMOVHPtoRM, regOp, arg); } void XEmitter::MOVHLPS(X64Reg regOp1, X64Reg regOp2) {WriteSSEOp(0x00, sseMOVHLPS, regOp1, R(regOp2));} void XEmitter::MOVLHPS(X64Reg regOp1, X64Reg regOp2) {WriteSSEOp(0x00, sseMOVLHPS, regOp1, R(regOp2));} void XEmitter::CVTPS2PD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, 0x5A, regOp, arg);} void XEmitter::CVTPD2PS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, 0x5A, regOp, arg);} void XEmitter::CVTSD2SS(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, 0x5A, regOp, arg);} void XEmitter::CVTSS2SD(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, 0x5A, regOp, arg);} void XEmitter::CVTSD2SI(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, 0x2D, regOp, arg);} void XEmitter::CVTSS2SI(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, 0x2D, regOp, arg);} void XEmitter::CVTSI2SD(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, 0x2A, regOp, arg);} void XEmitter::CVTSI2SS(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, 0x2A, regOp, arg);} void XEmitter::CVTDQ2PD(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, 0xE6, regOp, arg);} void XEmitter::CVTDQ2PS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, 0x5B, regOp, arg);} void XEmitter::CVTPD2DQ(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, 0xE6, regOp, arg);} void XEmitter::CVTPS2DQ(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, 0x5B, regOp, arg);} void XEmitter::CVTTSD2SI(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, 0x2C, regOp, arg);} void XEmitter::CVTTSS2SI(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, 0x2C, regOp, arg);} void XEmitter::CVTTPS2DQ(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, 0x5B, regOp, arg);} void XEmitter::CVTTPD2DQ(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, 0xE6, regOp, arg);} void XEmitter::MASKMOVDQU(X64Reg dest, X64Reg src) {WriteSSEOp(0x66, sseMASKMOVDQU, dest, R(src));} void XEmitter::MOVMSKPS(X64Reg dest, OpArg arg) {WriteSSEOp(0x00, 0x50, dest, arg);} void XEmitter::MOVMSKPD(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0x50, dest, arg);} void XEmitter::LDDQU(X64Reg dest, OpArg arg) {WriteSSEOp(0xF2, sseLDDQU, dest, arg);} // For integer data only // THESE TWO ARE UNTESTED. void XEmitter::UNPCKLPS(X64Reg dest, OpArg arg) {WriteSSEOp(0x00, 0x14, dest, arg);} void XEmitter::UNPCKHPS(X64Reg dest, OpArg arg) {WriteSSEOp(0x00, 0x15, dest, arg);} void XEmitter::UNPCKLPD(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0x14, dest, arg);} void XEmitter::UNPCKHPD(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0x15, dest, arg);} void XEmitter::MOVDDUP(X64Reg regOp, OpArg arg) { if (cpu_info.bSSE3) { WriteSSEOp(0xF2, 0x12, regOp, arg); //SSE3 movddup } else { // Simulate this instruction with SSE2 instructions if (!arg.IsSimpleReg(regOp)) MOVSD(regOp, arg); UNPCKLPD(regOp, R(regOp)); } } //There are a few more left // Also some integer instructions are missing void XEmitter::PACKSSDW(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0x6B, dest, arg);} void XEmitter::PACKSSWB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0x63, dest, arg);} void XEmitter::PACKUSWB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0x67, dest, arg);} void XEmitter::PUNPCKLBW(X64Reg dest, const OpArg &arg) {WriteSSEOp(0x66, 0x60, dest, arg);} void XEmitter::PUNPCKLWD(X64Reg dest, const OpArg &arg) {WriteSSEOp(0x66, 0x61, dest, arg);} void XEmitter::PUNPCKLDQ(X64Reg dest, const OpArg &arg) {WriteSSEOp(0x66, 0x62, dest, arg);} void XEmitter::PUNPCKLQDQ(X64Reg dest, const OpArg &arg) {WriteSSEOp(0x66, 0x6C, dest, arg);} void XEmitter::PUNPCKHBW(X64Reg dest, const OpArg &arg) {WriteSSEOp(0x66, 0x68, dest, arg);} void XEmitter::PUNPCKHWD(X64Reg dest, const OpArg &arg) {WriteSSEOp(0x66, 0x69, dest, arg);} void XEmitter::PUNPCKHDQ(X64Reg dest, const OpArg &arg) {WriteSSEOp(0x66, 0x6A, dest, arg);} void XEmitter::PUNPCKHQDQ(X64Reg dest, const OpArg &arg) {WriteSSEOp(0x66, 0x6D, dest, arg);} void XEmitter::PSRLW(X64Reg dest, X64Reg reg, int shift) { if (dest != reg) { if (cpu_info.bAVX) { VPSRLW(128, dest, reg, shift); return; } MOVDQA(dest, R(reg)); } WriteSSEOp(0x66, 0x71, (X64Reg)2, R(dest)); Write8(shift); } void XEmitter::PSRLD(X64Reg dest, X64Reg reg, int shift) { if (dest != reg) { if (cpu_info.bAVX) { VPSRLD(128, dest, reg, shift); return; } MOVDQA(dest, R(reg)); } WriteSSEOp(0x66, 0x72, (X64Reg)2, R(dest)); Write8(shift); } void XEmitter::PSRLQ(X64Reg dest, X64Reg reg, int shift) { if (dest != reg) { if (cpu_info.bAVX) { VPSRLQ(128, dest, reg, shift); return; } MOVDQA(dest, R(reg)); } WriteSSEOp(0x66, 0x73, (X64Reg)2, R(dest)); Write8(shift); } void XEmitter::PSRLDQ(X64Reg dest, X64Reg reg, int shift) { if (dest != reg) { if (cpu_info.bAVX) { VPSRLDQ(128, dest, reg, shift); return; } MOVDQA(dest, R(reg)); } WriteSSEOp(0x66, 0x73, (X64Reg)3, R(dest)); Write8(shift); } void XEmitter::PSRLW(X64Reg reg, OpArg arg) { WriteSSEOp(0x66, 0xD1, reg, arg); } void XEmitter::PSRLD(X64Reg reg, OpArg arg) { WriteSSEOp(0x66, 0xD2, reg, arg); } void XEmitter::PSRLQ(X64Reg reg, OpArg arg) { WriteSSEOp(0x66, 0xD3, reg, arg); } void XEmitter::PSLLW(X64Reg dest, X64Reg reg, int shift) { if (dest != reg) { if (cpu_info.bAVX) { VPSLLW(128, dest, reg, shift); return; } MOVDQA(dest, R(reg)); } WriteSSEOp(0x66, 0x71, (X64Reg)6, R(dest)); Write8(shift); } void XEmitter::PSLLD(X64Reg dest, X64Reg reg, int shift) { if (dest != reg) { if (cpu_info.bAVX) { VPSLLD(128, dest, reg, shift); return; } MOVDQA(dest, R(reg)); } WriteSSEOp(0x66, 0x72, (X64Reg)6, R(dest)); Write8(shift); } void XEmitter::PSLLQ(X64Reg dest, X64Reg reg, int shift) { if (dest != reg) { if (cpu_info.bAVX) { VPSLLQ(128, dest, reg, shift); return; } MOVDQA(dest, R(reg)); } WriteSSEOp(0x66, 0x73, (X64Reg)6, R(dest)); Write8(shift); } void XEmitter::PSLLDQ(X64Reg dest, X64Reg reg, int shift) { if (dest != reg) { if (cpu_info.bAVX) { VPSLLDQ(128, dest, reg, shift); return; } MOVDQA(dest, R(reg)); } WriteSSEOp(0x66, 0x73, (X64Reg)7, R(dest)); Write8(shift); } void XEmitter::PSLLW(X64Reg reg, OpArg arg) { WriteSSEOp(0x66, 0xF1, reg, arg); } void XEmitter::PSLLD(X64Reg reg, OpArg arg) { WriteSSEOp(0x66, 0xF2, reg, arg); } void XEmitter::PSLLQ(X64Reg reg, OpArg arg) { WriteSSEOp(0x66, 0xF3, reg, arg); } void XEmitter::PSRAW(X64Reg dest, X64Reg reg, int shift) { if (dest != reg) { if (cpu_info.bAVX) { VPSRAW(128, dest, reg, shift); return; } MOVDQA(dest, R(reg)); } WriteSSEOp(0x66, 0x71, (X64Reg)4, R(dest)); Write8(shift); } void XEmitter::PSRAD(X64Reg dest, X64Reg reg, int shift) { if (dest != reg) { if (cpu_info.bAVX) { VPSRAD(128, dest, reg, shift); return; } MOVDQA(dest, R(reg)); } WriteSSEOp(0x66, 0x72, (X64Reg)4, R(dest)); Write8(shift); } void XEmitter::PSRAW(X64Reg reg, OpArg arg) { WriteSSEOp(0x66, 0xE1, reg, arg); } void XEmitter::PSRAD(X64Reg reg, OpArg arg) { WriteSSEOp(0x66, 0xE2, reg, arg); } void XEmitter::PMULLW(X64Reg dest, const OpArg &arg) {WriteSSEOp(0x66, 0xD5, dest, arg);} void XEmitter::PMULHW(X64Reg dest, const OpArg &arg) {WriteSSEOp(0x66, 0xE5, dest, arg);} void XEmitter::PMULHUW(X64Reg dest, const OpArg &arg) {WriteSSEOp(0x66, 0xE4, dest, arg);} void XEmitter::PMULUDQ(X64Reg dest, const OpArg &arg) {WriteSSEOp(0x66, 0xF4, dest, arg);} void XEmitter::PMULLD(X64Reg dest, const OpArg &arg) {WriteSSE41Op(0x66, 0x3840, dest, arg);} void XEmitter::PMULDQ(X64Reg dest, const OpArg &arg) {WriteSSE41Op(0x66, 0x3828, dest, arg);} void XEmitter::WriteSSSE3Op(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes) { _assert_msg_(cpu_info.bSSSE3, "Trying to use SSSE3 on a system that doesn't support it."); WriteSSEOp(opPrefix, op, regOp, arg, extrabytes); } void XEmitter::WriteSSE41Op(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes) { _assert_msg_(cpu_info.bSSE4_1, "Trying to use SSE4.1 on a system that doesn't support it."); WriteSSEOp(opPrefix, op, regOp, arg, extrabytes); } void XEmitter::PSHUFB(X64Reg dest, OpArg arg) {WriteSSSE3Op(0x66, 0x3800, dest, arg);} void XEmitter::PTEST(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3817, dest, arg);} void XEmitter::PACKUSDW(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x382b, dest, arg);} void XEmitter::DPPS(X64Reg dest, OpArg arg, u8 mask) {WriteSSE41Op(0x66, 0x3A40, dest, arg, 1); Write8(mask);} void XEmitter::PMINSB(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3838, dest, arg);} void XEmitter::PMINSD(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3839, dest, arg);} void XEmitter::PMINUW(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x383a, dest, arg);} void XEmitter::PMINUD(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x383b, dest, arg);} void XEmitter::PMAXSB(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x383c, dest, arg);} void XEmitter::PMAXSD(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x383d, dest, arg);} void XEmitter::PMAXUW(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x383e, dest, arg);} void XEmitter::PMAXUD(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x383f, dest, arg);} void XEmitter::PMOVSXBW(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3820, dest, arg);} void XEmitter::PMOVSXBD(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3821, dest, arg);} void XEmitter::PMOVSXBQ(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3822, dest, arg);} void XEmitter::PMOVSXWD(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3823, dest, arg);} void XEmitter::PMOVSXWQ(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3824, dest, arg);} void XEmitter::PMOVSXDQ(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3825, dest, arg);} void XEmitter::PMOVZXBW(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3830, dest, arg);} void XEmitter::PMOVZXBD(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3831, dest, arg);} void XEmitter::PMOVZXBQ(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3832, dest, arg);} void XEmitter::PMOVZXWD(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3833, dest, arg);} void XEmitter::PMOVZXWQ(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3834, dest, arg);} void XEmitter::PMOVZXDQ(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3835, dest, arg);} void XEmitter::PBLENDVB(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3810, dest, arg);} void XEmitter::BLENDVPS(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3814, dest, arg);} void XEmitter::BLENDVPD(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3815, dest, arg);} void XEmitter::PBLENDW(X64Reg dest, OpArg arg, u8 mask) {WriteSSE41Op(0x66, 0x3A0E, dest, arg, 1); Write8(mask);} void XEmitter::BLENDPS(X64Reg dest, OpArg arg, u8 mask) {WriteSSE41Op(0x66, 0x3A0C, dest, arg, 1); Write8(mask);} void XEmitter::BLENDPD(X64Reg dest, OpArg arg, u8 mask) {WriteSSE41Op(0x66, 0x3A0D, dest, arg, 1); Write8(mask);} void XEmitter::ROUNDSS(X64Reg dest, OpArg arg, u8 mode) {WriteSSE41Op(0x66, 0x3A0A, dest, arg, 1); Write8(mode);} void XEmitter::ROUNDSD(X64Reg dest, OpArg arg, u8 mode) {WriteSSE41Op(0x66, 0x3A0B, dest, arg, 1); Write8(mode);} void XEmitter::ROUNDPS(X64Reg dest, OpArg arg, u8 mode) {WriteSSE41Op(0x66, 0x3A08, dest, arg, 1); Write8(mode);} void XEmitter::ROUNDPD(X64Reg dest, OpArg arg, u8 mode) {WriteSSE41Op(0x66, 0x3A09, dest, arg, 1); Write8(mode);} void XEmitter::PAND(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xDB, dest, arg);} void XEmitter::PANDN(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xDF, dest, arg);} void XEmitter::PXOR(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xEF, dest, arg);} void XEmitter::POR(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xEB, dest, arg);} void XEmitter::PADDB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xFC, dest, arg);} void XEmitter::PADDW(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xFD, dest, arg);} void XEmitter::PADDD(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xFE, dest, arg);} void XEmitter::PADDQ(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xD4, dest, arg);} void XEmitter::PADDSB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xEC, dest, arg);} void XEmitter::PADDSW(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xED, dest, arg);} void XEmitter::PADDUSB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xDC, dest, arg);} void XEmitter::PADDUSW(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xDD, dest, arg);} void XEmitter::PSUBB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xF8, dest, arg);} void XEmitter::PSUBW(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xF9, dest, arg);} void XEmitter::PSUBD(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xFA, dest, arg);} void XEmitter::PSUBQ(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xFB, dest, arg);} void XEmitter::PSUBSB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xE8, dest, arg);} void XEmitter::PSUBSW(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xE9, dest, arg);} void XEmitter::PSUBUSB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xD8, dest, arg);} void XEmitter::PSUBUSW(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xD9, dest, arg);} void XEmitter::PAVGB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xE0, dest, arg);} void XEmitter::PAVGW(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xE3, dest, arg);} void XEmitter::PCMPEQB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0x74, dest, arg);} void XEmitter::PCMPEQW(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0x75, dest, arg);} void XEmitter::PCMPEQD(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0x76, dest, arg);} void XEmitter::PCMPGTB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0x64, dest, arg);} void XEmitter::PCMPGTW(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0x65, dest, arg);} void XEmitter::PCMPGTD(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0x66, dest, arg);} void XEmitter::PEXTRW(X64Reg dest, X64Reg arg, u8 subreg) {WriteSSEOp(0x66, 0xC5, dest, R(arg), 1); Write8(subreg);} void XEmitter::PINSRW(X64Reg dest, OpArg arg, u8 subreg) {WriteSSEOp(0x66, 0xC4, dest, arg, 1); Write8(subreg);} void XEmitter::PEXTRB(OpArg dest, X64Reg arg, u8 subreg) {WriteSSE41Op(0x66, 0x3A14, arg, dest, 1); Write8(subreg);} void XEmitter::PEXTRW(OpArg dest, X64Reg arg, u8 subreg) {WriteSSE41Op(0x66, 0x3A15, arg, dest, 1); Write8(subreg);} void XEmitter::PEXTRD(OpArg dest, X64Reg arg, u8 subreg) {WriteSSE41Op(0x66, 0x3A16, arg, dest, 1); Write8(subreg);} void XEmitter::PEXTRQ(OpArg dest, X64Reg arg, u8 subreg) { _assert_msg_(cpu_info.bSSE4_1, "Trying to use SSE4.1 on a system that doesn't support it."); Write8(0x66); dest.operandReg = arg; dest.WriteRex(this, 64, 0); Write8(0x0F); Write8(0x3A); Write8(0x16); dest.WriteRest(this, 1); Write8(subreg); } void XEmitter::PINSRB(X64Reg dest, OpArg arg, u8 subreg) {WriteSSE41Op(0x66, 0x3A20, dest, arg, 1); Write8(subreg);} void XEmitter::PINSRD(X64Reg dest, OpArg arg, u8 subreg) {WriteSSE41Op(0x66, 0x3A22, dest, arg, 1); Write8(subreg);} void XEmitter::PINSRQ(X64Reg dest, OpArg arg, u8 subreg) { _assert_msg_(cpu_info.bSSE4_1, "Trying to use SSE4.1 on a system that doesn't support it."); Write8(0x66); arg.operandReg = dest; arg.WriteRex(this, 64, 0); Write8(0x0F); Write8(0x3A); Write8(0x22); arg.WriteRest(this, 1); Write8(subreg); } void XEmitter::PMADDWD(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xF5, dest, arg); } void XEmitter::PMADDUBSW(X64Reg dest, OpArg arg) {WriteSSSE3Op(0x66, 0x3804, dest, arg);} void XEmitter::PSADBW(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xF6, dest, arg);} void XEmitter::PMAXSW(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xEE, dest, arg); } void XEmitter::PMAXUB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xDE, dest, arg); } void XEmitter::PMINSW(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xEA, dest, arg); } void XEmitter::PMINUB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xDA, dest, arg); } void XEmitter::PMOVMSKB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xD7, dest, arg); } void XEmitter::PSHUFD(X64Reg regOp, OpArg arg, u8 shuffle) {WriteSSEOp(0x66, 0x70, regOp, arg, 1); Write8(shuffle);} void XEmitter::PSHUFLW(X64Reg regOp, OpArg arg, u8 shuffle) {WriteSSEOp(0xF2, 0x70, regOp, arg, 1); Write8(shuffle);} void XEmitter::PSHUFHW(X64Reg regOp, OpArg arg, u8 shuffle) {WriteSSEOp(0xF3, 0x70, regOp, arg, 1); Write8(shuffle);} // VEX void XEmitter::VADDPS(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0x00, sseADD, regOp1, regOp2, arg); } void XEmitter::VADDPD(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0x66, sseADD, regOp1, regOp2, arg); } void XEmitter::VADDSS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0, 0xF3, sseADD, regOp1, regOp2, arg); } void XEmitter::VADDSD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0, 0xF2, sseADD, regOp1, regOp2, arg); } void XEmitter::VADDSUBPS(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0xF2, 0xD0, regOp1, regOp2, arg); } void XEmitter::VADDSUBPD(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0x66, 0xD0, regOp1, regOp2, arg); } void XEmitter::VCMPPS(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg, u8 compare) { WriteAVXOp(bits, 0x00, sseCMP, regOp1, regOp2, arg, 1); Write8(compare); } void XEmitter::VCMPPD(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg, u8 compare) { WriteAVXOp(bits, 0x66, sseCMP, regOp1, regOp2, arg, 1); Write8(compare); } void XEmitter::VCMPSS(X64Reg regOp1, X64Reg regOp2, OpArg arg, u8 compare) { WriteAVXOp(0, 0xF3, sseCMP, regOp1, regOp2, arg, 1); Write8(compare); } void XEmitter::VCMPSD(X64Reg regOp1, X64Reg regOp2, OpArg arg, u8 compare) { WriteAVXOp(0, 0xF2, sseCMP, regOp1, regOp2, arg, 1); Write8(compare); } void XEmitter::VCOMISS(X64Reg regOp1, OpArg arg) { WriteAVXOp(0, 0x00, sseCOMIS, regOp1, arg); } void XEmitter::VCOMISD(X64Reg regOp1, OpArg arg) { WriteAVXOp(0, 0x66, sseCOMIS, regOp1, arg); } void XEmitter::VDIVPS(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0x00, sseDIV, regOp1, regOp2, arg); } void XEmitter::VDIVPD(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0x66, sseDIV, regOp1, regOp2, arg); } void XEmitter::VDIVSS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0, 0xF3, sseDIV, regOp1, regOp2, arg); } void XEmitter::VDIVSD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0, 0xF2, sseDIV, regOp1, regOp2, arg); } void XEmitter::VDPPS(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg, u8 mask) { WriteAVXOp(bits, 0x66, 0x3A40, regOp1, regOp2, arg, 1); Write8(mask); } void XEmitter::VDPPD(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg, u8 mask) { _assert_msg_(bits == 0 || bits == 128, "DPPD doesn't support 256 bit"); WriteAVXOp(bits, 0x66, 0x3A41, regOp1, regOp2, arg, 1); Write8(mask); } void XEmitter::VHADDPS(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0xF2, sseHADD, regOp1, regOp2, arg); } void XEmitter::VHADDPD(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0x66, sseHADD, regOp1, regOp2, arg); } void XEmitter::VHSUBPS(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0xF2, 0x7D, regOp1, regOp2, arg); } void XEmitter::VHSUBPD(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0x66, 0x7D, regOp1, regOp2, arg); } void XEmitter::VMAXPS(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0x00, sseMAX, regOp1, regOp2, arg); } void XEmitter::VMAXPD(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0x66, sseMAX, regOp1, regOp2, arg); } void XEmitter::VMAXSS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0, 0xF3, sseMAX, regOp1, regOp2, arg); } void XEmitter::VMAXSD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0, 0xF2, sseMAX, regOp1, regOp2, arg); } void XEmitter::VMINPS(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0x00, sseMIN, regOp1, regOp2, arg); } void XEmitter::VMINPD(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0x66, sseMIN, regOp1, regOp2, arg); } void XEmitter::VMINSS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0, 0xF3, sseMIN, regOp1, regOp2, arg); } void XEmitter::VMINSD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0, 0xF2, sseMIN, regOp1, regOp2, arg); } void XEmitter::VMULPS(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0x00, sseMUL, regOp1, regOp2, arg); } void XEmitter::VMULPD(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0x66, sseMUL, regOp1, regOp2, arg); } void XEmitter::VMULSS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0, 0xF3, sseMUL, regOp1, regOp2, arg); } void XEmitter::VMULSD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0, 0xF2, sseMUL, regOp1, regOp2, arg); } void XEmitter::VRCPPS(int bits, X64Reg regOp1, OpArg arg) { WriteAVXOp(bits, 0x00, sseRCP, regOp1, arg); } void XEmitter::VRCPSS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0, 0xF3, sseRCP, regOp1, regOp2, arg); } void XEmitter::VRSQRTPS(int bits, X64Reg regOp1, OpArg arg) { WriteAVXOp(bits, 0x00, sseRSQRT, regOp1, arg); } void XEmitter::VRSQRTSS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0, 0xF3, sseRSQRT, regOp1, regOp2, arg); } void XEmitter::VSQRTPS(int bits, X64Reg regOp1, OpArg arg) { WriteAVXOp(bits, 0x00, sseSQRT, regOp1, arg); } void XEmitter::VSQRTPD(int bits, X64Reg regOp1, OpArg arg) { WriteAVXOp(bits, 0x66, sseSQRT, regOp1, arg); } void XEmitter::VSQRTSS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0, 0xF3, sseSQRT, regOp1, regOp2, arg); } void XEmitter::VSQRTSD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0, 0xF2, sseSQRT, regOp1, regOp2, arg); } void XEmitter::VSUBPS(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0x00, sseSUB, regOp1, regOp2, arg); } void XEmitter::VSUBPD(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0x66, sseSUB, regOp1, regOp2, arg); } void XEmitter::VSUBSS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0, 0xF3, sseSUB, regOp1, regOp2, arg); } void XEmitter::VSUBSD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0, 0xF2, sseSUB, regOp1, regOp2, arg); } void XEmitter::VUCOMISS(X64Reg regOp1, OpArg arg) { WriteAVXOp(0, 0x00, sseUCOMIS, regOp1, arg); } void XEmitter::VUCOMISD(X64Reg regOp1, OpArg arg) { WriteAVXOp(0, 0x66, sseUCOMIS, regOp1, arg); } void XEmitter::VBLENDPS(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg, u8 mask) { WriteAVXOp(bits, 0x66, 0x3A0C, regOp1, regOp2, arg, 1); Write8(mask); } void XEmitter::VBLENDPD(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg, u8 mask) { WriteAVXOp(bits, 0x66, 0x3A0D, regOp1, regOp2, arg, 1); Write8(mask); } // Note: doesn't match non-VEX. void XEmitter::VBLENDVPS(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg, X64Reg mask) { WriteAVXOp(bits, 0x66, 0x3A4A, regOp1, regOp2, arg, 1); Write8(mask << 4); } // Note: doesn't match non-VEX. void XEmitter::VBLENDVPD(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg, X64Reg mask) { WriteAVXOp(bits, 0x66, 0x3A4B, regOp1, regOp2, arg, 1); Write8(mask << 4); } void XEmitter::VCVTDQ2PS(int bits, X64Reg regOp1, OpArg arg) { WriteAVXOp(bits, 0x00, 0x5B, regOp1, arg); } void XEmitter::VCVTDQ2PD(int bits, X64Reg regOp1, OpArg arg) { WriteAVXOp(bits, 0xF3, 0xE6, regOp1, arg); } void XEmitter::VCVTPS2DQ(int bits, X64Reg regOp1, OpArg arg) { WriteAVXOp(bits, 0x66, 0x5B, regOp1, arg); } void XEmitter::VCVTPD2DQ(int bits, X64Reg regOp1, OpArg arg) { WriteAVXOp(bits, 0xF2, 0xE6, regOp1, arg); } void XEmitter::VCVTPS2PD(int bits, X64Reg regOp1, OpArg arg) { WriteAVXOp(bits, 0x00, 0x5A, regOp1, arg); } void XEmitter::VCVTPD2PS(int bits, X64Reg regOp1, OpArg arg) { WriteAVXOp(bits, 0x66, 0x5A, regOp1, arg); } void XEmitter::VCVTSS2SI(int bits, X64Reg regOp1, OpArg arg) { WriteAVXOp(0, 0xF3, 0x2D, regOp1, arg, 0, bits == 64 ? 1 : 0); } void XEmitter::VCVTSS2SD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0, 0xF3, 0x5A, regOp1, regOp2, arg); } void XEmitter::VCVTSD2SI(int bits, X64Reg regOp1, OpArg arg) { WriteAVXOp(0, 0xF2, 0x2D, regOp1, arg, 0, bits == 64 ? 1 : 0); } void XEmitter::VCVTSD2SS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0, 0xF2, 0x5A, regOp1, regOp2, arg); } void XEmitter::VCVTSI2SS(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0, 0xF3, 0x2A, regOp1, regOp2, arg, 0, bits == 64 ? 1 : 0); } void XEmitter::VCVTSI2SD(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0, 0xF2, 0x2A, regOp1, regOp2, arg, 0, bits == 64 ? 1 : 0); } void XEmitter::VCVTTPS2DQ(int bits, X64Reg regOp1, OpArg arg) { WriteAVXOp(bits, 0xF3, 0x5B, regOp1, arg); } void XEmitter::VCVTTPD2DQ(int bits, X64Reg regOp1, OpArg arg) { WriteAVXOp(bits, 0x66, 0xE6, regOp1, arg); } void XEmitter::VCVTTSS2SI(int bits, X64Reg regOp1, OpArg arg) { WriteAVXOp(0, 0xF3, 0x2C, regOp1, arg, 0, bits == 64 ? 1 : 0); } void XEmitter::VCVTTSD2SI(int bits, X64Reg regOp1, OpArg arg) { WriteAVXOp(0, 0xF2, 0x2C, regOp1, arg, 0, bits == 64 ? 1 : 0); } void XEmitter::VEXTRACTPS(OpArg arg, X64Reg regOp1, u8 subreg) { WriteAVXOp(0, 0x66, 0x3A17, regOp1, arg, 1); Write8(subreg); } void XEmitter::VINSERTPS(X64Reg regOp1, X64Reg regOp2, OpArg arg, u8 subreg) { WriteAVXOp(0, 0x66, 0x3A21, regOp1, regOp2, arg, 1); Write8(subreg); } void XEmitter::VLDDQU(int bits, X64Reg regOp1, OpArg arg) { WriteAVXOp(bits, 0xF2, sseLDDQU, regOp1, arg); } void XEmitter::VMOVAPS(int bits, X64Reg regOp1, OpArg arg) { WriteAVXOp(bits, 0x00, sseMOVAPfromRM, regOp1, arg); } void XEmitter::VMOVAPD(int bits, X64Reg regOp1, OpArg arg) { WriteAVXOp(bits, 0x66, sseMOVAPfromRM, regOp1, arg); } void XEmitter::VMOVAPS(int bits, OpArg arg, X64Reg regOp1) { WriteAVXOp(bits, 0x00, sseMOVAPtoRM, regOp1, arg); } void XEmitter::VMOVAPD(int bits, OpArg arg, X64Reg regOp1) { WriteAVXOp(bits, 0x66, sseMOVAPtoRM, regOp1, arg); } void XEmitter::VMOVD(int bits, X64Reg regOp1, OpArg arg) { WriteAVXOp(bits, 0x66, 0x6E, regOp1, arg, 0, bits == 64 ? 1 : 0); } void XEmitter::VMOVD(int bits, OpArg arg, X64Reg regOp1) { WriteAVXOp(bits, 0x66, 0x7E, regOp1, arg, 0, bits == 64 ? 1 : 0); } void XEmitter::VMOVD(X64Reg regOp1, OpArg arg) { VMOVD(32, regOp1, arg); } void XEmitter::VMOVD(OpArg arg, X64Reg regOp1) { VMOVD(32, arg, regOp1); } void XEmitter::VMOVQ(X64Reg regOp1, OpArg arg) { VMOVD(64, regOp1, arg); } void XEmitter::VMOVQ(OpArg arg, X64Reg regOp1) { VMOVD(64, arg, regOp1); } void XEmitter::VMOVDDUP(int bits, X64Reg regOp1, OpArg arg) { WriteAVXOp(bits, 0xF2, 0x12, regOp1, arg); } void XEmitter::VMOVDQA(int bits, X64Reg regOp1, OpArg arg) { WriteAVXOp(bits, 0x66, sseMOVDQfromRM, regOp1, arg); } void XEmitter::VMOVDQA(int bits, OpArg arg, X64Reg regOp1) { WriteAVXOp(bits, 0x66, sseMOVDQtoRM, regOp1, arg); } void XEmitter::VMOVDQU(int bits, X64Reg regOp1, OpArg arg) { WriteAVXOp(bits, 0xF3, sseMOVDQfromRM, regOp1, arg); } void XEmitter::VMOVDQU(int bits, OpArg arg, X64Reg regOp1) { WriteAVXOp(bits, 0xF3, sseMOVDQtoRM, regOp1, arg); } void XEmitter::VMOVHLPS(X64Reg regOp1, X64Reg regOp2, X64Reg arg) { WriteAVXOp(0, 0x00, sseMOVHLPS, regOp1, regOp2, R(arg)); } void XEmitter::VMOVLHPS(X64Reg regOp1, X64Reg regOp2, X64Reg arg) { WriteAVXOp(0, 0x00, sseMOVLHPS, regOp1, regOp2, R(arg)); } void XEmitter::VMOVHPS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { _assert_msg_(!arg.IsSimpleReg(), "VMOVHPS cannot be used for registers"); WriteAVXOp(0, 0x00, sseMOVHPfromRM, regOp1, regOp2, arg); } void XEmitter::VMOVHPS(OpArg arg, X64Reg regOp1) { _assert_msg_(!arg.IsSimpleReg(), "VMOVHPS cannot be used for registers"); WriteAVXOp(0, 0x00, sseMOVHPtoRM, regOp1, arg); } void XEmitter::VMOVHPD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { _assert_msg_(!arg.IsSimpleReg(), "VMOVHPD cannot be used for registers"); WriteAVXOp(0, 0x66, sseMOVHPfromRM, regOp1, regOp2, arg); } void XEmitter::VMOVHPD(OpArg arg, X64Reg regOp1) { _assert_msg_(!arg.IsSimpleReg(), "VMOVHPD cannot be used for registers"); WriteAVXOp(0, 0x66, sseMOVHPtoRM, regOp1, arg); } void XEmitter::VMOVLPS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { _assert_msg_(!arg.IsSimpleReg(), "VMOVLPS cannot be used for registers"); WriteAVXOp(0, 0x00, sseMOVLPfromRM, regOp1, regOp2, arg); } void XEmitter::VMOVLPS(OpArg arg, X64Reg regOp1) { _assert_msg_(!arg.IsSimpleReg(), "VMOVLPS cannot be used for registers"); WriteAVXOp(0, 0x00, sseMOVLPtoRM, regOp1, arg); } void XEmitter::VMOVLPD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { _assert_msg_(!arg.IsSimpleReg(), "VMOVLPD cannot be used for registers"); WriteAVXOp(0, 0x66, sseMOVLPfromRM, regOp1, regOp2, arg); } void XEmitter::VMOVLPD(OpArg arg, X64Reg regOp1) { _assert_msg_(!arg.IsSimpleReg(), "VMOVLPD cannot be used for registers"); WriteAVXOp(0, 0x66, sseMOVLPtoRM, regOp1, arg); } void XEmitter::VMOVMSKPS(int bits, X64Reg genReg, X64Reg xmmReg) { WriteAVXOp(bits, 0x00, 0x50, genReg, R(xmmReg)); } void XEmitter::VMOVMSKPD(int bits, X64Reg genReg, X64Reg xmmReg) { WriteAVXOp(bits, 0x66, 0x50, genReg, R(xmmReg)); } void XEmitter::VMOVNTDQ(int bits, OpArg arg, X64Reg regOp1) { WriteAVXOp(bits, 0x66, sseMOVNTDQ, regOp1, arg); } void XEmitter::VMOVNTPS(int bits, OpArg arg, X64Reg regOp1) { WriteAVXOp(bits, 0x00, sseMOVNTP, regOp1, arg); } void XEmitter::VMOVNTPD(int bits, OpArg arg, X64Reg regOp1) { WriteAVXOp(bits, 0x66, sseMOVNTP, regOp1, arg); } void XEmitter::VMOVQ(X64Reg regOp1, X64Reg arg) { WriteAVXOp(0, 0xF3, 0x7E, regOp1, R(arg)); } void XEmitter::VMOVSS(X64Reg regOp1, X64Reg regOp2, X64Reg arg) { WriteAVXOp(0, 0xF3, sseMOVUPfromRM, regOp1, regOp2, R(arg)); } void XEmitter::VMOVSS(OpArg arg, X64Reg regOp1) { _assert_msg_(!arg.IsSimpleReg(), "VMOVSS requires three registers, or register and memory"); WriteAVXOp(0, 0xF3, sseMOVUPtoRM, regOp1, arg); } void XEmitter::VMOVSS(X64Reg regOp1, OpArg arg) { _assert_msg_(!arg.IsSimpleReg(), "VMOVSS requires three registers, or register and memory"); WriteAVXOp(0, 0xF3, sseMOVUPfromRM, regOp1, arg); } void XEmitter::VMOVSD(X64Reg regOp1, X64Reg regOp2, X64Reg arg) { WriteAVXOp(0, 0xF2, sseMOVUPfromRM, regOp1, regOp2, R(arg)); } void XEmitter::VMOVSD(OpArg arg, X64Reg regOp1) { _assert_msg_(!arg.IsSimpleReg(), "VMOVSD requires three registers, or register and memory"); WriteAVXOp(0, 0xF2, sseMOVUPtoRM, regOp1, arg); } void XEmitter::VMOVSD(X64Reg regOp1, OpArg arg) { _assert_msg_(!arg.IsSimpleReg(), "VMOVSD requires three registers, or register and memory"); WriteAVXOp(0, 0xF2, sseMOVUPfromRM, regOp1, arg); } void XEmitter::VMOVSHDUP(int bits, X64Reg regOp1, OpArg arg) { WriteAVXOp(bits, 0xF3, sseMOVHPfromRM, regOp1, arg); } void XEmitter::VMOVSLDUP(int bits, X64Reg regOp1, OpArg arg) { WriteAVXOp(bits, 0xF3, sseMOVLPfromRM, regOp1, arg); } void XEmitter::VMOVUPS(int bits, X64Reg regOp1, OpArg arg) { WriteAVXOp(bits, 0x00, sseMOVUPfromRM, regOp1, arg); } void XEmitter::VMOVUPD(int bits, X64Reg regOp1, OpArg arg) { WriteAVXOp(bits, 0x66, sseMOVUPfromRM, regOp1, arg); } void XEmitter::VMOVUPS(int bits, OpArg arg, X64Reg regOp1) { WriteAVXOp(bits, 0x00, sseMOVUPtoRM, regOp1, arg); } void XEmitter::VMOVUPD(int bits, OpArg arg, X64Reg regOp1) { WriteAVXOp(bits, 0x66, sseMOVUPtoRM, regOp1, arg); } void XEmitter::VROUNDPS(int bits, X64Reg dest, OpArg arg, u8 mode) { WriteAVXOp(bits, 0x66, 0x3A08, dest, arg, 1); Write8(mode); } void XEmitter::VROUNDPD(int bits, X64Reg dest, OpArg arg, u8 mode) { WriteAVXOp(bits, 0x66, 0x3A09, dest, arg, 1); Write8(mode); } void XEmitter::VROUNDSS(X64Reg regOp1, X64Reg regOp2, OpArg arg, u8 mode) { WriteAVXOp(0, 0x66, 0x3A0A, regOp1, regOp2, arg, 1); Write8(mode); } void XEmitter::VROUNDSD(X64Reg regOp1, X64Reg regOp2, OpArg arg, u8 mode) { WriteAVXOp(0, 0x66, 0x3A0B, regOp1, regOp2, arg, 1); Write8(mode); } void XEmitter::VSHUFPS(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg, u8 shuffle) { WriteAVXOp(bits, 0x00, sseSHUF, regOp1, regOp2, arg, 1); Write8(shuffle); } void XEmitter::VSHUFPD(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg, u8 shuffle) { WriteAVXOp(bits, 0x66, sseSHUF, regOp1, regOp2, arg, 1); Write8(shuffle); } void XEmitter::VUNPCKHPS(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0x00, 0x15, regOp1, regOp2, arg); } void XEmitter::VUNPCKHPD(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0x66, 0x15, regOp1, regOp2, arg); } void XEmitter::VUNPCKLPS(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0x00, 0x14, regOp1, regOp2, arg); } void XEmitter::VUNPCKLPD(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0x66, 0x14, regOp1, regOp2, arg); } void XEmitter::VANDPS(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0x00, sseAND, regOp1, regOp2, arg); } void XEmitter::VANDPD(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0x66, sseAND, regOp1, regOp2, arg); } void XEmitter::VANDNPS(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0x00, sseANDN, regOp1, regOp2, arg); } void XEmitter::VANDNPD(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0x66, sseANDN, regOp1, regOp2, arg); } void XEmitter::VORPS(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0x00, sseOR, regOp1, regOp2, arg); } void XEmitter::VORPD(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0x66, sseOR, regOp1, regOp2, arg); } void XEmitter::VXORPS(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0x00, sseXOR, regOp1, regOp2, arg); } void XEmitter::VXORPD(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0x66, sseXOR, regOp1, regOp2, arg); } void XEmitter::VPTEST(int bits, X64Reg regOp1, OpArg arg) { WriteAVXOp(bits, 0x66, 0x3817, regOp1, arg); } void XEmitter::VMOVNTDQA(int bits, X64Reg regOp1, OpArg arg) { WriteAVX12Op(bits, 0x66, 0x382A, regOp1, arg); } void XEmitter::VPACKSSWB(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0x63, regOp1, regOp2, arg); } void XEmitter::VPACKSSDW(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0x6B, regOp1, regOp2, arg); } void XEmitter::VPACKUSWB(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0x67, regOp1, regOp2, arg); } void XEmitter::VPACKUSDW(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0x382B, regOp1, regOp2, arg); } void XEmitter::VPALIGNR(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg, u8 shift) { WriteAVX12Op(bits, 0x66, 0x3A0F, regOp1, regOp2, arg, 1); Write8(shift); } // Note: doesn't match non-VEX. void XEmitter::VPBLENDVB(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg, X64Reg maskReg) { WriteAVX12Op(bits, 0x66, 0x3A4C, regOp1, regOp2, arg, 1); Write8(maskReg << 4); } void XEmitter::VPBLENDW(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg, u8 mask) { WriteAVX12Op(bits, 0x66, 0x3A0E, regOp1, regOp2, arg, 1); Write8(mask); } void XEmitter::VPEXTRB(OpArg arg, X64Reg regOp1, u8 subreg) { WriteAVXOp(0, 0x66, 0x3A14, regOp1, arg, 1); Write8(subreg); } void XEmitter::VPEXTRW(OpArg arg, X64Reg regOp1, u8 subreg) { WriteAVXOp(0, 0x66, 0x3A15, regOp1, arg, 1); Write8(subreg); } void XEmitter::VPEXTRD(OpArg arg, X64Reg regOp1, u8 subreg) { WriteAVXOp(0, 0x66, 0x3A16, regOp1, arg, 1); Write8(subreg); } void XEmitter::VPEXTRQ(OpArg arg, X64Reg regOp1, u8 subreg) { WriteAVXOp(0, 0x66, 0x3A16, regOp1, arg, 1, 1); Write8(subreg); } void XEmitter::VPINSRB(X64Reg regOp1, X64Reg regOp2, OpArg arg, u8 subreg) { WriteAVXOp(0, 0x66, 0x3A20, regOp1, regOp2, arg, 1); Write8(subreg); } void XEmitter::VPINSRW(X64Reg regOp1, X64Reg regOp2, OpArg arg, u8 subreg) { WriteAVXOp(0, 0x66, 0xC4, regOp1, regOp2, arg, 1); Write8(subreg); } void XEmitter::VPINSRD(X64Reg regOp1, X64Reg regOp2, OpArg arg, u8 subreg) { WriteAVXOp(0, 0x66, 0x3A22, regOp1, regOp2, arg, 1); Write8(subreg); } void XEmitter::VPINSRQ(X64Reg regOp1, X64Reg regOp2, OpArg arg, u8 subreg) { WriteAVXOp(0, 0x66, 0x3A22, regOp1, regOp2, arg, 1, 1); Write8(subreg); } void XEmitter::VPMOVMSKB(int bits, X64Reg genReg, X64Reg arg) { WriteAVX12Op(bits, 0x66, 0xD7, genReg, R(arg)); } void XEmitter::VPMOVSXBW(int bits, X64Reg regOp1, OpArg arg) { WriteAVX12Op(bits, 0x66, 0x3820, regOp1, arg); } void XEmitter::VPMOVSXBD(int bits, X64Reg regOp1, OpArg arg) { WriteAVX12Op(bits, 0x66, 0x3821, regOp1, arg); } void XEmitter::VPMOVSXBQ(int bits, X64Reg regOp1, OpArg arg) { WriteAVX12Op(bits, 0x66, 0x3822, regOp1, arg); } void XEmitter::VPMOVSXWD(int bits, X64Reg regOp1, OpArg arg) { WriteAVX12Op(bits, 0x66, 0x3823, regOp1, arg); } void XEmitter::VPMOVSXWQ(int bits, X64Reg regOp1, OpArg arg) { WriteAVX12Op(bits, 0x66, 0x3824, regOp1, arg); } void XEmitter::VPMOVSXDQ(int bits, X64Reg regOp1, OpArg arg) { WriteAVX12Op(bits, 0x66, 0x3825, regOp1, arg); } void XEmitter::VPMOVZXBW(int bits, X64Reg regOp1, OpArg arg) { WriteAVX12Op(bits, 0x66, 0x3830, regOp1, arg); } void XEmitter::VPMOVZXBD(int bits, X64Reg regOp1, OpArg arg) { WriteAVX12Op(bits, 0x66, 0x3831, regOp1, arg); } void XEmitter::VPMOVZXBQ(int bits, X64Reg regOp1, OpArg arg) { WriteAVX12Op(bits, 0x66, 0x3832, regOp1, arg); } void XEmitter::VPMOVZXWD(int bits, X64Reg regOp1, OpArg arg) { WriteAVX12Op(bits, 0x66, 0x3833, regOp1, arg); } void XEmitter::VPMOVZXWQ(int bits, X64Reg regOp1, OpArg arg) { WriteAVX12Op(bits, 0x66, 0x3834, regOp1, arg); } void XEmitter::VPMOVZXDQ(int bits, X64Reg regOp1, OpArg arg) { WriteAVX12Op(bits, 0x66, 0x3835, regOp1, arg); } void XEmitter::VPSHUFB(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0x3800, regOp1, regOp2, arg); } void XEmitter::VPSHUFD(int bits, X64Reg regOp1, OpArg arg, u8 shuffle) { WriteAVX12Op(bits, 0x66, 0x70, regOp1, arg, 1); Write8(shuffle); } void XEmitter::VPSHUFHW(int bits, X64Reg regOp1, OpArg arg, u8 shuffle) { WriteAVX12Op(bits, 0xF3, 0x70, regOp1, arg, 1); Write8(shuffle); } void XEmitter::VPSHUFLW(int bits, X64Reg regOp1, OpArg arg, u8 shuffle) { WriteAVX12Op(bits, 0xF2, 0x70, regOp1, arg, 1); Write8(shuffle); } void XEmitter::VPUNPCKHBW(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0x68, regOp1, regOp2, arg); } void XEmitter::VPUNPCKHWD(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0x69, regOp1, regOp2, arg); } void XEmitter::VPUNPCKHDQ(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0x6A, regOp1, regOp2, arg); } void XEmitter::VPUNPCKHQDQ(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0x6D, regOp1, regOp2, arg); } void XEmitter::VPUNPCKLBW(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0x60, regOp1, regOp2, arg); } void XEmitter::VPUNPCKLWD(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0x61, regOp1, regOp2, arg); } void XEmitter::VPUNPCKLDQ(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0x62, regOp1, regOp2, arg); } void XEmitter::VPUNPCKLQDQ(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0x6C, regOp1, regOp2, arg); } void XEmitter::VPABSB(int bits, X64Reg regOp1, OpArg arg) { WriteAVX12Op(bits, 0x66, 0x381C, regOp1, arg); } void XEmitter::VPABSW(int bits, X64Reg regOp1, OpArg arg) { WriteAVX12Op(bits, 0x66, 0x381D, regOp1, arg); } void XEmitter::VPABSD(int bits, X64Reg regOp1, OpArg arg) { WriteAVX12Op(bits, 0x66, 0x381E, regOp1, arg); } void XEmitter::VPADDB(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0xFC, regOp1, regOp2, arg); } void XEmitter::VPADDW(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0xFD, regOp1, regOp2, arg); } void XEmitter::VPADDD(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0xFE, regOp1, regOp2, arg); } void XEmitter::VPADDQ(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0xD4, regOp1, regOp2, arg); } void XEmitter::VPADDSB(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0xEC, regOp1, regOp2, arg); } void XEmitter::VPADDSW(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0xED, regOp1, regOp2, arg); } void XEmitter::VPADDUSB(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0xDC, regOp1, regOp2, arg); } void XEmitter::VPADDUSW(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0xDD, regOp1, regOp2, arg); } void XEmitter::VPAVGB(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0xE0, regOp1, regOp2, arg); } void XEmitter::VPAVGW(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0xE3, regOp1, regOp2, arg); } void XEmitter::VPCMPEQB(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0x74, regOp1, regOp2, arg); } void XEmitter::VPCMPEQW(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0x75, regOp1, regOp2, arg); } void XEmitter::VPCMPEQD(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0x76, regOp1, regOp2, arg); } void XEmitter::VPCMPEQQ(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0x3829, regOp1, regOp2, arg); } void XEmitter::VPCMPGTB(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0x64, regOp1, regOp2, arg); } void XEmitter::VPCMPGTW(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0x65, regOp1, regOp2, arg); } void XEmitter::VPCMPGTD(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0x66, regOp1, regOp2, arg); } void XEmitter::VPCMPGTQ(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0x3837, regOp1, regOp2, arg); } void XEmitter::VPHADDW(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0x3801, regOp1, regOp2, arg); } void XEmitter::VPHADDD(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0x3802, regOp1, regOp2, arg); } void XEmitter::VPHADDSW(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0x3803, regOp1, regOp2, arg); } void XEmitter::VHMINPOSUW(X64Reg regOp1, OpArg arg) { WriteAVXOp(0, 0x66, 0x3841, regOp1, arg); } void XEmitter::VPHSUBW(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0x3805, regOp1, regOp2, arg); } void XEmitter::VPHSUBD(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0x3806, regOp1, regOp2, arg); } void XEmitter::VPHSUBSW(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0x3807, regOp1, regOp2, arg); } void XEmitter::VPMADDUBSW(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0x3804, regOp1, regOp2, arg); } void XEmitter::VPMADDWD(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0xF5, regOp1, regOp2, arg); } void XEmitter::VPMAXSB(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0x383C, regOp1, regOp2, arg); } void XEmitter::VPMAXSW(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0xEE, regOp1, regOp2, arg); } void XEmitter::VPMAXSD(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0x383D, regOp1, regOp2, arg); } void XEmitter::VPMAXUB(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0xDE, regOp1, regOp2, arg); } void XEmitter::VPMAXUW(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0x383E, regOp1, regOp2, arg); } void XEmitter::VPMAXUD(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0x383F, regOp1, regOp2, arg); } void XEmitter::VPMINSB(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0x3838, regOp1, regOp2, arg); } void XEmitter::VPMINSW(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0xEA, regOp1, regOp2, arg); } void XEmitter::VPMINSD(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0x3839, regOp1, regOp2, arg); } void XEmitter::VPMINUB(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0xDA, regOp1, regOp2, arg); } void XEmitter::VPMINUW(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0x383A, regOp1, regOp2, arg); } void XEmitter::VPMINUD(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0x383B, regOp1, regOp2, arg); } void XEmitter::VPMULDQ(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0x3828, regOp1, regOp2, arg); } void XEmitter::VPMULHRS(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0x380B, regOp1, regOp2, arg); } void XEmitter::VPMULHUW(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0xE4, regOp1, regOp2, arg); } void XEmitter::VPMULHW(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0xE5, regOp1, regOp2, arg); } void XEmitter::VPMULLD(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0x3840, regOp1, regOp2, arg); } void XEmitter::VPMULLW(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0xD5, regOp1, regOp2, arg); } void XEmitter::VPMULUDQ(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0xF4, regOp1, regOp2, arg); } void XEmitter::VPSADBW(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0xF6, regOp1, regOp2, arg); } void XEmitter::VPSIGNB(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0x3808, regOp1, regOp2, arg); } void XEmitter::VPSIGNW(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0x3809, regOp1, regOp2, arg); } void XEmitter::VPSIGND(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0x380A, regOp1, regOp2, arg); } void XEmitter::VPSUBB(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0xF8, regOp1, regOp2, arg); } void XEmitter::VPSUBW(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0xF9, regOp1, regOp2, arg); } void XEmitter::VPSUBD(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0xFA, regOp1, regOp2, arg); } void XEmitter::VPSUBQ(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0xFB, regOp1, regOp2, arg); } void XEmitter::VPSUBSB(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0xE8, regOp1, regOp2, arg); } void XEmitter::VPSUBSW(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0xE9, regOp1, regOp2, arg); } void XEmitter::VPSUBUSB(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0xD8, regOp1, regOp2, arg); } void XEmitter::VPSUBUSW(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0xD9, regOp1, regOp2, arg); } void XEmitter::VPAND(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0xDB, regOp1, regOp2, arg); } void XEmitter::VPANDN(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0xDF, regOp1, regOp2, arg); } void XEmitter::VPOR(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0xEB, regOp1, regOp2, arg); } void XEmitter::VPSLLDQ(int bits, X64Reg regOp2, X64Reg arg, u8 shift) { WriteAVX12Op(bits, 0x66, 0x73, (X64Reg)7, regOp2, R(arg), 1); Write8(shift); } void XEmitter::VPSLLW(int bits, X64Reg regOp2, X64Reg arg, u8 shift) { WriteAVX12Op(bits, 0x66, 0x71, (X64Reg)6, regOp2, R(arg), 1); Write8(shift); } void XEmitter::VPSLLW(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0xF1, regOp1, regOp2, arg); } void XEmitter::VPSLLD(int bits, X64Reg regOp2, X64Reg arg, u8 shift) { WriteAVX12Op(bits, 0x66, 0x72, (X64Reg)6, regOp2, R(arg), 1); Write8(shift); } void XEmitter::VPSLLD(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0xF2, regOp1, regOp2, arg); } void XEmitter::VPSLLQ(int bits, X64Reg regOp2, X64Reg arg, u8 shift) { WriteAVX12Op(bits, 0x66, 0x73, (X64Reg)6, regOp2, R(arg), 1); Write8(shift); } void XEmitter::VPSLLQ(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0xF3, regOp1, regOp2, arg); } void XEmitter::VPSRAW(int bits, X64Reg regOp2, X64Reg arg, u8 shift) { WriteAVX12Op(bits, 0x66, 0x71, (X64Reg)4, regOp2, R(arg), 1); Write8(shift); } void XEmitter::VPSRAW(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0xE1, regOp1, regOp2, arg); } void XEmitter::VPSRAD(int bits, X64Reg regOp2, X64Reg arg, u8 shift) { WriteAVX12Op(bits, 0x66, 0x72, (X64Reg)4, regOp2, R(arg), 1); Write8(shift); } void XEmitter::VPSRAD(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0xE2, regOp1, regOp2, arg); } void XEmitter::VPSRLDQ(int bits, X64Reg regOp2, X64Reg arg, u8 shift) { WriteAVX12Op(bits, 0x66, 0x73, (X64Reg)3, regOp2, R(arg), 1); Write8(shift); } void XEmitter::VPSRLW(int bits, X64Reg regOp2, X64Reg arg, u8 shift) { WriteAVX12Op(bits, 0x66, 0x71, (X64Reg)2, regOp2, R(arg), 1); Write8(shift); } void XEmitter::VPSRLW(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0xD1, regOp1, regOp2, arg); } void XEmitter::VPSRLD(int bits, X64Reg regOp2, X64Reg arg, u8 shift) { WriteAVX12Op(bits, 0x66, 0x72, (X64Reg)2, regOp2, R(arg), 1); Write8(shift); } void XEmitter::VPSRLD(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0xD2, regOp1, regOp2, arg); } void XEmitter::VPSRLQ(int bits, X64Reg regOp2, X64Reg arg, u8 shift) { WriteAVX12Op(bits, 0x66, 0x73, (X64Reg)2, regOp2, R(arg), 1); Write8(shift); } void XEmitter::VPSRLQ(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0xD3, regOp1, regOp2, arg); } void XEmitter::VPXOR(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX12Op(bits, 0x66, 0xEF, regOp1, regOp2, arg); } void XEmitter::VBROADCASTSS(int bits, X64Reg regOp1, OpArg arg) { WriteAVXOp(bits, 0x66, 0x3818, regOp1, arg); } void XEmitter::VBROADCASTSD(X64Reg regOp1, OpArg arg) { WriteAVXOp(256, 0x66, 0x3819, regOp1, arg); } void XEmitter::VBROADCASTF128(X64Reg regOp1, OpArg arg) { WriteAVXOp(256, 0x66, 0x381A, regOp1, arg); } void XEmitter::VEXTRACTF128(OpArg arg, X64Reg regOp1, u8 subreg) { WriteAVXOp(256, 0x66, 0x3A19, regOp1, arg, 1); Write8(subreg); } void XEmitter::VINSERTF128(X64Reg regOp1, X64Reg regOp2, OpArg arg, u8 subreg) { WriteAVXOp(256, 0x66, 0x3A18, regOp1, regOp2, arg, 1); Write8(subreg); } void XEmitter::VPERM2F128(X64Reg regOp1, X64Reg regOp2, OpArg arg, u8 mask) { WriteAVXOp(256, 0x66, 0x3A06, regOp1, regOp2, arg, 1); Write8(mask); } void XEmitter::VPERMILPS(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0x66, 0x380C, regOp1, regOp2, arg); } void XEmitter::VPERMILPS(int bits, X64Reg regOp1, OpArg arg, u8 mask) { WriteAVXOp(bits, 0x66, 0x3A04, regOp1, arg, 1); Write8(mask); } void XEmitter::VPERMILPD(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0x66, 0x380D, regOp1, regOp2, arg); } void XEmitter::VPERMILPD(int bits, X64Reg regOp1, OpArg arg, u8 mask) { WriteAVXOp(bits, 0x66, 0x3A05, regOp1, arg, 1); Write8(mask); } void XEmitter::VMASKMOVPS(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0x66, 0x382C, regOp1, regOp2, arg); } void XEmitter::VMASKMOVPS(int bits, OpArg arg, X64Reg regOp1, X64Reg regOp2) { WriteAVXOp(bits, 0x66, 0x382E, regOp1, regOp2, arg); } void XEmitter::VMASKMOVPD(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0x66, 0x382D, regOp1, regOp2, arg); } void XEmitter::VMASKMOVPD(int bits, OpArg arg, X64Reg regOp1, X64Reg regOp2) { WriteAVXOp(bits, 0x66, 0x382F, regOp1, regOp2, arg); } void XEmitter::VTESTPS(int bits, X64Reg regOp1, OpArg arg) { WriteAVXOp(bits, 0x66, 0x380E, regOp1, arg); } void XEmitter::VTESTPD(int bits, X64Reg regOp1, OpArg arg) { WriteAVXOp(bits, 0x66, 0x380F, regOp1, arg); } void XEmitter::VZEROALL() { _assert_msg_(cpu_info.bAVX, "Trying to use AVX on a system that doesn't support it."); R(INVALID_REG).WriteVex(this, INVALID_REG, INVALID_REG, 1, 0, 1, 0); Write8(0x77); } void XEmitter::VZEROUPPER() { _assert_msg_(cpu_info.bAVX, "Trying to use AVX on a system that doesn't support it."); R(INVALID_REG).WriteVex(this, INVALID_REG, INVALID_REG, 0, 0, 1, 0); Write8(0x77); } void XEmitter::VEXTRACTI128(OpArg arg, X64Reg regOp1, u8 subreg) { WriteAVX2Op(256, 0x66, 0x3A39, regOp1, arg, 1); Write8(subreg); } void XEmitter::VINSERTI128(X64Reg regOp1, X64Reg regOp2, OpArg arg, u8 subreg) { WriteAVX2Op(256, 0x66, 0x3A38, regOp1, regOp2, arg, 1); Write8(subreg); } void XEmitter::VPBLENDD(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg, u8 mask) { WriteAVX2Op(bits, 0x66, 0x3A02, regOp1, regOp2, arg, 1); Write8(mask); } void XEmitter::VPBROADCASTB(int bits, X64Reg regOp1, OpArg arg) { WriteAVX2Op(bits, 0x66, 0x3878, regOp1, arg); } void XEmitter::VPBROADCASTW(int bits, X64Reg regOp1, OpArg arg) { WriteAVX2Op(bits, 0x66, 0x3879, regOp1, arg); } void XEmitter::VPBROADCASTD(int bits, X64Reg regOp1, OpArg arg) { WriteAVX2Op(bits, 0x66, 0x3858, regOp1, arg); } void XEmitter::VPBROADCASTQ(int bits, X64Reg regOp1, OpArg arg) { WriteAVX2Op(bits, 0x66, 0x3859, regOp1, arg); } void XEmitter::VBROADCASTI128(X64Reg regOp1, OpArg arg) { _assert_msg_(!arg.IsSimpleReg(), "VBROADCASTI128 must come from memory"); WriteAVX2Op(256, 0x66, 0x385A, regOp1, arg); } void XEmitter::VPERM2I128(X64Reg regOp1, X64Reg regOp2, OpArg arg, u8 mask) { WriteAVX2Op(256, 0x66, 0x3A46, regOp1, regOp2, arg, 1); Write8(mask); } void XEmitter::VPERMD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX2Op(256, 0x66, 0x3836, regOp1, regOp2, arg); } void XEmitter::VPERMPS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX2Op(256, 0x66, 0x3816, regOp1, regOp2, arg); } void XEmitter::VPERMPD(X64Reg regOp1, OpArg arg, u8 shuffle) { WriteAVX2Op(256, 0x66, 0x3A01, regOp1, arg, 1, 1); Write8(shuffle); } void XEmitter::VPERMQ(X64Reg regOp1, OpArg arg, u8 shuffle) { WriteAVX2Op(256, 0x66, 0x3A00, regOp1, arg, 1, 1); Write8(shuffle); } void XEmitter::VPMASKMOVD(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX2Op(bits, 0x66, 0x388C, regOp1, regOp2, arg); } void XEmitter::VPMASKMOVD(int bits, OpArg arg, X64Reg regOp1, X64Reg regOp2) { WriteAVX2Op(bits, 0x66, 0x388E, regOp1, regOp2, arg); } void XEmitter::VPMASKMOVQ(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX2Op(bits, 0x66, 0x388C, regOp1, regOp2, arg, 0, 1); } void XEmitter::VPMASKMOVQ(int bits, OpArg arg, X64Reg regOp1, X64Reg regOp2) { WriteAVX2Op(bits, 0x66, 0x388E, regOp1, regOp2, arg, 0, 1); } void XEmitter::VGATHERDPS(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2) { _assert_msg_(regOp1 != regOp2 && !arg.IsIndexedReg(regOp1) && !arg.IsIndexedReg(regOp2), "VGATHER cannot have overlapped registers"); WriteAVX2Op(bits, 0x66, 0x3892, regOp1, regOp2, arg); } void XEmitter::VGATHERDPD(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2) { _assert_msg_(regOp1 != regOp2 && !arg.IsIndexedReg(regOp1) && !arg.IsIndexedReg(regOp2), "VGATHER cannot have overlapped registers"); WriteAVX2Op(bits, 0x66, 0x3893, regOp1, regOp2, arg); } void XEmitter::VGATHERQPS(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2) { _assert_msg_(regOp1 != regOp2 && !arg.IsIndexedReg(regOp1) && !arg.IsIndexedReg(regOp2), "VGATHER cannot have overlapped registers"); WriteAVX2Op(bits, 0x66, 0x3892, regOp1, regOp2, arg); } void XEmitter::VGATHERQPD(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2) { _assert_msg_(regOp1 != regOp2 && !arg.IsIndexedReg(regOp1) && !arg.IsIndexedReg(regOp2), "VGATHER cannot have overlapped registers"); WriteAVX2Op(bits, 0x66, 0x3893, regOp1, regOp2, arg); } void XEmitter::VPGATHERDD(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2) { _assert_msg_(regOp1 != regOp2 && !arg.IsIndexedReg(regOp1) && !arg.IsIndexedReg(regOp2), "VPGATHER cannot have overlapped registers"); WriteAVX2Op(bits, 0x66, 0x3890, regOp1, regOp2, arg); } void XEmitter::VPGATHERQD(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2) { _assert_msg_(regOp1 != regOp2 && !arg.IsIndexedReg(regOp1) && !arg.IsIndexedReg(regOp2), "VPGATHER cannot have overlapped registers"); WriteAVX2Op(bits, 0x66, 0x3891, regOp1, regOp2, arg); } void XEmitter::VPGATHERDQ(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2) { _assert_msg_(regOp1 != regOp2 && !arg.IsIndexedReg(regOp1) && !arg.IsIndexedReg(regOp2), "VPGATHER cannot have overlapped registers"); WriteAVX2Op(bits, 0x66, 0x3890, regOp1, regOp2, arg, 0, 1); } void XEmitter::VPGATHERQQ(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2) { _assert_msg_(regOp1 != regOp2 && !arg.IsIndexedReg(regOp1) && !arg.IsIndexedReg(regOp2), "VPGATHER cannot have overlapped registers"); WriteAVX2Op(bits, 0x66, 0x3891, regOp1, regOp2, arg, 0, 1); } void XEmitter::VPSLLVD(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX2Op(bits, 0x66, 0x3847, regOp1, regOp2, arg); } void XEmitter::VPSLLVQ(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX2Op(bits, 0x66, 0x3847, regOp1, regOp2, arg, 0, 1); } void XEmitter::VPSRAVD(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX2Op(bits, 0x66, 0x3846, regOp1, regOp2, arg); } void XEmitter::VPSRLVD(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX2Op(bits, 0x66, 0x3845, regOp1, regOp2, arg); } void XEmitter::VPSRLVQ(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVX2Op(bits, 0x66, 0x3845, regOp1, regOp2, arg, 0, 1); } void XEmitter::VFMADD132PS(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0x66, 0x3898, regOp1, regOp2, arg); } void XEmitter::VFMADD213PS(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0x66, 0x38A8, regOp1, regOp2, arg); } void XEmitter::VFMADD231PS(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0x66, 0x38B8, regOp1, regOp2, arg); } void XEmitter::VFMADD132PD(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0x66, 0x3898, regOp1, regOp2, arg, 0, 1); } void XEmitter::VFMADD213PD(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0x66, 0x38A8, regOp1, regOp2, arg, 0, 1); } void XEmitter::VFMADD231PD(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0x66, 0x38B8, regOp1, regOp2, arg, 0, 1); } void XEmitter::VFMADD132SS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0, 0x66, 0x3899, regOp1, regOp2, arg); } void XEmitter::VFMADD213SS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0, 0x66, 0x38A9, regOp1, regOp2, arg); } void XEmitter::VFMADD231SS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0, 0x66, 0x38B9, regOp1, regOp2, arg); } void XEmitter::VFMADD132SD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0, 0x66, 0x3899, regOp1, regOp2, arg, 0, 1); } void XEmitter::VFMADD213SD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0, 0x66, 0x38A9, regOp1, regOp2, arg, 0, 1); } void XEmitter::VFMADD231SD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0, 0x66, 0x38B9, regOp1, regOp2, arg, 0, 1); } void XEmitter::VFMSUB132PS(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0x66, 0x389A, regOp1, regOp2, arg); } void XEmitter::VFMSUB213PS(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0x66, 0x38AA, regOp1, regOp2, arg); } void XEmitter::VFMSUB231PS(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0x66, 0x38BA, regOp1, regOp2, arg); } void XEmitter::VFMSUB132PD(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0x66, 0x389A, regOp1, regOp2, arg, 0, 1); } void XEmitter::VFMSUB213PD(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0x66, 0x38AA, regOp1, regOp2, arg, 0, 1); } void XEmitter::VFMSUB231PD(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0x66, 0x38BA, regOp1, regOp2, arg, 0, 1); } void XEmitter::VFMSUB132SS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0, 0x66, 0x389B, regOp1, regOp2, arg); } void XEmitter::VFMSUB213SS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0, 0x66, 0x38AB, regOp1, regOp2, arg); } void XEmitter::VFMSUB231SS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0, 0x66, 0x38BB, regOp1, regOp2, arg); } void XEmitter::VFMSUB132SD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0, 0x66, 0x389B, regOp1, regOp2, arg, 0, 1); } void XEmitter::VFMSUB213SD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0, 0x66, 0x38AB, regOp1, regOp2, arg, 0, 1); } void XEmitter::VFMSUB231SD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0, 0x66, 0x38BB, regOp1, regOp2, arg, 0, 1); } void XEmitter::VFNMADD132PS(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0x66, 0x389C, regOp1, regOp2, arg); } void XEmitter::VFNMADD213PS(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0x66, 0x38AC, regOp1, regOp2, arg); } void XEmitter::VFNMADD231PS(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0x66, 0x38BC, regOp1, regOp2, arg); } void XEmitter::VFNMADD132PD(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0x66, 0x389C, regOp1, regOp2, arg, 0, 1); } void XEmitter::VFNMADD213PD(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0x66, 0x38AC, regOp1, regOp2, arg, 0, 1); } void XEmitter::VFNMADD231PD(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0x66, 0x38BC, regOp1, regOp2, arg, 0, 1); } void XEmitter::VFNMADD132SS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0, 0x66, 0x389D, regOp1, regOp2, arg); } void XEmitter::VFNMADD213SS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0, 0x66, 0x38AD, regOp1, regOp2, arg); } void XEmitter::VFNMADD231SS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0, 0x66, 0x38BD, regOp1, regOp2, arg); } void XEmitter::VFNMADD132SD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0, 0x66, 0x389D, regOp1, regOp2, arg, 0, 1); } void XEmitter::VFNMADD213SD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0, 0x66, 0x38AD, regOp1, regOp2, arg, 0, 1); } void XEmitter::VFNMADD231SD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0, 0x66, 0x38BD, regOp1, regOp2, arg, 0, 1); } void XEmitter::VFNMSUB132PS(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0x66, 0x389E, regOp1, regOp2, arg); } void XEmitter::VFNMSUB213PS(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0x66, 0x38AE, regOp1, regOp2, arg); } void XEmitter::VFNMSUB231PS(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0x66, 0x38BE, regOp1, regOp2, arg); } void XEmitter::VFNMSUB132PD(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0x66, 0x389E, regOp1, regOp2, arg, 0, 1); } void XEmitter::VFNMSUB213PD(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0x66, 0x38AE, regOp1, regOp2, arg, 0, 1); } void XEmitter::VFNMSUB231PD(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0x66, 0x38BE, regOp1, regOp2, arg, 0, 1); } void XEmitter::VFNMSUB132SS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0, 0x66, 0x389F, regOp1, regOp2, arg); } void XEmitter::VFNMSUB213SS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0, 0x66, 0x38AF, regOp1, regOp2, arg); } void XEmitter::VFNMSUB231SS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0, 0x66, 0x38BF, regOp1, regOp2, arg); } void XEmitter::VFNMSUB132SD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0, 0x66, 0x389F, regOp1, regOp2, arg, 0, 1); } void XEmitter::VFNMSUB213SD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0, 0x66, 0x38AF, regOp1, regOp2, arg, 0, 1); } void XEmitter::VFNMSUB231SD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0, 0x66, 0x38BF, regOp1, regOp2, arg, 0, 1); } void XEmitter::VFMADDSUB132PS(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0x66, 0x3896, regOp1, regOp2, arg); } void XEmitter::VFMADDSUB213PS(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0x66, 0x38A6, regOp1, regOp2, arg); } void XEmitter::VFMADDSUB231PS(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0x66, 0x38B6, regOp1, regOp2, arg); } void XEmitter::VFMADDSUB132PD(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0x66, 0x3896, regOp1, regOp2, arg, 0, 1); } void XEmitter::VFMADDSUB213PD(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0x66, 0x38A6, regOp1, regOp2, arg, 0, 1); } void XEmitter::VFMADDSUB231PD(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0x66, 0x38B6, regOp1, regOp2, arg, 0, 1); } void XEmitter::VFMSUBADD132PS(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0x66, 0x3897, regOp1, regOp2, arg); } void XEmitter::VFMSUBADD213PS(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0x66, 0x38A7, regOp1, regOp2, arg); } void XEmitter::VFMSUBADD231PS(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0x66, 0x38B7, regOp1, regOp2, arg); } void XEmitter::VFMSUBADD132PD(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0x66, 0x3897, regOp1, regOp2, arg, 0, 1); } void XEmitter::VFMSUBADD213PD(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0x66, 0x38A7, regOp1, regOp2, arg, 0, 1); } void XEmitter::VFMSUBADD231PD(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(bits, 0x66, 0x38B7, regOp1, regOp2, arg, 0, 1); } void XEmitter::SARX(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2) {WriteBMI2Op(bits, 0xF3, 0x38F7, regOp1, regOp2, arg);} void XEmitter::SHLX(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2) {WriteBMI2Op(bits, 0x66, 0x38F7, regOp1, regOp2, arg);} void XEmitter::SHRX(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2) {WriteBMI2Op(bits, 0xF2, 0x38F7, regOp1, regOp2, arg);} void XEmitter::RORX(int bits, X64Reg regOp, OpArg arg, u8 rotate) {WriteBMI2Op(bits, 0xF2, 0x3AF0, regOp, INVALID_REG, arg, 1); Write8(rotate);} void XEmitter::PEXT(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteBMI2Op(bits, 0xF3, 0x38F5, regOp1, regOp2, arg);} void XEmitter::PDEP(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteBMI2Op(bits, 0xF2, 0x38F5, regOp1, regOp2, arg);} void XEmitter::MULX(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteBMI2Op(bits, 0xF2, 0x38F6, regOp2, regOp1, arg);} void XEmitter::BZHI(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2) {WriteBMI2Op(bits, 0x00, 0x38F5, regOp1, regOp2, arg);} void XEmitter::BLSR(int bits, X64Reg regOp, OpArg arg) {WriteBMI1Op(bits, 0x00, 0x38F3, (X64Reg)0x1, regOp, arg);} void XEmitter::BLSMSK(int bits, X64Reg regOp, OpArg arg) {WriteBMI1Op(bits, 0x00, 0x38F3, (X64Reg)0x2, regOp, arg);} void XEmitter::BLSI(int bits, X64Reg regOp, OpArg arg) {WriteBMI1Op(bits, 0x00, 0x38F3, (X64Reg)0x3, regOp, arg);} void XEmitter::BEXTR(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2){WriteBMI1Op(bits, 0x00, 0x38F7, regOp1, regOp2, arg);} void XEmitter::ANDN(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteBMI1Op(bits, 0x00, 0x38F2, regOp1, regOp2, arg);} // Prefixes void XEmitter::LOCK() { Write8(0xF0); } void XEmitter::REP() { Write8(0xF3); } void XEmitter::REPNE() { Write8(0xF2); } void XEmitter::FSOverride() { Write8(0x64); } void XEmitter::GSOverride() { Write8(0x65); } void XEmitter::FWAIT() { Write8(0x9B); } // TODO: make this more generic void XEmitter::WriteFloatLoadStore(int bits, FloatOp op, FloatOp op_80b, OpArg arg) { int mf = 0; _assert_msg_(!(bits == 80 && op_80b == floatINVALID), "WriteFloatLoadStore: 80 bits not supported for this instruction"); switch (bits) { case 32: mf = 0; break; case 64: mf = 4; break; case 80: mf = 2; break; default: _assert_msg_(false, "WriteFloatLoadStore: invalid bits (should be 32/64/80)"); } Write8(0xd9 | mf); // x87 instructions use the reg field of the ModR/M byte as opcode: if (bits == 80) op = op_80b; arg.WriteRest(this, 0, (X64Reg) op); } void XEmitter::FLD(int bits, OpArg src) {WriteFloatLoadStore(bits, floatLD, floatLD80, src);} void XEmitter::FST(int bits, OpArg dest) {WriteFloatLoadStore(bits, floatST, floatINVALID, dest);} void XEmitter::FSTP(int bits, OpArg dest) {WriteFloatLoadStore(bits, floatSTP, floatSTP80, dest);} void XEmitter::FNSTSW_AX() { Write8(0xDF); Write8(0xE0); } void XEmitter::RDTSC() { Write8(0x0F); Write8(0x31); } void XCodeBlock::PoisonMemory(int offset) { // x86/64: 0xCC = breakpoint memset(region + offset, 0xCC, region_size - offset); } }